1
|
Rabuffo G, Lokossou HA, Li Z, Ziaee-Mehr A, Hashemi M, Quilichini PP, Ghestem A, Arab O, Esclapez M, Verma P, Raj A, Gozzi A, Sorrentino P, Chuang KH, Perles-Barbacaru TA, Viola A, Jirsa VK, Bernard C. Mapping global brain reconfigurations following local targeted manipulations. Proc Natl Acad Sci U S A 2025; 122:e2405706122. [PMID: 40249780 PMCID: PMC12037044 DOI: 10.1073/pnas.2405706122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/13/2025] [Indexed: 04/20/2025] Open
Abstract
Understanding how localized brain interventions influence whole-brain dynamics is essential for deciphering neural function and designing therapeutic strategies. Using longitudinal functional MRI datasets collected from mice, we investigated the effects of focal interventions, such as thalamic lesions and chemogenetic silencing of cortical hubs. We found that these local manipulations disrupted the brain's ability to sustain network-wide activity, leading to global functional connectivity (FC) reconfigurations. Personalized mouse brain simulations based on experimental data revealed that alterations in local excitability modulate firing rates and frequency content across distributed brain regions, driving these FC changes. Notably, the topography of the affected brain regions depended on the intervention site, serving as distinctive signatures of localized perturbations. These findings suggest that focal interventions produce consistent yet region-specific patterns of global FC reorganization, providing an explanation for the seemingly paradoxical observations of hypo- and hyperconnectivity reported in the literature. This framework offers mechanistic insights into the systemic effects of localized neural modulation and holds potential for refining clinical diagnostics in focal brain disorders and advancing personalized neuromodulation strategies.
Collapse
Affiliation(s)
- Giovanni Rabuffo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Houefa-Armelle Lokossou
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, CNRS, Marseille13005, France
| | - Zengmin Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD4067, Australia
| | | | - Meysam Hashemi
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | - Antoine Ghestem
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Ouafae Arab
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Monique Esclapez
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Parul Verma
- Department of Radiology, University of California, San Francisco, CA94143
| | - Ashish Raj
- Department of Radiology, University of California, San Francisco, CA94143
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto38068, Italy
| | | | - Kai-Hsiang Chuang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD4067, Australia
| | | | - Angèle Viola
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, CNRS, Marseille13005, France
| | - Viktor K. Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | |
Collapse
|
2
|
Murphy EF, Means A, Li C, Baez H, Gomez-Ramirez M. Strength of activation and temporal dynamics of bioluminescent-optogenetics in response to systemic injections of the luciferin. Neuroimage 2024; 301:120882. [PMID: 39362505 DOI: 10.1016/j.neuroimage.2024.120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
BioLuminescent OptoGenetics ("BL-OG") is a chemogenetic method that can evoke optogenetic reactions in the brain non-invasively. In BL-OG, an enzyme that catalyzes a light producing reaction (i.e., a luciferase) is tethered to an optogenetic element that is activated in response to bioluminescent light. Bioluminescence is generated by injecting a chemical substrate (luciferin, e.g., h-Coelenterazine; h-CTZ) that is catalyzed by the luciferase. By directly injecting the luciferin into the brain, we show that bioluminescent light is proportional to spiking activity, and this relationship scales as a function of luciferin dosage. Here, we build on these previous observations by characterizing the temporal dynamics and dose response curves of bioluminescence generated by luminopsins (LMOs), a proxy of BL-OG effects, to intravenous (IV) injections of the luciferin. We imaged bioluminescence through a thinned skull of mice running on a wheel, while delivering h-CTZ via the tail vein with different dosage concentrations and injection rates. The data reveal a systematic relationship between strength of bioluminescence and h-CTZ dosage, with higher concentration generating stronger bioluminescence. We also found that bioluminescent activity occurs rapidly (< 60 s after IV injection) regardless of concentration dosage. However, as expected, the onset time of bioluminescence is delayed as the injection rate decreases. Notably, the strength and time decay of bioluminescence is invariant to the injection rate of h-CTZ. Taken together, these data show that BL-OG effects are highly consistent across injection parameters of h-CTZ, highlighting the reliability of BL-OG as a minimally invasive neuromodulation method.
