1
|
Davey MP, George RM, Ooi MKJ, Burrell MM, Freckleton RP. Metabolic Niches and Plasticity of Sand-Dune Plant Communities Along a Trans-European Gradient. Metabolites 2025; 15:217. [PMID: 40278346 PMCID: PMC12029026 DOI: 10.3390/metabo15040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/26/2025] Open
Abstract
Background: One of the greatest challenges to biologists is to understand the adaptive mechanisms of how plants will respond to climate at all levels from individual physiology to whole populations. For example, variation (plasticity) in the composition and concentration of metabolites will determine productivity, reproduction, and ultimately survival and distribution of plants, especially those subjected to rapid climate change. Objectives: Our aim was to study how interspecific and intraspecific metabolic variation in plant species within a single community can be elucidated. Methods: We used a metabolomics approach to study metabolic acclimation (by measuring the metabolome between plants under "common garden" controlled environment conditions) and metabolic plasticity (using field based reciprocal transplant studies) in a set of Atlantic sand dune annual communities along a latitudinal gradient from Portugal to England. Results: In the common garden study, metabolically phenotyping (using a fingerprinting direct injection mass spectrometry approach) five species of annual plants showed that species living together in a community have distinct metabolic phenotypes (high inter-specific metabolic variation). There was low intra-specific metabolic variation between populations growing under standard environmental conditions. The metabolic variation in one species Veronica arvensis was measured in the reciprocal transplant study. Metabolic phenotypes obtained from all samples were similar across all sites regardless of where the plants originated from. Conclusions: This implies that the metabolome is highly plastic and the measurable metabolome in this study was influenced more by local environmental factors than inherent genetic factors. This work highlights that species are fulfilling different niches within this community. Furthermore, the measurable metabolome was highly plastic to environmental variation.
Collapse
Affiliation(s)
- Matthew P. Davey
- Scottish Association for Marine Science (SAMS), Oban, Argyll PA37 1JQ, UK
| | - Rachel M. George
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK (R.P.F.)
| | - Mark K. J. Ooi
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Mike M. Burrell
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK (R.P.F.)
| | - Robert P. Freckleton
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK (R.P.F.)
| |
Collapse
|
2
|
Gols R. Tolerance to insect herbivory increases with progressing plant development. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:287-296. [PMID: 39720944 PMCID: PMC11846633 DOI: 10.1111/plb.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024]
Abstract
Plants can sustain various degrees of damage or compensate for tissue loss by regrowth without significant fitness costs. This tolerance to insect herbivory depends on the plant's developmental stage during which the damage is inflicted and on how much tissue is removed. Plant fitness correlates, that is, biomass and germination of seeds, were determined at different ontogenetic stages, vegetative, budding, or flowering stages of three annual brassicaceous species exposed to feeding by Pieris brassicae caterpillars at different intensities. Fitness costs decreased with progressive ontogenetic stage at which damage was inflicted. Feeding on meristem tissues on vegetative and budding plants limited the plant's ability to fully compensate for tissue loss, whereas feeding on flowers resulted in full compensation or overcompensation in Sinapis arvensis and Brassica nigra. Herbivory promoted germination of seeds in the following year, thereby causing a shift in relative contribution to the next year's generation at the expense of contributing to the long-lived seed bank. Herbivory intensity affected fitness correlates of B. nigra and to a lesser extent of Sisymbrium officinale, but not of S. arvensis, demonstrating that even closely related plant species can differ in their specific responses to herbivory and that these can differently affect reproductive output. In terms of fitness costs, annual plant species can be quite resilient to herbivory. However, the extent to which they tolerate tissue loss depends on the ontogenetic stage that is under attack. Seed persistence in the soil has been proposed as a bet-hedging strategy of short-lived species to increase long-term fitness. Herbivore-induced changes in seed germination can result in a shift in the relative contribution of seeds to the seed bank and next year's generation.
Collapse
Affiliation(s)
- R. Gols
- Laboratory of Entomology, Plant SciencesWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
3
|
Pan VS, Gilbert KJ, Wetzel WC. Mean plant toxicity modulates the effects of plant defense variability. Ecology 2025; 106:e70012. [PMID: 39902654 PMCID: PMC11792111 DOI: 10.1002/ecy.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 02/06/2025]
Abstract
Plant trait variation is thought to suppress herbivore performance, but experiments typically manipulate only a single mean level of the trait. We manipulated the mean and variation of the concentration of a plant toxin in a model plant-herbivore system across three field and greenhouse experiments. Plants with leaves painted with a higher mean toxin concentration exhibited increased fitness and resistance to herbivores; however, at high mean concentrations, variation reduced the defensive effect, while at lower mean concentrations, variation enhanced it. This reversal aligns with models that include herbivore food selectivity, but our simulations revealed that the benefits of food selectivity for herbivores were minimal. Instead, nonlinear averaging and physiological tracking effects likely drove patterns in plant fitness and resistance to herbivores. We suggest that high defense variation in plants may be a widespread defensive phenotype, but for well-defended plants, variation may inadvertently promote herbivore niche expansion.
Collapse
Affiliation(s)
- Vincent S. Pan
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- W. K. Kellogg Biological StationMichigan State UniversityEasting LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEasting LansingMichiganUSA
| | - Kadeem J. Gilbert
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- W. K. Kellogg Biological StationMichigan State UniversityEasting LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEasting LansingMichiganUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - William C. Wetzel
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- W. K. Kellogg Biological StationMichigan State UniversityEasting LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEasting LansingMichiganUSA
- Land Resources and Environmental SciencesMontana State UniversityBozemanMontanaUSA
| |
Collapse
|
4
|
Aubona G, Mezzomo P, Sedio BE, Staab M, Volf M. Neighbourhood effects on herbivory damage and chemical profiles in short-rotation coppice willows and their hybrids. PHYTOCHEMISTRY 2024; 228:114249. [PMID: 39155032 DOI: 10.1016/j.phytochem.2024.114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Short rotation coppices (SRCs) represent an important source of biomass. Since they are grown in various mixtures, SRCs represent an excellent opportunity for assessing the effects of local plant neighbourhoods on their performance. We used a common garden experiment consisting of plots that varied in genotype diversity of SRC willows to test for the effects of chemical traits of individual plants and chemical variation in the plots where they grew on insect herbivory. We also explored whether the composition of willows planted in a plot affected their chemistry. To do this, we performed untargeted metabolomics and quantified various chemical traits related to the total set of metabolites we detected, flavonoids, and salicinoids in four willow genotypes. We measured the leaf herbivory that the plants suffered. The genotypes differed in most chemical traits, yet we found only limited effects of individual traits on herbivory damage. Instead, herbivory damage was positively correlated with structural variation in salicinoids in a plot. When analysing the effects of plot chemical variation on herbivory damage separately for each genotype, we found both positive and negative correlations between the two, suggesting both associational resistance and susceptibility. Finally, we also observed a significant effect of the interaction between genotype and plot composition on structural variation in plant chemistry. Overall, our results suggest that high chemical variation in mixed willow SRCs does not necessarily lower the herbivory damage, possibly due to spillover effects of insect herbivores among genotypes. Our results also show that different genotypes respond differently to plot composition in terms of herbivory damage and chemical composition, which may affect their suitability for growing in mixed stands.
Collapse
Affiliation(s)
- Gibson Aubona
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Priscila Mezzomo
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA; Smithsonian Tropical Research Institute, Ancón, Panama
| | - Michael Staab
- Ecological Networks, Technical University Darmstadt, Darmstadt, Germany
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
5
|
Sato Y, Shimizu-Inatsugi R, Takeda K, Schmid B, Nagano AJ, Shimizu KK. Reducing herbivory in mixed planting by genomic prediction of neighbor effects in the field. Nat Commun 2024; 15:8467. [PMID: 39375389 PMCID: PMC11458863 DOI: 10.1038/s41467-024-52374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Genetically diverse populations can increase plant resistance to natural enemies. Yet, beneficial genotype pairs remain elusive due to the occurrence of positive or negative effects of mixed planting on plant resistance, respectively called associational resistance or susceptibility. Here, we identify key genotype pairs responsible for associational resistance to herbivory using the genome-wide polymorphism data of the plant species Arabidopsis thaliana. To quantify neighbor interactions among 199 genotypes grown in a randomized block design, we employ a genome-wide association method named "Neighbor GWAS" and genomic prediction inspired by the Ising model of magnetics. These analyses predict that 823 of the 19,701 candidate pairs can reduce herbivory in mixed planting. We planted three pairs with the predicted effects in mixtures and monocultures, and detected 18-30% reductions in herbivore damage in the mixed planting treatment. Our study shows the power of genomic prediction to assemble genotype mixtures with positive biodiversity effects.
Collapse
Affiliation(s)
- Yasuhiro Sato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, 520-2194, Otsu, Shiga, Japan.
- Faculty of Environmental Earth Science, Hokkaido University, N10W5 Kita-ku, 060-0810, Sapporo, Hokkaido, Japan.
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Kazuya Takeda
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, 520-2194, Otsu, Shiga, Japan
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, 520-2194, Otsu, Shiga, Japan.
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, 997-0017, Tsuruoka, Yamagata, Japan.
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka-ward, 244-0813, Yokohama, Japan.
| |
Collapse
|
6
|
Rasool SG, Abdullah M, Li D, Yanping L. Relationship between secondary metabolites and insect loads in cabbage with different leaf shapes and positions. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1620-1632. [PMID: 38923178 DOI: 10.1002/pca.3406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Secondary metabolites in plants play a crucial role in defense mechanisms against insects, pests, and pathogens. These metabolites exhibit varying distributions within and among plant parts under different biotic and abiotic conditions. Understanding the intricate relationships between secondary metabolites and insect populations can be helpful for elucidating plant defense mechanisms and enhancing agricultural managing efficiencies. OBJECTIVE To investigate the influence of the glucosinolate profile in the leaves of three cabbage (Brassica oleracea var. capitata L.) varieties on insect loads. METHODS Glucosinolate profiles across different leaf positions (such as bottom, middle, and center) and leaf shapes (such as curly and non-curly leaf) of three cabbage varieties (Xiagan [XGA], Xiaguang [XGU], and Qiangxia [QIX]) were analyzed by using high-performance liquid chromatography-mass spectrometry (LC-MS). The insect loads were recorded by visually inspecting the upper and lower layers of each target leaf. RESULTS Increasing concentrations of four glucosinolates, namely, glucoiberin, progoitrin, glucoraphanin, and glucobrassicin, were positively related to insect loads. While increasing concentrations of the other four glucosinolates, such as neoglucobrassicin, 4-methoxyglucobrassicin, sinigrin, and gluconapin, were negatively related to insect loads. Furthermore, both glucosinolate synthesis and insect loads were significantly higher in the curly-shaped and middle-position leaves than in the non-curly-shaped and bottom- and central-position leaves across the cabbage varieties. CONCLUSION Differences in glucosinolate profiles across leaf positions and shapes strongly influenced the insect loads of the three Brassica varieties. This link may further extend our understanding of the real defense power of a particular variety against herbivore damage.
Collapse
Affiliation(s)
- Samreen Ghulam Rasool
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - Muhammad Abdullah
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - Dezhi Li
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
- Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai, China
| | - Liu Yanping
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Glassmire AE, Hauri KC, Turner DB, Zehr LN, Sugimoto K, Howe GA, Wetzel WC. The frequency and chemical phenotype of neighboring plants determine the effects of intraspecific plant diversity. Ecology 2024; 105:e4392. [PMID: 39113178 DOI: 10.1002/ecy.4392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 09/04/2024]
Abstract
Associational effects, whereby plants influence the biotic interactions of their neighbors, are an important component of plant-insect interactions. Plant chemistry has been hypothesized to mediate these interactions. The role of chemistry in associational effects, however, has been unclear in part because the diversity of plant chemistry makes it difficult to tease apart the importance and roles of particular classes of compounds. We examined the chemical ecology of associational effects using backcross-bred plants of the Solanum pennellii introgression lines. We used eight genotypes from the introgression line system to establish 14 unique neighborhood treatments that maximized differences in acyl sugars, proteinase inhibitor, and terpene chemical diversity. We found that the chemical traits of the neighboring plant, rather than simply the number of introgression lines within a neighborhood, influenced insect abundance on focal plants. Furthermore, within-chemical class diversity had contrasting effects on herbivore and predator abundances, and depended on the frequency of neighboring plant chemotypes. Notably, we found insect mobility-flying versus crawling-played a key role in insect response to phytochemistry. We highlight that the frequency and chemical phenotype of plant neighbors underlie associational effects and suggest this may be an important mechanism in maintaining intraspecific phytochemical variation within plant populations.
Collapse
Affiliation(s)
- Andrea E Glassmire
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Kayleigh C Hauri
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Daniel B Turner
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Luke N Zehr
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - Koichi Sugimoto
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Gregg A Howe
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Abdala-Roberts L, Moreira X. Effects of phytochemical diversity on multitrophic interactions. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101228. [PMID: 38944275 DOI: 10.1016/j.cois.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
The ecological effects of plant diversity have been well studied, but the extent to which they are driven by variation in specialized metabolites is not well understood. Here, we provide theoretical background on phytochemical diversity effects on herbivory and its expanded consequences for higher trophic levels. We then review empirical evidence for effects on predation and parasitism by focusing on a handful of studies that have undertaken manipulative approaches and link back their results to theory on mechanisms. We close by summarizing key aspects for future research, building on knowledge gained thus far.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000 Mérida, Yucatán, Mexico.
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080 Pontevedra, Galicia, Spain
| |
Collapse
|
9
|
Grosjean J, Pashalidou FG, Fauvet A, Baillet A, Kergunteuil A. Phytochemical drivers of insect herbivory: a functional toolbox to support agroecological diversification. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240890. [PMID: 39021775 PMCID: PMC11251780 DOI: 10.1098/rsos.240890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
Plant metabolism is a key feature of biodiversity that remains underexploited in functional frameworks used in agroecology. Here, we study how phytochemical diversity considered at three organizational levels can promote pest control. In a factorial field experiment, we manipulated plant diversity in three monocultures and three mixed crops of oilseed rape to explore how intra- and interspecific phytochemical diversity affects pest infestation. We combined recent progress in metabolomics with classic metrics used in ecology to test a box of hypotheses grounded in plant defence theory. According to the hypothesis of 'phytochemically mediated coevolution', our study stresses the relationships between herbivore infestation and particular classes of specialized metabolites like glucosinolates. Among 178 significant relationships between metabolites and herbivory rates, only 20% were negative. At the plant level, phytochemical abundance and richness had poor predictive power on pest regulation. This challenges the hypothesis of 'synergistic effects'. At the crop cover level, in line with the hypothesis of 'associational resistance', the phytochemical dissimilarity between neighbouring plants limited pest infestation. We discuss the intricate links between associational resistance and bottom-up pest control. Bridging different levels of organization in agroecosystems helps to dissect the multi-scale relationships between phytochemistry and insect herbivory.
Collapse
Affiliation(s)
- Jeremy Grosjean
- Université de Lorraine, LAE, INRAE, 54000 Nancy, France
- Platform of Structural and Metabolomics Analyses, SF4242, EFABA, Lorraine University, Vandoeuvre-les-Nancy, France
| | | | - Aude Fauvet
- Université de Lorraine, LAE, INRAE, 54000 Nancy, France
| | | | - Alan Kergunteuil
- Université de Lorraine, LAE, INRAE, 54000 Nancy, France
- INRAE, PSH, 84000 Avignon, France
| |
Collapse
|
10
|
Reinecke A, Flaig IC, Lozano YM, Rillig MC, Hilker M. Drought induces moderate, diverse changes in the odour of grassland species. PHYTOCHEMISTRY 2024; 221:114040. [PMID: 38428627 DOI: 10.1016/j.phytochem.2024.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Plants react to drought stress with numerous changes including altered emissions of volatile organic compounds (VOC) from leaves, which provide protection against oxidative tissue damage and mediate numerous biotic interactions. Despite the share of grasslands in the terrestrial biosphere, their importance as carbon sinks and their contribution to global biodiversity, little is known about the influence of drought on VOC profiles of grassland species. Using coupled gas chromatography-mass spectrometry, we analysed the odorants emitted by 22 European grassland species exposed to an eight-week-lasting drought treatment (DT; 30% water holding capacity, WHC). We focused on the odorants emitted during the light phase from whole plant shoots in their vegetative stage. Emission rates were standardised to the dry weight of each shoot. Well-watered (WW) plants (70% WHC) served as control. Drought-induced significant changes included an increase in total emission rates of plant VOC in six and a decrease in three species. Diverging effects on the number of emitted VOC (chemical richness) or on the Shannon diversity of the VOC profiles were detected in 13 species. Biosynthetic pathways-targeted analyses revealed 13 species showing drought-induced higher emission rates of VOC from one, two, three, or four major biosynthetic pathways (lipoxygenase, shikimate, mevalonate and methylerythritol phosphate pathway), while six species exhibited reduced emission rates from one or two of these pathways. Similarity trees of odorant profiles and their drought-induced changes based on a biosynthetically informed distance metric did not match species phylogeny. However, a phylogenetic signal was detected for the amount of terpenoids released by the studied species under WW and DT conditions. A comparative analysis of emission rates of single compounds released by WW and DT plants revealed significant VOC profile dissimilarities in four species only. The moderate drought-induced changes in the odorant emissions of grassland species are discussed with respect to their impact on trophic interactions across the food web. (294 words).