Collapse
Affiliation(s)
- Emily F Murphy
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA
| | - Aniya Means
- The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Chen Li
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA
| | - Hector Baez
- Center for Visual Science, University of Rochester, Rochester NY 14642, USA
| | - Manuel Gomez-Ramirez
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA; The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, Rochester NY 14642, USA.
| |
Collapse
|
3
|
Elorette C, Fujimoto A, Stoll FM, Fujimoto SH, Bienkowska N, London L, Fleysher L, Russ BE, Rudebeck PH. The neural basis of resting-state fMRI functional connectivity in fronto-limbic circuits revealed by chemogenetic manipulation. Nat Commun 2024; 15:4669. [PMID: 38821963 PMCID: PMC11143237 DOI: 10.1038/s41467-024-49140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Measures of fMRI resting-state functional connectivity (rs-FC) are an essential tool for basic and clinical investigations of fronto-limbic circuits. Understanding the relationship between rs-FC and the underlying patterns of neural activity in these circuits is therefore vital. Here we introduced inhibitory designer receptors exclusively activated by designer drugs (DREADDs) into the amygdala of two male macaques. We evaluated the causal effect of activating the DREADD receptors on rs-FC and neural activity within circuits connecting amygdala and frontal cortex. Activating the inhibitory DREADD increased rs-FC between amygdala and ventrolateral prefrontal cortex. Neurophysiological recordings revealed that the DREADD-induced increase in fMRI rs-FC was associated with increased local field potential coherency in the alpha band (6.5-14.5 Hz) between amygdala and ventrolateral prefrontal cortex. Thus, our multi-modal approach reveals the specific signature of neuronal activity that underlies rs-FC in fronto-limbic circuits.
Collapse
Affiliation(s)
- Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Satoka H Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Niranjana Bienkowska
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Liza London
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Brian E Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University at Langone, 550 1st Avenue, New York, NY, 10016, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Kovács P, Beloate LN, Zhang N. Perturbing cortical networks: in vivo electrophysiological consequences of pan-neuronal chemogenetic manipulations using deschloroclozapine. Front Neurosci 2024; 18:1396978. [PMID: 38726028 PMCID: PMC11079238 DOI: 10.3389/fnins.2024.1396978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Chemogenetic techniques, specifically the use of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), have become invaluable tools in neuroscience research. Yet, the understanding of how Gq- and Gicoupled DREADDs alter local field potential (LFP) oscillations in vivo remains incomplete. Methods This study investigates the in vivo electrophysiological effects of DREADD actuation by deschloroclozapine, on spontaneous firing rate and LFP oscillations recorded from the anterior cingulate cortex in lightly anesthetized male rats. Results Unexpectedly, in response to the administration of deschloroclozapine, we observed inhibitory effects with pan-neuronal hM3D(Gq) stimulation, and excitatory effects with pan-neuronal hM4D(Gi) stimulation in a significant portion of neurons. These results emphasize the need to account for indirect perturbation effects at the local neuronal network level in vivo, particularly when not all neurons express the chemogenetic receptors uniformly. In the current study, for instance, the majority of cells that were transduced with both hM3D(Gq) and hM4D(Gi) were GABAergic. Moreover, we found that panneuronal cortical chemogenetic modulation can profoundly alter oscillatory neuronal activity, presenting a potential research tool or therapeutic strategy in several neuropsychiatric models and diseases. Discussion These findings help to optimize the use of chemogenetic techniques in neuroscience research and open new possibilities for novel therapeutic strategies.
Collapse
Affiliation(s)
- Péter Kovács
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Lauren N. Beloate
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Nanyin Zhang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, United States
- Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
5
|
Elorette C, Fujimoto A, Stoll FM, Fujimoto SH, Fleysher L, Bienkowska N, Russ BE, Rudebeck PH. The neural basis of resting-state fMRI functional connectivity in fronto-limbic circuits revealed by chemogenetic manipulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545778. [PMID: 37745436 PMCID: PMC10515745 DOI: 10.1101/2023.06.21.545778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Measures of fMRI resting-state functional connectivity (rs-FC) are an essential tool for basic and clinical investigations of fronto-limbic circuits. Understanding the relationship between rs-FC and neural activity in these circuits is therefore vital. Here we introduced inhibitory designer receptors exclusively activated by designer drugs (DREADDs) into the macaque amygdala and activated them with a highly selective and potent DREADD agonist, deschloroclozapine. We evaluated the causal effect of activating the DREADD receptors on rs-FC and neural activity within circuits connecting amygdala and frontal cortex. Interestingly, activating the inhibitory DREADD increased rs-FC between amygdala and ventrolateral prefrontal cortex. Neurophysiological recordings revealed that the DREADD-induced increase in fMRI rs-FC was associated with increased local field potential coherency in the alpha band (6.5-14.5Hz) between amygdala and ventrolateral prefrontal cortex. Thus, our multi-disciplinary approach reveals the specific signature of neuronal activity that underlies rs-FC in fronto-limbic circuits.