Collapse
Affiliation(s)
- Andreas Reinecke
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany.
| | - Isabelle C Flaig
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Yudi M Lozano
- Freie Universität Berlin, Inst. of Biology, Plant Ecology, Altensteinstr. 6, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Inst. of Biology, Plant Ecology, Altensteinstr. 6, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| |
Collapse
|
11
|
Ojeda-Prieto L, Medina-van Berkum P, Unsicker SB, Heinen R, Weisser WW. Intraspecific chemical variation of Tanacetum vulgare affects plant growth and reproductive traits in field plant communities. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38593287 DOI: 10.1111/plb.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 04/11/2024]
Abstract
The study investigated the impact of intraspecific plant chemodiversity on plant growth and reproductive traits at both the plant and plot levels. It also aimed to understand how chemodiversity at stand level affects ecosystem functioning and plant-plant interactions. We describe a biodiversity experiment in which we manipulated intraspecific plant chemodiversity at the plot level using six different chemotypes of common tansy (Tanacetum vulgare L., Asteraceae). We tested the effects of chemotype identity and plot-level chemotype richness on plant growth and reproductive traits and plot-level headspace emissions. The study found that plant chemotypes differed in growth and reproductive traits and that traits were affected by the chemotype richness of the plots. Although morphological differences among chemotypes became less pronounced over time, reproductive phenology patterns persisted. Plot-level trait means were also affected by the presence or absence of certain chemotypes in a plot, and the direction of the effect depended on the specific chemotype. However, chemotype richness did not lead to overyielding effects. Lastly, chemotype blends released from plant communities were neither richer nor more diverse with increasing plot-level chemotype richness, but became more dissimilar as they became more dissimilar in their leaf terpenoid profiles. We found that intraspecific plant chemodiversity is crucial in plant-plant interactions. We also found that the effects of chemodiversity on plant growth and reproductive traits were complex and varied depending on the chemotype richness of the plots. This long-term field experiment will allow further investigation into plant-insect interactions and insect community assembly in response to intraspecific chemodiversity.
Collapse
Affiliation(s)
- L Ojeda-Prieto
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - P Medina-van Berkum
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - S B Unsicker
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Plant-Environment-Interactions Group, Botanical Institute, University of Kiel, Kiel, Germany
| | - R Heinen
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - W W Weisser
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
12
|
Martini F, Chen YF, Mammides C, Goodale E, Goodale UM. Exploring potential relationships between acoustic indices and ecosystem functions: a test on insect herbivory. Oecologia 2024; 204:875-883. [PMID: 38581444 PMCID: PMC11062954 DOI: 10.1007/s00442-024-05536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/01/2024] [Indexed: 04/08/2024]
Abstract
Biodiversity loss is a global concern. Current technological advances allow the development of novel tools that can monitor biodiversity remotely with minimal disturbance. One example is passive acoustic monitoring (PAM), which involves recording the soundscape of an area using autonomous recording units, and processing these data using acoustic indices, for example, to estimate the diversity of various vocal animal groups. We explored the hypothesis that data obtained through PAM could also be used to study ecosystem functions. Specifically, we investigated the potential relationship between seven commonly used acoustic indices and insect leaf herbivory, measured as total leaf damage and as the damage from three major insect feeding guilds. Herbivory was quantified on seedlings in 13 plots in four subtropical forests in south China, and acoustic data, representing insect acoustic complexity, were obtained by recording the evening soundscapes in those same locations. Herbivory levels correlated positively with the acoustic entropy index, commonly reported as one of the best-performing indices, whose high values indicate higher acoustic complexity, likely due to greater insect diversity. Relationships for specific feeding guilds were moderately stronger for chewers, indicating that the acoustic indices capture some insect groups more than others (e.g., chewers include soniferous taxa such as crickets, whereas miners are mostly silent). Our findings suggest that the use of PAM to monitor ecosystem functions deserves to be explored further, as this is a research field with unexplored potential. Well-designed targeted studies could help us better understand how to best use novel technologies to monitor ecosystem functions.
Collapse
Affiliation(s)
- Francesco Martini
- Botany Department, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | - You-Fang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Christos Mammides
- Nature Conservation Unit, Frederick University, 7, Yianni Frederickou Street, Pallouriotissa, 1036, Nicosia, Cyprus
| | - Eben Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong Liverpool University, Suzhou, China
| | - Uromi Manage Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong Liverpool University, Suzhou, China
| |
Collapse
|
13
|
Ziaja D, Müller C. Intraspecific chemodiversity provides plant individual- and neighbourhood-mediated associational resistance towards aphids. FRONTIERS IN PLANT SCIENCE 2023; 14:1145918. [PMID: 37082343 PMCID: PMC10111025 DOI: 10.3389/fpls.2023.1145918] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Some plant species express an extraordinarily high intraspecific diversity in phytochemicals (= chemodiversity). As discussed for biodiversity, higher chemodiversity may provide better protection against environmental stress, including herbivory. However, little is known about whether the resistance of a plant individual towards herbivores is mostly governed by its own chemodiversity or by associational resistance provided by conspecific neighbours. To investigate the role of chemodiversity in plant-aphid interactions, we used the Asteraceae Tanacetum vulgare, whose individuals differ pronouncedly in the composition of leaf terpenoids, forming distinct chemotypes. Plants were set up in a field consisting of plots containing five individuals of either the same or different chemotypes. Presence of winged aphids, indicating attraction, and abundance of winged and unwinged aphids, indicating fitness, were counted weekly on each plant. During the peak abundance of aphids, leaf samples were taken from all plants for re-analyses of the terpenoid composition and quantification of terpenoid chemodiversity, calculated on an individual plant (Shannon index, Hsind, also considered as α-chemodiversity) and plot level (Hsplot, = β-chemodiversity). Aphid attraction was neither influenced by chemotype nor plot-type. The real-time odour environment may be very complex in this setting, impeding clear preferences. In contrast, the abundance was affected by both chemotype and plot-type. On average, more Uroleucon tanaceti aphids were found on plants of two of the chemotypes growing in homogenous compared to heterogenous plots, supporting the associational resistance hypothesis. For Macrosiphoniella tanacetaria aphids, the probability of presence differed between plot-types on one chemotype. Terpenoid chemodiversity expressed as a gradient revealed negative Hsplot effects on U. tanaceti, but a positive correlation of Hsind with M. tanacetaria abundance. Aphids of M. fuscoviride were not affected by any level of chemodiversity. In conclusion, this study shows that not only the chemotype and chemodiversity of individual plants but also that of conspecific neighbours can influence certain plant-herbivore interactions. These effects are highly specific with regard to the plant chemotype and differ between aphid species and their morphs (winged vs. unwinged). Furthermore, our results highlight the importance of analysing chemodiversity at different levels.
Collapse
|
14
|
Croijmans L, Valstar RT, Schuur L, Jacobs I, van Apeldoorn DF, Poelman EH. Intraspecific plant variation and nonhost herbivores affect parasitoid host location behaviour. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Tang T, Zhang N, Bongers FJ, Staab M, Schuldt A, Fornoff F, Lin H, Cavender-Bares J, Hipp AL, Li S, Liang Y, Han B, Klein AM, Bruelheide H, Durka W, Schmid B, Ma K, Liu X. Tree species and genetic diversity increase productivity via functional diversity and trophic feedbacks. eLife 2022; 11:e78703. [PMID: 36444645 PMCID: PMC9754634 DOI: 10.7554/elife.78703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Addressing global biodiversity loss requires an expanded focus on multiple dimensions of biodiversity. While most studies have focused on the consequences of plant interspecific diversity, our mechanistic understanding of how genetic diversity within plant species affects plant productivity remains limited. Here, we use a tree species × genetic diversity experiment to disentangle the effects of species diversity and genetic diversity on tree productivity, and how they are related to tree functional diversity and trophic feedbacks. We found that tree species diversity increased tree productivity via increased tree functional diversity, reduced soil fungal diversity, and marginally reduced herbivory. The effects of tree genetic diversity on productivity via functional diversity and soil fungal diversity were negative in monocultures but positive in the mixture of the four tree species tested. Given the complexity of interactions between species and genetic diversity, tree functional diversity and trophic feedbacks on productivity, we suggest that both tree species and genetic diversity should be considered in afforestation.
Collapse
Affiliation(s)
- Ting Tang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Naili Zhang
- College of Forestry, Beijing Forestry UniversityBeijingChina
| | - Franca J Bongers
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Michael Staab
- Ecological Networks, Technical University DarmstadtDarmstadtGermany
| | - Andreas Schuldt
- Forest Nature Conservation, Georg-August-University GöttingenGöttingenGermany
| | - Felix Fornoff
- Nature Conservation and Landscape Ecology, University of FreiburgFreiburgGermany
| | - Hong Lin
- Institute of Applied Ecology, School of Food Science, Nanjing Xiaozhuang UniversityNanjingChina
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution, and Behavior, University of MinnesotaSt. PaulUnited States
| | | | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Yu Liang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Baocai Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Alexandra-Maria Klein
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of FreiburgFreiburgGermany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-WittenbergHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
| | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
- Department of Community Ecology, Helmholtz Centre for Environmental Research–UFZHalleGermany
| | - Bernhard Schmid
- Department of Geography, University of ZurichZurichSwitzerland
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
16
|
The role of timing in intraspecific trait ecology. Trends Ecol Evol 2022; 37:997-1005. [DOI: 10.1016/j.tree.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
|
17
|
Müller C, Junker RR. Chemical phenotype as important and dynamic niche dimension of plants. THE NEW PHYTOLOGIST 2022; 234:1168-1174. [PMID: 35297052 DOI: 10.1111/nph.18075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Niche theory considering the traits of species and individuals provides a powerful tool to integrate ecology and evolution of species. In plant ecology, morphological and physiological traits are commonly considered as niche dimensions, whereas phytochemical traits are mostly neglected in this context despite their pivotal functions in plant responses to their environment and in mediating interactions. The diversity of plant phytochemicals can thus mediate three key processes: niche choice, conformance and construction. Here, we integrate frameworks from niche theory with chemical ecology and argue that plants use their individual-specific diversity in phytochemicals (chemodiversity) for different niche realization processes. Our concept has important implications for ecosystem processes and stability and increases the predictive ability of chemical ecology.
Collapse
Affiliation(s)
- Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, University of Marburg, 35043, Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
18
|
Hauri KC, Glassmire AE, Randall B, Zehr LN, Wetzel WC. Plant chemical diversity and its frequency have distinct but complementary effects on insect foraging. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Kayleigh C. Hauri
- Department of Entomology Michigan State University East Lansing MI USA
- Ecology, Evolution, and Behavior Program Michigan State University East Lansing MI USA
| | - Andrea E. Glassmire
- Department of Entomology Michigan State University East Lansing MI USA
- Ecology, Evolution, and Behavior Program Michigan State University East Lansing MI USA
| | - Brendan Randall
- Department of Entomology Michigan State University East Lansing MI USA
| | - Luke N. Zehr
- Department of Entomology Michigan State University East Lansing MI USA
| | - William C. Wetzel
- Department of Entomology Michigan State University East Lansing MI USA
- Ecology, Evolution, and Behavior Program Michigan State University East Lansing MI USA
- Department of Integrative Biology Michigan State University East Lansing MI USA
- Kellogg Biological Station Michigan State University Hickory Corners MI USA
- AgBioResearch Michigan State University East Lansing MI USA
| |
Collapse
|
19
|
Navarro-Hoyos M, Arnáez-Serrano E, Quesada-Mora S, Azofeifa-Cordero G, Wilhelm-Romero K, Quirós-Fallas MI, Alvarado-Corella D, Vargas-Huertas F, Sánchez-Kopper A. HRMS Characterization, Antioxidant and Cytotoxic Activities of Polyphenols in Malus domestica Cultivars from Costa Rica. Molecules 2021; 26:7367. [PMID: 34885949 PMCID: PMC8659030 DOI: 10.3390/molecules26237367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/03/2022] Open
Abstract
There is increasing interest in research into fruits as sources of secondary metabolites because of their potential bioactivities. In this study, the phenolic profiles of Malus domestica Anna and Jonagold cultivars from Costa Rica were determined by Ultra Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry (HRMS) using a quadrupole-time-of-flight analyzer (UPLC-QTOF-ESI MS), on enriched-phenolic extracts from skins and flesh, obtained through Pressurized Liquid Extraction (PLE). In total, 48 different phenolic compounds were identified in the skin and flesh extracts, comprising 17 flavan-3-ols, 12 flavonoids, 4 chalcones, 1 glycosylated isoprenoid and 14 hydroxycinnamic acids and derivatives. Among extracts, the flesh of Jonagold exhibits a larger number of polyphenols and is especially rich in procyanidin trimers, tetramers and pentamers. Evaluating total phenolic content (TPC) and antioxidant activities using ORAC and DPPH procedures yields higher values for this extract (608.8 mg GAE/g extract; 14.80 mmol TE/g extract and IC50 = 3.96 µg/mL, respectively). In addition, cytotoxicity evaluated against SW620 colon cancer cell lines and AGS gastric cancer cell lines also delivered better effects for Jonagold flesh (IC50 = 62.4 and 60.0 µg/mL, respectively). In addition, a significant negative correlation (p < 0.05) was found between TPC and cytotoxicity values against SW620 and AGS adenocarcinoma (r = -0.908, and -0.902, respectively). Furthermore, a significant negative correlation (p < 0.05) was also found between the number of procyanidins and both antioxidant activities and cytotoxicity towards SW620 (r = -0.978) and AGS (r = -0.894) cell lines. These results align with Jonagold flesh exhibiting the highest abundance in procyanidin oligomers and yielding better cytotoxic and antioxidant results. In sum, our findings suggest the need for further studies on these Costa Rican apple extracts-and particularly on the extracts from Jonagold flesh-to increase the knowledge on their potential benefits for health.
Collapse
Affiliation(s)
- Mirtha Navarro-Hoyos
- Bioactivity & Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (K.W.-R.); (M.I.Q.-F.); (D.A.-C.); (F.V.-H.)
| | | | - Silvia Quesada-Mora
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (S.Q.-M.); (G.A.-C.)
| | - Gabriela Azofeifa-Cordero
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (S.Q.-M.); (G.A.-C.)
| | - Krissia Wilhelm-Romero
- Bioactivity & Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (K.W.-R.); (M.I.Q.-F.); (D.A.-C.); (F.V.-H.)
| | - Maria Isabel Quirós-Fallas
- Bioactivity & Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (K.W.-R.); (M.I.Q.-F.); (D.A.-C.); (F.V.-H.)
| | - Diego Alvarado-Corella
- Bioactivity & Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (K.W.-R.); (M.I.Q.-F.); (D.A.-C.); (F.V.-H.)
| | - Felipe Vargas-Huertas
- Bioactivity & Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose 2060, Costa Rica; (K.W.-R.); (M.I.Q.-F.); (D.A.-C.); (F.V.-H.)
| | - Andrés Sánchez-Kopper
- CEQIATEC, Department of Chemistry, Costa Rica Institute of Technology (TEC), Cartago 7050, Costa Rica;
| |
Collapse
|
20
|
Hauri KC, Glassmire AE, Wetzel WC. Chemical diversity rather than cultivar diversity predicts natural enemy control of herbivore pests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02289. [PMID: 33423331 DOI: 10.1002/eap.2289] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Cultivar mixtures have been studied for decades as a means for pest suppression. The literature, however, shows a large variability in outcomes, suggesting that we are unable to create mixtures that consistently suppress insect pests and attract natural enemies. A key gap in our understanding of how cultivar mixtures influence pest control is that few studies have examined the plant traits or mechanisms by which cultivar diversity affects pests and their interactions with natural enemies. The diversity of plant chemistry in a cultivar mixture is one trait dimension that is likely influential for insect ecology because chemical traits alter how predators and herbivores forage and interact. To understand how plant chemical diversity influences herbivores and their interactions with predators, we fully crossed predator presence or absence with monocultures, bicultures, and tricultures of three chemotypes of tomato that differed in odor diversity (terpenes) or surface chemistry (acyl sugars) in a caged field experiment. We found that the direct effects of plant chemotype diversity on herbivore performance were strongest in bicultures and depended on herbivore sex, and these effects typically acted through growth rather than survival. The effects of chemotype diversity on top-down pest suppression by natural enemies differed between classes of chemical diversity. Odor diversity (terpenes) interfered with the ability of predators to hunt effectively, whereas diversity in surface chemistry (acyl sugars) did not. Our results suggest that phytochemical diversity can contribute to pest suppression in agroecosystems, but that implementing it will require engineering cultivar mixtures using trait-based approaches that account for the biology of the pests and natural enemies in the system.
Collapse
Affiliation(s)
- Kayleigh C Hauri
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Andrea E Glassmire
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, 49060, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- AgBioResearch, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
21
|
Whitehead SR, Bass E, Corrigan A, Kessler A, Poveda K. Interaction diversity explains the maintenance of phytochemical diversity. Ecol Lett 2021; 24:1205-1214. [PMID: 33783114 DOI: 10.1111/ele.13736] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/01/2022]
Abstract
The production of complex mixtures of secondary metabolites is a ubiquitous feature of plants. Several evolutionary hypotheses seek to explain how phytochemical diversity is maintained, including the synergy hypothesis, the interaction diversity hypothesis, and the screening hypothesis. We experimentally tested a set of predictions derived from these hypotheses by manipulating the richness and structural diversity of phenolic metabolites in the diets of eight plant consumers. Across 3940 total bioassays, there was clear support for the interaction diversity hypothesis over the synergy or screening hypotheses. The number of consumers affected by a particular phenolic composition increased with increasing richness and structural diversity of compounds. Furthermore, the bioactivity of phenolics was consumer-specific. All compounds tested reduced the performance of at least one consumer, but no compounds affected all consumers. These results show how phytochemical diversity may be maintained in nature by a complex selective landscape exerted by diverse communities of plant consumers.