Collapse
Affiliation(s)
- Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Frederic M. Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Satoka H. Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Niranjana Bienkowska
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Brian E. Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962
- Department of Psychiatry, New York University at Langone, One, 8, Park Ave, New York, NY 10016
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
6
|
Cushnie AK, Tang W, Heilbronner SR. Connecting Circuits with Networks in Addiction Neuroscience: A Salience Network Perspective. Int J Mol Sci 2023; 24:9083. [PMID: 37240428 PMCID: PMC10219092 DOI: 10.3390/ijms24109083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Human neuroimaging has demonstrated the existence of large-scale functional networks in the cerebral cortex consisting of topographically distant brain regions with functionally correlated activity. The salience network (SN), which is involved in detecting salient stimuli and mediating inter-network communication, is a crucial functional network that is disrupted in addiction. Individuals with addiction display dysfunctional structural and functional connectivity of the SN. Furthermore, while there is a growing body of evidence regarding the SN, addiction, and the relationship between the two, there are still many unknowns, and there are fundamental limitations to human neuroimaging studies. At the same time, advances in molecular and systems neuroscience techniques allow researchers to manipulate neural circuits in nonhuman animals with increasing precision. Here, we describe attempts to translate human functional networks to nonhuman animals to uncover circuit-level mechanisms. To do this, we review the structural and functional connections of the salience network and its homology across species. We then describe the existing literature in which circuit-specific perturbation of the SN sheds light on how functional cortical networks operate, both within and outside the context of addiction. Finally, we highlight key outstanding opportunities for mechanistic studies of the SN.
Collapse
Affiliation(s)
- Adriana K. Cushnie
- Department of Neuroscience, University of Minnesota Twin Cities, 2-164 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA;
| | - Wei Tang
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota Twin Cities, 2-164 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA;
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Cushnie AK, Bullock DN, Manea AM, Tang W, Zimmermann J, Heilbronner SR. The use of chemogenetic actuator ligands in nonhuman primate DREADDs-fMRI. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100072. [PMID: 36691404 PMCID: PMC9860110 DOI: 10.1016/j.crneur.2022.100072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are engineered receptors that allow for genetically targeted, reversible manipulation of cellular activity via systemic drug administration. DREADD induced manipulations are initiated via the binding of an actuator ligand. Therefore, the use of DREADDs is contingent on the availability of actuator ligands. Actuator ligands low-dose clozapine (CLZ) and deschloroclozapine (DCZ) are highly selective for DREADDs, and, upon binding, induce physiological and behavioral changes in rodents and nonhuman primates (NHPs). Despite this reported specificity, both CLZ and DCZ have partial affinity for a variety of endogenous receptors and can induce dose-specific changes even in naïve animals. As such, this study aimed to examine the effects of CLZ and DCZ on resting-state functional connectivity (rs-FC) and intrinsic neural timescales (INTs) in naïve NHPs. In doing so, we evaluated whether CLZ and DCZ - in the absence of DREADDs - are inert by examining these ligands' effects on the intrinsic functional properties of the brain. Low-dose DCZ did not induce consistent changes in rs-FC or INTs prior to the expression of DREADDs; however, a high dose resulted in subject-specific changes in rs-FC and INTs. In contrast, CLZ administration induced consistent changes in rs-FC and INTs prior to DREADD expression in our subjects. Our results caution against the use of CLZ by explicitly demonstrating the impact of off-target effects that can confound experimental results. Altogether, these data endorse the use of low dose DCZ for future DREADD-based experiments.