Collapse
Affiliation(s)
- Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Ethan Bass
- Department of Entomology, Cornell University, Ithaca, NY, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Alexsandra Corrigan
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Katja Poveda
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
Koski TM, de Jong S, Muola A, Amby DB, Andreasson E, Stenberg JA. 'Resistance Mixtures' Reduce Insect Herbivory in Strawberry ( Fragaria vesca) Plantations. FRONTIERS IN PLANT SCIENCE 2021; 12:722795. [PMID: 34630469 PMCID: PMC8494967 DOI: 10.3389/fpls.2021.722795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 05/21/2023]
Abstract
The transition toward more sustainable plant protection with reduced pesticide use is difficult, because there is no "silver bullet" available among nonchemical tools. Integrating several plant protection approaches may thus be needed for efficient pest management. Recently, increasing the genetic diversity of plantations via cultivar mixing has been proposed as a possible method to reduce pest damage. However, previous studies have not addressed either the relative efficiency of exploiting cultivar mixing and intrinsic plant herbivore resistance or the potential utility of combining these approaches to increase cropping security. Here, using a full factorial experiment with 60 woodland strawberry plots, we tested for the relative and combined effect of cultivar mixing and intrinsic plant resistance on herbivore damage and yield. The experiment comprised two levels of diversity ("high" with 10 varieties and "low" with two varieties) and three levels of resistance ("resistant" comprising only varieties intrinsically resistant against strawberry leaf beetle Galerucella tenella; "susceptible" with susceptible varieties only; and "resistance mixtures" with 50:50 mixtures of resistant and susceptible varieties). The experiment was carried out over two growing seasons. Use of resistant varieties either alone or intermixed with susceptible varieties in "resistance mixtures" reduced insect herbivory. Interestingly, resistant varieties not only reduced the mean damage in "resistance mixtures" by themselves being less damaged, but also protected intermixed susceptible varieties via associational resistance. The effect of higher genetic diversity was less evident, reducing herbivory only at the highest level of herbivore damage. In general, herbivory was lowest in plots with high diversity that included at least some resistant varieties and highest in low diversity plots consisting only of susceptible varieties. Despite this, no significant difference in yield (fruit biomass) was found, indicating that strawberry may be relatively tolerant. Our results demonstrate that combined use of high genetic diversity and resistant varieties can help reduce pest damage and provide a useful tool for sustainable food production. "Resistance mixtures" may be particularly useful for sensitive food crops where susceptible varieties are high yielding that could not be completely replaced by resistant ones.
Collapse
Affiliation(s)
- Tuuli-Marjaana Koski
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
- *Correspondence: Tuuli-Marjaana Koski,
| | - Sanne de Jong
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anne Muola
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Daniel B. Amby
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Johan A. Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
23
|
Yan J, Zhang Y, Crawford KM, Chen X, Yu S, Wu J. Plant genotypic diversity effects on soil nematodes vary with trophic level. THE NEW PHYTOLOGIST 2021; 229:575-584. [PMID: 32813893 DOI: 10.1111/nph.16829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
At local spatial scales, loss of genetic diversity within species can lead to species loss. Few studies, however, have examined plant genotypic diversity effects across trophic levels. We investigated genotypic diversity effects of Phragmites australis on belowground biomass and soil nematode communities. Our results revealed that belowground plant biomass and nematode abundance responses to plant genotypic diversity were uncoupled. Decreasing plant genotypic diversity decreased the abundance of lower, but not higher trophic level nematodes. Low plant genotypic diversity also decreased the structural footprint and functional indices of nematodes, indicating lowered metabolic functioning of higher trophic level nematodes and decreased soil food web stability. Our study suggests that plant genotypic diversity effects differ across trophic levels, taxonomic groups and ecosystem functions and that decreasing plant genotypic diversity could destabilise belowground food webs. This highlights the importance of conserving intraspecific plant diversity.
Collapse
Affiliation(s)
- Jun Yan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Youzheng Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Kerri M Crawford
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | - Xiaoyong Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Shuo Yu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Jihua Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
24
|
Poeydebat C, Jactel H, Moreira X, Koricheva J, Barsoum N, Bauhus J, Eisenhauer N, Ferlian O, Francisco M, Gottschall F, Gravel D, Mason B, Muiruri E, Muys B, Nock C, Paquette A, Ponette Q, Scherer-Lorenzen M, Stokes V, Staab M, Verheyen K, Castagneyrol B. Climate affects neighbour-induced changes in leaf chemical defences and tree diversity-herbivory relationships. Funct Ecol 2020; 35:67-81. [PMID: 33746332 DOI: 10.1111/1365-2435.13700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Associational resistance theory predicts that insect herbivory decreases with increasing tree diversity in forest ecosystems. However, the generality of this effect and its underlying mechanisms are still debated, particularly since evidence has accumulated that climate may influence the direction and strength of the relationship between diversity and herbivory.We quantified insect leaf herbivory and leaf chemical defences (phenolic compounds) of silver birch Betula pendula in pure and mixed plots with different tree species composition across 12 tree diversity experiments in different climates. We investigated whether the effects of neighbouring tree species diversity on insect herbivory in birch, that is, associational effects, were dependent on the climatic context, and whether neighbour-induced changes in birch chemical defences were involved in associational resistance to insect herbivory.We showed that herbivory on birch decreased with tree species richness (i.e. associational resistance) in colder environments but that this relationship faded as mean annual temperature increased.Birch leaf chemical defences increased with tree species richness but decreased with the phylogenetic distinctiveness of birch from its neighbours, particularly in warmer and more humid environments.Herbivory was negatively correlated with leaf chemical defences, particularly when birch was associated with closely related species. The interactive effect of tree diversity and climate on herbivory was partially mediated by changes in leaf chemical defences.Our findings confirm that tree species diversity can modify the leaf chemistry of a focal species, hence its quality for herbivores. They further stress that such neighbour-induced changes are dependent on climate and that tree diversity effects on insect herbivory are partially mediated by these neighbour-induced changes in chemical defences.
Collapse
Affiliation(s)
- Charlotte Poeydebat
- INRAE, UMR 1202 BIOGECO, Cestas, France.,Université de Bordeaux, BIOGECO, UMR 1202, Talence, France
| | - Hervé Jactel
- INRAE, UMR 1202 BIOGECO, Cestas, France.,Université de Bordeaux, BIOGECO, UMR 1202, Talence, France
| | | | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | | | - Jürgen Bauhus
- Chair of Silviculture, University of Freiburg, Freiburg, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | | | - Felix Gottschall
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dominique Gravel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Bill Mason
- Forest Research, Northern Research Station, Roslin Midlothian, UK
| | - Evalyne Muiruri
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Bart Muys
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Charles Nock
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada.,Faculty of Biology, Department of Geobotany, University of Freiburg, Freiburg, Germany
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montreal, QC, Canada
| | - Quentin Ponette
- Faculty of Bioscience Engineering & Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Victoria Stokes
- Forest Research, Northern Research Station, Roslin Midlothian, UK
| | - Michael Staab
- Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Melle-Gontrode, Belgium
| | - Bastien Castagneyrol
- INRAE, UMR 1202 BIOGECO, Cestas, France.,Université de Bordeaux, BIOGECO, UMR 1202, Talence, France
| |
Collapse
|
25
|
Valdés-Correcher E, Bourdin A, González-Martínez SC, Moreira X, Galmán A, Castagneyrol B, Hampe A. Leaf chemical defences and insect herbivory in oak: accounting for canopy position unravels marked genetic relatedness effects. ANNALS OF BOTANY 2020; 126:865-872. [PMID: 32463869 PMCID: PMC7539359 DOI: 10.1093/aob/mcaa101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Highly controlled experiments document that plant genetic diversity and relatedness can shape herbivore communities and patterns of herbivory. Evidence from the field is, however, scarce and inconsistent. We assessed whether a genetic signal underlying herbivory can be detected in oak woodlands when accounting for variation at smaller (within-tree) and larger (among-stand) scales. METHODS We tested relationships between tree genetic relatedness, leaf chemical defences and insect herbivory for different canopy layers in 240 trees from 15 pedunculate oak (Quercus robur) forest stands. We partitioned sources of variability in herbivory and defences among stands, individuals and branches. KEY RESULTS Leaf defences, insect herbivory and their relationship differed systematically between the upper and the lower tree canopy. When accounting for this canopy effect, the variation explained by tree genetic relatedness rose from 2.8 to 34.1 % for herbivory and from 7.1 to 13.8 % for leaf defences. The effect was driven by markedly stronger relationships in the upper canopy. CONCLUSIONS Our findings illustrate that considerable effects of the host plant genotype on levels of leaf chemical defences and associated insect herbivory can be detected in natural tree populations when within-individual variation is properly accounted for.
Collapse
Affiliation(s)
| | | | | | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Andrea Galmán
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | | | - Arndt Hampe
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
| |
Collapse
|
26
|
Glassmire AE, Zehr LN, Wetzel WC. Disentangling dimensions of phytochemical diversity: alpha and beta have contrasting effects on an insect herbivore. Ecology 2020; 101:e03158. [PMID: 32745232 DOI: 10.1002/ecy.3158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/23/2020] [Accepted: 06/18/2020] [Indexed: 11/10/2022]
Abstract
Phytochemical diversity is comprised of two main dimensions-the average (alpha) within-plant neighbors or the difference (beta) in the composition of chemicals between plant neighbors. Research, however, has primarily examined the consequences of phytochemical diversity on herbivore performance through a single dimension, even though diversity is multidimensional. Furthermore, the ecological role of phytochemical diversity is not well understood because each of these dimensions exhibits unique biological effects on herbivore performance. Therefore, it has been difficult to tease apart the relative importance of alpha and beta chemical diversities on plant-herbivore interactions. We experimentally manipulated alpha and beta diversities along a chemical gradient to disentangle the relative effects of these dimensions on the performance of a mobile generalist herbivore, Trichoplusia ni (Hübner), using 16 genotypes from the Solanum pennellii introgression lines. First, we found contrasting effects of alpha and beta diversities on herbivore performance. Second, when comparing diversity across and within chemical classes, herbivore performance was reduced when plant neighbors had greater diversity within chemical classes that are biologically inhibiting at higher quantities (i.e., quantitative defenses such as phenolics and acyl sugars). However, herbivore performance was enhanced when plant neighbors had higher levels of chemical classes that are biologically toxic (i.e., qualitative defenses such as alkaloids). Finally, herbivores performed better on plant dicultures compared to monocultures, and performance was positively associated with plant dicultures only when there were high levels of average alpha diversity within plant neighbors. Our results suggest T. ni generalist caterpillars do better when plant neighbors are chemically different because differences provide options for them to choose or to switch between plants to balance chemical uptake. Overall, herbivores interact with a large diversity of plant chemicals at multiple scales, and our results indicate that not all chemical diversity is equal: specific dimensions of phytochemical diversity have unique effects on the dynamics of herbivore performance.
Collapse
Affiliation(s)
- Andrea E Glassmire
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA.,Kellogg Biological Station, Hickory Corners, Michigan, 49060, USA
| | - Luke N Zehr
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA.,Kellogg Biological Station, Hickory Corners, Michigan, 49060, USA.,Ecology, Evolutionary Biology, & Behavior, Michigan State University, East Lansing, Michigan, 48824, USA.,AgBioResearch, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
27
|
Müller C, Bräutigam A, Eilers E, Junker R, Schnitzler JP, Steppuhn A, Unsicker S, van Dam N, Weisser W, Wittmann M. Ecology and Evolution of Intraspecific Chemodiversity of Plants. RESEARCH IDEAS AND OUTCOMES 2020. [DOI: 10.3897/rio.6.e49810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An extraordinarily high intraspecific chemical diversity, i.e. chemodiversity, has been found in several plant species, of which some are of major ecological or economic relevance. Moreover, even within an individual plant there is substantial chemodiversity among tissues and across seasons. This chemodiversity likely has pronounced ecological effects on plant mutualists and antagonists, associated foodwebs and, ultimately, biodiversity. Surprisingly, studies on interactions between plants and their herbivores or pollinators often neglect plant chemistry as a level of diversity and phenotypic variation. The main aim of this Research Unit (RU) is to understand the emergence and maintenance of intraspecific chemodiversity in plants. We address the following central questions:
1) How does plant chemodiversity vary across levels, i.e., within individuals, among individuals within populations, and among populations?
2) What are the ecological consequences of intraspecific plant chemodiversity?
3) How is plant chemodiversity genetically determined and maintained?
By combining field and laboratory studies with metabolomics, transcriptomics, genetic tools, statistical data analysis and modelling, we aim to understand causes and consequences of plant chemodiversity and elucidate its impacts on the interactions of plants with their biotic environment. Furthermore, we want to identify general principles, which hold across different species, and develop meaningful measures to describe the fascinating diversity of defence chemicals in plants. These tasks require integrated scientific collaboration of experts in experimental and theoretical ecology, including chemical and molecular ecology, (bio)chemistry and evolution.
Collapse
|
28
|
Tamura M, Ohgushi T, Ida TY. Intraspecific neighbourhood effect: Population‐level consequence of aggregation of highly defended plants. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Momoka Tamura
- Faculty of Science Nara Women's University Nara Japan
- Hamamatsu Konan High School Hamamatsu Japan
| | | | | |
Collapse
|
29
|
Wetzel WC, Whitehead SR. The many dimensions of phytochemical diversity: linking theory to practice. Ecol Lett 2019; 23:16-32. [PMID: 31724320 DOI: 10.1111/ele.13422] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
Research on the ecological and evolutionary roles of phytochemicals has recently progressed from studying single compounds to examining chemical diversity itself. A key conceptual advance enabling this progression is the use of species diversity metrics for quantifying phytochemical diversity. In this perspective, we extend the theory developed for species diversity to further our understanding of what exactly phytochemical diversity is and how its many dimensions impact ecological and evolutionary processes. First, we discuss the major dimensions of phytochemical diversity - richness, evenness, functional diversity, and alpha, gamma and beta diversity. We describe their potential independent roles in biotic interactions and the practical challenges associated with their analysis. Second, we re-analyse the published and unpublished datasets to reveal that the phytochemical diversity experienced by an organism (or observed by a researcher) depends strongly on the scale of the interaction and the total amount of phytochemicals involved. We argue that we must account for these frames of reference to meaningfully understand diversity. Moving from a general notion of phytochemical diversity as a single measure to a precise definition of its multidimensional and multiscale nature yields overlooked testable predictions that will facilitate novel insights about the evolutionary ecology of plant biotic interactions.
Collapse
Affiliation(s)
- William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
30
|
Ramawat KG, Goyal S. Co-evolution of Secondary Metabolites During Biological Competition for Survival and Advantage: An Overview. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-319-76887-8_45-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
31
|
Visakorpi K, Riutta T, Martínez-Bauer AE, Salminen JP, Gripenberg S. Insect community structure covaries with host plant chemistry but is not affected by prior herbivory. Ecology 2019; 100:e02739. [PMID: 31006108 DOI: 10.1002/ecy.2739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/04/2019] [Accepted: 04/01/2019] [Indexed: 11/06/2022]
Abstract
By feeding on plant tissue, insect herbivores can change several characteristics of their hosts. These changes have the potential to alter the quality of the plant for other herbivore species, potentially altering the structure of the community of species attacking the plant at a later point in time. We tested whether herbivory early in the season changes host plant performance, polyphenol chemistry, and the community structure of sessile herbivores later in the season. We experimentally manipulated densities of early-season moth caterpillars on a set of young oak trees and measured tree growth, reproduction, leaf chemistry, and the abundance and community composition of leafmining and galling species later in the season. The experimental manipulations of early-season herbivores did not affect late-season leaf chemistry or tree performance. Early-season herbivores had a weak negative effect on the abundance of gallers and a positive, tree-dependent effect on the overall diversity of late-season sessile herbivores. The chemical composition of leaves covaried with the species composition of the late-season leafmining and galling community. Both the chemical composition of the host tree and the late-season insect community structure were strongly affected by the growth location of the tree. Our results suggest that plant-mediated indirect effects between herbivores might play a limited role in this system, whereas the underlying variation in plant chemistry is an important factor structuring the associated insect community. Our results emphasize that factors other than prior herbivory can be important determinants of plant chemistry and the community composition of herbivores.
Collapse
Affiliation(s)
- Kristiina Visakorpi
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, United Kingdom.,Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Terhi Riutta
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | | | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, FI-20500, Finland
| | - Sofia Gripenberg
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, United Kingdom.,School of Biological Sciences, University of Reading, Reading, RG6 6AS, United Kingdom
| |
Collapse
|
32
|
Glassmire AE, Philbin C, Richards LA, Jeffrey CS, Snook JS, Dyer LA. Proximity to canopy mediates changes in the defensive chemistry and herbivore loads of an understory tropical shrub,
Piper kelleyi. Ecol Lett 2018; 22:332-341. [DOI: 10.1111/ele.13194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 01/27/2023]
Affiliation(s)
| | - Casey Philbin
- Chemistry Department University of Nevada, Reno Reno NV89557 USA
| | - Lora A. Richards
- Ecology, Evolution, and Conservation Biology University of Nevada, Reno Reno NV89557 USA
| | | | | | - Lee A. Dyer
- Ecology, Evolution, and Conservation Biology University of Nevada, Reno Reno NV89557 USA
| |
Collapse
|
33
|
Clancy MV, Zytynska SE, Moritz F, Witting M, Schmitt-Kopplin P, Weisser WW, Schnitzler JP. Metabotype variation in a field population of tansy plants influences aphid host selection. PLANT, CELL & ENVIRONMENT 2018; 41:2791-2805. [PMID: 30035804 DOI: 10.1111/pce.13407] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 07/10/2018] [Indexed: 05/15/2023]
Abstract
It is well known that plant volatiles influence herbivores in their selection of a host plant; however, less is known about how the nonvolatile metabolome affects herbivore host selection. Metabolic diversity between intraspecific plants can be characterized using non-targeted mass spectrometry that gives us a snapshot overview of all metabolic processes occurring within a plant at a particular time. Here, we show that non-targeted metabolomics can be used to reveal links between intraspecific chemical diversity and ecological processes in tansy (Tanacetum vulgare). First, we show that tansy plants can be categorized into five subgroups based up on their metabolic profiles, and that these "metabotypes" influenced natural aphid colonization in the field. Second, this grouping was not due to induced metabolomic changes within the plant due to aphid feeding but rather resulted from constitutive differences in chemical diversity between plants. These findings highlight the importance of intraspecific chemical diversity within one plant population and provide the first report of a non-targeted metabolomic field study in chemical ecology.