Collapse
Affiliation(s)
- Adriana K. Cushnie
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel N. Bullock
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ana M.G. Manea
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Tang
- Department of Computer Science, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, 47408, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
8
|
Oguchi M, Sakagami M. Dissecting the Prefrontal Network With Pathway-Selective Manipulation in the Macaque Brain-A Review. Front Neurosci 2022; 16:917407. [PMID: 35677354 PMCID: PMC9168219 DOI: 10.3389/fnins.2022.917407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Macaque monkeys are prime animal models for studying the neural mechanisms of decision-making because of their close kinship with humans. Manipulation of neural activity during decision-making tasks is essential for approaching the causal relationship between the brain and its functions. Conventional manipulation methods used in macaque studies are coarse-grained, and have worked indiscriminately on mutually intertwined neural pathways. To systematically dissect neural circuits responsible for a variety of functions, it is essential to analyze changes in behavior and neural activity through interventions in specific neural pathways. In recent years, an increasing number of studies have applied optogenetics and chemogenetics to achieve fine-grained pathway-selective manipulation in the macaque brain. Here, we review the developments in macaque studies involving pathway-selective operations, with a particular focus on applications to the prefrontal network. Pathway selectivity can be achieved using single viral vector transduction combined with local light stimulation or ligand administration directly into the brain or double-viral vector transduction combined with systemic drug administration. We discuss the advantages and disadvantages of these methods. We also highlight recent technological developments in viral vectors that can effectively infect the macaque brain, as well as the development of methods to deliver photostimulation or ligand drugs to a wide area to effectively manipulate behavior. The development and dissemination of such pathway-selective manipulations of macaque prefrontal networks will enable us to efficiently dissect the neural mechanisms of decision-making and innovate novel treatments for decision-related psychiatric disorders.
Collapse
Affiliation(s)
- Mineki Oguchi
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| | | |
Collapse
|
9
|
Subthalamic nucleus stabilizes movements by reducing neural spike variability in monkey basal ganglia. Nat Commun 2022; 13:2233. [PMID: 35468893 PMCID: PMC9038919 DOI: 10.1038/s41467-022-29750-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
The subthalamic nucleus projects to the external and internal pallidum, the modulatory and output nuclei of the basal ganglia, respectively, and plays an indispensable role in controlling voluntary movements. However, the precise mechanism by which the subthalamic nucleus controls pallidal activity and movements remains elusive. Here, we utilize chemogenetics to reversibly reduce neural activity of the motor subregion of the subthalamic nucleus in three macaque monkeys (Macaca fuscata, both sexes) during a reaching task. Systemic administration of chemogenetic ligands prolongs movement time and increases spike train variability in the pallidum, but only slightly affects firing rate modulations. Across-trial analyses reveal that the irregular discharges in the pallidum coincides with prolonged movement time. Reduction of subthalamic activity also induces excessive abnormal movements in the contralateral forelimb, which are preceded by subthalamic and pallidal phasic activity changes. Our results suggest that the subthalamic nucleus stabilizes pallidal spike trains and achieves stable movements. Chemogenetic inactivation of the subthalamic nucleus in monkeys increases spike train variability in the pallidum and prolongs movement time, suggesting its role in stabilizing pallidal spike trains to achieve stable motor control.
Collapse
|
10
|
Characterization of DREADD receptor expression and function in rhesus macaques trained to discriminate ethanol. Neuropsychopharmacology 2022; 47:857-865. [PMID: 34654906 PMCID: PMC8882175 DOI: 10.1038/s41386-021-01181-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022]
Abstract
Circuit manipulation has been a staple technique in neuroscience to identify how the brain functions to control complex behaviors. Chemogenetics, including designer receptors exclusively activated by designer drugs (DREADDs), have proven to be a powerful tool for the reversible modulation of discrete brain circuitry without the need for implantable devices, thereby making them especially useful in awake and unrestrained animals. This study used a DREADD approach to query the role of the nucleus accumbens (NAc) in mediating the interoceptive effects of 1.0 g/kg ethanol (i.g.) in rhesus monkeys (n = 7) using a drug discrimination procedure. After training, stereotaxic surgery was performed to introduce an AAV carrying the human muscarinic 4 receptor DREADD (hM4Di) bilaterally into the NAc. The hypothesis was that decreasing the output of the NAc by activation of hM4Di with the DREADD actuator, clozapine-n-oxide (CNO), would potentiate the discriminative stimulus effect of ethanol (i.e., a leftward shift the ethanol dose discrimination curve). The results showed individual variability shifts of the ethanol dose-response determination under DREADD activation. Characterization of the expression and function of hM4Di with MRI, immunohistochemical, and electrophysiological techniques found the selectivity of NAc transduction was proportional to behavioral effect. Specifically, the proportion of hM4Di expression restricted to the NAc was associated with the potency of the discriminative stimulus effects of ethanol. Together, these experiments highlight the NAc in mediating the interoceptive effects of ethanol, provide a framework for validation of chemogenetic tools in primates, and underscore the importance of robust within-subjects examination of DREADD expression for interpretation of behavioral findings.