Collapse
Affiliation(s)
- Mary V Clancy
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation (EUS), Neuherberg, Germany
| | - Sharon E Zytynska
- Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Terrestrial Ecology Research Group, Freising, Germany
| | - Franco Moritz
- Helmholtz Zentrum München, Research Unit Analytical BioGeoChemistry (BCG), Neuherberg, Germany
| | - Michael Witting
- Helmholtz Zentrum München, Research Unit Analytical BioGeoChemistry (BCG), Neuherberg, Germany
- Chair of Analytical Food Chemistry, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, Research Unit Analytical BioGeoChemistry (BCG), Neuherberg, Germany
- Chair of Analytical Food Chemistry, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Wolfgang W Weisser
- Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Terrestrial Ecology Research Group, Freising, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation (EUS), Neuherberg, Germany
| |
Collapse
|
34
|
Haldhar SM, Samadia DK, Bhargava R, Choudhary BR, Singh D. Host plant accessions determine bottom-up effect of snapmelon ( Cucumis melo var. momordica) against melon fly ( Bactrocera cucurbitae (Coquillett)). BREEDING SCIENCE 2018; 68:499-507. [PMID: 30697110 PMCID: PMC6345231 DOI: 10.1270/jsbbs.17065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 06/17/2018] [Indexed: 06/09/2023]
Abstract
The melon fly, Bactrocera cucurbitae (Tephritidae: Diptera) is an important pest of snapmelon (Cucumis melo var. momordica), leading to significant losses in yield in the hot arid agro-climate of India. The accessions IC- 430190 (11.21%), DKS-AHS 2011/4 (14.97%) and DKS-AHS 2011/3 (18.57%) were found to be novel resistant accessions against melon fly, B. cucurbitae infestation. Free amino acid and total soluble solid (TSS) were in positive correlation with percent fruit infestation whereas phenols, tannin, total alkaloids and flavonoid contents had significant negative correlation with percent fruit infestation. The percent fruit infestation had significant positive correlation with fruit length, fruit diameter and flesh thickness and negative correlation with length of ovary pubescence, rind hardness at immature stage, rind hardness at mature stage and pericarp thickness. Based on Kaiser Normalization method, two principal components (PCs) were extracted explaining cumulative variation of 82.80% in melon fly infestation. PC1 explained 53.41% of the variation while PC2 explained 29.39% of variation. The flavonoid, total alkaloid, tannins, phenols content, length of ovary pubescence and rind hardness were the novel antibiosis and antixenotic characters found in snapmelon resistant melon fly, B. cucurbitae and therefore, could be used as marker traits in plant breeding programs to select resistant accessions.
Collapse
|
35
|
Raffard A, Santoul F, Cucherousset J, Blanchet S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol Rev Camb Philos Soc 2018; 94:648-661. [PMID: 30294844 DOI: 10.1111/brv.12472] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Understanding the relationships between biodiversity and ecosystem functioning has major implications. Biodiversity-ecosystem functioning relationships are generally investigated at the interspecific level, although intraspecific diversity (i.e. within-species diversity) is increasingly perceived as an important ecological facet of biodiversity. Here, we provide a quantitative and integrative synthesis testing, across diverse plant and animal species, whether intraspecific diversity is a major driver of community dynamics and ecosystem functioning. We specifically tested (i) whether the number of genotypes/phenotypes (i.e. intraspecific richness) or the specific identity of genotypes/phenotypes (i.e. intraspecific variation) in populations modulate the structure of communities and the functioning of ecosystems, (ii) whether the ecological effects of intraspecific richness and variation are strong in magnitude, and (iii) whether these effects vary among taxonomic groups and ecological responses. We found a non-linear relationship between intraspecific richness and community and ecosystem dynamics that follows a saturating curve shape, as observed for biodiversity-function relationships measured at the interspecific level. Importantly, intraspecific richness modulated ecological dynamics with a magnitude that was equal to that previously reported for interspecific richness. Our results further confirm, based on a database containing more than 50 species, that intraspecific variation also has substantial effects on ecological dynamics. We demonstrated that the effects of intraspecific variation are twice as high as expected by chance, and that they might have been underestimated previously. Finally, we found that the ecological effects of intraspecific variation are not homogeneous and are actually stronger when intraspecific variation is manipulated in primary producers than in consumer species, and when they are measured at the ecosystem rather than at the community level. Overall, we demonstrated that the two facets of intraspecific diversity (richness and variation) can both strongly affect community and ecosystem dynamics, which reveals the pivotal role of within-species biodiversity for understanding ecological dynamics.
Collapse
Affiliation(s)
- Allan Raffard
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis UMR-5321, Université Toulouse III Paul Sabatier, 2 route du CNRS, F-09200, Moulis, France.,EcoLab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Frédéric Santoul
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Julien Cucherousset
- CNRS, IRD, UPS, Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Simon Blanchet
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis UMR-5321, Université Toulouse III Paul Sabatier, 2 route du CNRS, F-09200, Moulis, France.,CNRS, IRD, UPS, Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| |
Collapse
|
36
|
Wetzel WC, Aflitto NC, Thaler JS. Plant genotypic diversity interacts with predation risk to influence an insect herbivore across its ontogeny. Ecology 2018; 99:2338-2347. [PMID: 30047598 DOI: 10.1002/ecy.2472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/07/2018] [Accepted: 07/10/2018] [Indexed: 11/11/2022]
Abstract
A growing number of studies have manipulated intraspecific plant diversity and found dramatic changes in the densities of associated insect herbivores and their predators. While these studies have been essential for quantifying the net ecological consequences of intraspecific plant diversity, they have been less effective at uncovering the ways in which plant diversity alters trophic interactions within arthropod communities. We manipulated intraspecific plant diversity and predation risk in the field in a factorial design to reveal how a mixture of plant genotypes changes the response of an herbivorous beetle (Leptinotarsa decemlineata) to a common stink bug predator (Podisus maculiventris). We repeated the manipulations twice across the ontogeny of the beetle to examine how the effects of diversity on the predator-prey interaction differ between larval and adult stages. We found that intraspecific plant diversity, mixtures of susceptible and resistant varieties of potato (Solanum tuberosum), reduced larval survival by 20% and adult oviposition by 34%, which surprisingly put survival and oviposition lower in the mixed-genotype plots than in the resistant monocultures. Moreover, we found that predation risk reduced larval survival 25% and 11% in resistant and susceptible monocultures, respectively, but had no effect in the mixture. This result indicated that our genotypic mixing treatment interacted nonadditively with predation risk such that plant diversity altered the predator-prey interaction by changing the responses of the beetles to their stink bug predators. In addition, even though predation risk reduced larval survival, it increased adult overwintering survival by 9%, independently of plant treatment, suggesting that these interactions change through ontogeny. A key implication of our study is that plant diversity influences arthropod communities not only by changing resource quality, as past studies have suggested, but also by changing interactions between species within the arthropod community.
Collapse
Affiliation(s)
- William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Nicholas C Aflitto
- Department of Entomology, Cornell University, Ithaca, New York, 14853, USA
| | - Jennifer S Thaler
- Department of Entomology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
37
|
Moreira X, Abdala-Roberts L, Gols R, Francisco M. Plant domestication decreases both constitutive and induced chemical defences by direct selection against defensive traits. Sci Rep 2018; 8:12678. [PMID: 30140028 PMCID: PMC6107632 DOI: 10.1038/s41598-018-31041-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/10/2018] [Indexed: 11/27/2022] Open
Abstract
Studies reporting domestication effects on plant defences have focused on constitutive, but not on induced defences. However, theory predicts a trade-off between constitutive (CD) and induced defences (ID), which intrinsically links both defensive strategies and argues for their joint consideration in plant domestications studies. We measured constitutive and induced glucosinolates in wild cabbage (Brassica oleracea ssp. oleracea) and two domesticated varieties (B. oleracea var. acephala and B. oleracea var. capitata) in which the leaves have been selected to grow larger. We also estimated leaf area (proxy of leaf size) to assess size-defence trade-offs and whether domestication effects on defences are indirect via selection for larger leaves. Both CD and ID were lower in domesticated than in wild cabbage and they were negatively correlated (i.e. traded off) in all of the cabbage lines studied. Reductions in CD were similar in magnitude for leaves and stems, and CD and leaf size were uncorrelated. We conclude that domestication of cabbage has reduced levels not only constitutive defences but also their inducibility, and that reductions in CD may span organs not targeted by breeding. This reduction in defences in domesticated cabbage is presumably the result of direct selection rather than indirect effects via trade-offs between size and defences.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080, Pontevedra, Galicia, Spain.
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marta Francisco
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080, Pontevedra, Galicia, Spain.
| |
Collapse
|
38
|
Pais AL, Li X, (Jenny) Xiang Q. Discovering variation of secondary metabolite diversity and its relationship with disease resistance in Cornus florida L. Ecol Evol 2018; 8:5619-5636. [PMID: 29938079 PMCID: PMC6010843 DOI: 10.1002/ece3.4090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Understanding intraspecific relationships between genetic and functional diversity is a major goal in the field of evolutionary biology and is important for conserving biodiversity. Linking intraspecific molecular patterns of plants to ecological pressures and trait variation remains difficult due to environment-driven plasticity. Next-generation sequencing, untargeted liquid chromatography-mass spectrometry (LC-MS) profiling, and interdisciplinary approaches integrating population genomics, metabolomics, and community ecology permit novel strategies to tackle this problem. We analyzed six natural populations of the disease-threatened Cornus florida L. from distinct ecological regions using genotype-by-sequencing markers and LC-MS-based untargeted metabolite profiling. We tested the hypothesis that higher genetic diversity in C. florida yielded higher chemical diversity and less disease susceptibility (screening hypothesis), and we also determined whether genetically similar subpopulations were similar in chemical composition. Most importantly, we identified metabolites that were associated with candidate loci or were predictive biomarkers of healthy or diseased plants after controlling for environment. Subpopulation clustering patterns based on genetic or chemical distances were largely congruent. While differences in genetic diversity were small among subpopulations, we did observe notable similarities in patterns between subpopulation averages of rarefied-allelic and chemical richness. More specifically, we found that the most abundant compound of a correlated group of putative terpenoid glycosides and derivatives was correlated with tree health when considering chemodiversity. Random forest biomarker and genomewide association tests suggested that this putative iridoid glucoside and other closely associated chemical features were correlated to SNPs under selection.
Collapse
Affiliation(s)
- Andrew L. Pais
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
| | - Xu Li
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNorth Carolina
| | - Qiu‐Yun (Jenny) Xiang
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
| |
Collapse
|
39
|
Gols R, van Dam NM, Reichelt M, Gershenzon J, Raaijmakers CE, Bullock JM, Harvey JA. Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage ( Brassica oleracea). CHEMOECOLOGY 2018; 28:77-89. [PMID: 29904237 PMCID: PMC5988764 DOI: 10.1007/s00049-018-0258-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/03/2018] [Indexed: 12/02/2022]
Abstract
Levels of plant secondary metabolites are not static and often change in relation to plant ontogeny. They also respond to abiotic and biotic changes in the environment, e.g., they often increase in response to biotic stress, such as herbivory. In contrast with short-lived annual plant species, especially those with growing periods of less than 2-3 months, investment in defensive compounds of vegetative tissues in biennial and perennial species may also vary over the course of an entire growing season. In garden experiments, we investigated the dynamics of secondary metabolites, i.e. glucosinolates (GSLs) in the perennial wild cabbage (Brassica oleracea), which was grown from seeds originating from three populations that differ in GSL chemistry. We compared temporal long-term dynamics of GSLs over the course of two growing seasons and short-term dynamics in response to herbivory by Pieris rapae caterpillars in a more controlled greenhouse experiment. Long-term dynamics differed for aliphatic GSLs (gradual increase from May to December) and indole GSLs (rapid increase until mid-summer after which concentrations decreased or stabilized). In spring, GSL levels in new shoots were similar to those found in the previous year. Short-term dynamics in response to herbivory primarily affected indole GSLs, which increased during the 2-week feeding period by P. rapae. Herbivore-induced changes in the concentrations of aliphatic GSLs were population-specific and their concentrations were found to increase in primarily one population only. We discuss our results considering the biology and ecology of wild cabbage.
Collapse
Affiliation(s)
- Rieta Gols
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | | | | | | | | | - Jeffrey A. Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Department of Ecological Sciences, Section Animal Ecology, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
40
|
Koricheva J, Hayes D. The relative importance of plant intraspecific diversity in structuring arthropod communities: A meta‐analysis. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13062] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Julia Koricheva
- School of Biological SciencesRoyal Holloway University of London Egham Surrey UK
| | - Dexter Hayes
- School of Biological SciencesRoyal Holloway University of London Egham Surrey UK
| |
Collapse
|
41
|
Bustos-Segura C, Padovan A, Kainer D, Foley WJ, Külheim C. Transcriptome analysis of terpene chemotypes of Melaleuca alternifolia across different tissues. PLANT, CELL & ENVIRONMENT 2017; 40:2406-2425. [PMID: 28771760 DOI: 10.1111/pce.13048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Plant chemotypes or chemical polymorphisms are defined by discrete variation in secondary metabolites within a species. This variation can have consequences for ecological interactions or the human use of plants. Understanding the molecular basis of chemotypic variation can help to explain how variation of plant secondary metabolites is controlled. We explored the transcriptomes of the 3 cardinal terpene chemotypes of Melaleuca alternifolia in young leaves, mature leaves, and stem and compared transcript abundance to variation in the constitutive profile of terpenes. Leaves from chemotype 1 plants (dominated by terpinen-4-ol) show a similar pattern of gene expression when compared to chemotype 5 plants (dominated by 1,8-cineole). Only terpene synthases in young leaves were differentially expressed between these chemotypes, supporting the idea that terpenes are mainly synthetized in young tissue. Chemotype 2 plants (dominated by terpinolene) show a greater degree of differential gene expression compared to the other chemotypes, which might be related to the isolation of plant populations that exhibit this chemotype and the possibility that the terpinolene synthase gene in M. alternifolia was derived by introgression from a closely related species, Melaleuca trichostachya. By using multivariate analyses, we were able to associate terpenes with candidate terpene synthases.
Collapse
Affiliation(s)
- Carlos Bustos-Segura
- Division of Evolution and Ecology, Research School of Biology, The Australian National University, Canberra, 2601, Australian Capital Territory, Australia
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchatel, Neuchatel, 2000, Switzerland
| | - Amanda Padovan
- Division of Evolution and Ecology, Research School of Biology, The Australian National University, Canberra, 2601, Australian Capital Territory, Australia
| | - David Kainer
- Division of Evolution and Ecology, Research School of Biology, The Australian National University, Canberra, 2601, Australian Capital Territory, Australia
| | - William J Foley
- Division of Evolution and Ecology, Research School of Biology, The Australian National University, Canberra, 2601, Australian Capital Territory, Australia
| | - Carsten Külheim
- Division of Evolution and Ecology, Research School of Biology, The Australian National University, Canberra, 2601, Australian Capital Territory, Australia
| |
Collapse
|
42
|
Massad TJ, Martins de Moraes M, Philbin C, Oliveira C, Cebrian Torrejon G, Fumiko Yamaguchi L, Jeffrey CS, Dyer LA, Richards LA, Kato MJ. Similarity in volatile communities leads to increased herbivory and greater tropical forest diversity. Ecology 2017; 98:1750-1756. [DOI: 10.1002/ecy.1875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/09/2017] [Accepted: 04/18/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Tara J. Massad
- Biology Department; Rhodes College; 2000 North Parkway Memphis Tennessee 38103 USA
- Instituto de Química; Universidade de São Paulo; Av. Prof. Lineu Prestes, 748, Bloco 11 Térreo São Paulo São Paulo 05508-000 Brasil
| | - Marcílio Martins de Moraes
- Instituto de Química; Universidade de São Paulo; Av. Prof. Lineu Prestes, 748, Bloco 11 Térreo São Paulo São Paulo 05508-000 Brasil
| | - Casey Philbin
- Department of Chemistry; University of Nevada; Reno Nevada 89557 USA
| | - Celso Oliveira
- Department of Chemistry; University of Nevada; Reno Nevada 89557 USA
| | - Gerardo Cebrian Torrejon
- Instituto de Química; Universidade de São Paulo; Av. Prof. Lineu Prestes, 748, Bloco 11 Térreo São Paulo São Paulo 05508-000 Brasil
| | - Lydia Fumiko Yamaguchi
- Instituto de Química; Universidade de São Paulo; Av. Prof. Lineu Prestes, 748, Bloco 11 Térreo São Paulo São Paulo 05508-000 Brasil
| | | | - Lee A. Dyer
- Department of Biology; University of Nevada; Reno Nevada 89557 USA
| | - Lora A. Richards
- Department of Biology; University of Nevada; Reno Nevada 89557 USA
| | - Massuo J. Kato
- Instituto de Química; Universidade de São Paulo; Av. Prof. Lineu Prestes, 748, Bloco 11 Térreo São Paulo São Paulo 05508-000 Brasil
| |
Collapse
|