Collapse
|
11
|
Applications of chemogenetics in non-human primates. Curr Opin Pharmacol 2022; 64:102204. [DOI: 10.1016/j.coph.2022.102204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022]
|
12
|
Using Inhibitory DREADDs to Silence LC Neurons in Monkeys. Brain Sci 2022; 12:brainsci12020206. [PMID: 35203969 PMCID: PMC8869890 DOI: 10.3390/brainsci12020206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Understanding the role of the noradrenergic nucleus locus coeruleus (LC) in cognition and behavior is critical: It is involved in several key behavioral functions such as stress and vigilance, as well as in cognitive processes such as attention and decision making. In recent years, the development of viral tools has provided a clear insight into numerous aspects of brain functions in rodents. However, given the specificity of primate brains and the key benefit of monkey research for translational applications, developing viral tools to study the LC in monkeys is essential for understanding its function and exploring potential clinical strategies. Here, we describe a pharmacogenetics approach that allows to selectively and reversibly inactivate LC neurons using Designer Receptors Exclusively Activated by Designer Drugs (DREADD). We show that the expression of the hM4Di DREADD can be restricted to noradrenergic LC neurons and that the amount of LC inhibition can be adjusted by adapting the dose of the specific DREADD activator deschloroclozapine (DCZ). Indeed, even if high doses (>0.3 mg/kg) induce a massive inhibition of LC neurons and a clear decrease in vigilance, smaller doses (<0.3 mg/kg) induce a more moderate decrease in LC activity, but it does not affect vigilance, which is more compatible with an assessment of subtle cognitive functions such as decision making and attention.
Collapse
|
13
|
Hirabayashi T, Nagai Y, Hori Y, Inoue KI, Aoki I, Takada M, Suhara T, Higuchi M, Minamimoto T. Chemogenetic sensory fMRI reveals behaviorally relevant bidirectional changes in primate somatosensory network. Neuron 2021; 109:3312-3322.e5. [PMID: 34672984 DOI: 10.1016/j.neuron.2021.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 01/28/2023]
Abstract
Concurrent genetic neuromodulation and functional magnetic resonance imaging (fMRI) in primates has provided a valuable opportunity to assess the modified brain-wide operation in the resting state. However, its application to link the network operation with behavior still remains challenging. Here, we combined chemogenetic silencing of the primary somatosensory cortex (SI) with tactile fMRI and related behaviors in macaques. Focal chemogenetic silencing of functionally identified SI hand region impaired grasping behavior. The same silencing also attenuated hand stimulation-evoked fMRI signal at both the local silencing site and the anatomically and/or functionally connected downstream grasping network, suggesting altered network operation underlying the induced behavioral impairment. Furthermore, the hand region silencing unexpectedly disinhibited foot representation with accompanying behavioral hypersensitization. These results demonstrate that focal chemogenetic silencing with sensory fMRI in macaques unveils bidirectional network changes to generate multifaceted behavioral impairments, thereby opening a pivotal window toward elucidating the causal network operation underpinning higher brain functions in primates.
Collapse
Affiliation(s)
- Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan.
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| |
Collapse
|
14
|
Smith Y, Bolam JP, Boraud T. Special Issue Editorial: Basal Ganglia/Movement Disorders. Eur J Neurosci 2021; 53:2045-2048. [PMID: 33759243 DOI: 10.1111/ejn.15204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, GA, USA
| | - John Paul Bolam
- MRC Brain Network Dynamics Unit and Department of Pharmacology, University of Oxford, Oxford, UK
| | - Thomas Boraud
- Institut des Maladies Neurodégénératives, CNRS, URM:5293, Université de Bordeaux, Bordeaux, France
| |
Collapse
|