1
|
Zhang Y, Liang Z, Zheng L, Wang X, Chen H, Xu T, Tang M. Impact of long-term loquat cultivation on rhizosphere soil characteristics and AMF community structure: implications for fertilizer management. FRONTIERS IN PLANT SCIENCE 2025; 16:1549384. [PMID: 40182538 PMCID: PMC11966047 DOI: 10.3389/fpls.2025.1549384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
The role of arbuscular mycorrhizal fungi (AMF) in assisting the growth of different fruit tree species is well-established, yet the impact of loquat cultivation under long-term human management on the rhizosphere soil characteristics and AMF community structure remains unresolved. To address this knowledge gap, we collected roots and soil samples from 20-year-old loquat in a loquat germplasm resources nursery with consistent water and nutrient conditions including one wild species (YS), three pure species (GXQH, MHH, DWX), and four hybrid species (ZJ90, JT, JTH, ZU7). Our analysis revealed that AMF colonization rates ranged from 40.57% to 65.54%, with Glomus (30.72%) and Paraglomus (29.46%) being the dominant genera across all varieties. Paraglomus dominated in pure species, while Glomus prevailed in wild species. YS exhibited the highest AMF richness than cultivars. Significant variations in soil nutrients and enzyme activities in the rhizosphere among different varieties. Total nitrogen (TN) and total potassium (TK) were significantly negatively correlated with relative abundance of AMF genera, suggesting that nitrogen and potassium may reduce AMF abundance. Mantel test showed that total carbon (TC) and soil organic matter (SOM) were the key factors influencing AMF community composition (P<0.01). These nutrients were positively correlated with dominant AMF genus (0.06, R2 = 0.05) but negatively with rare genus such as Ambispora (-0.08, R2 = 0.24). Overall, these findings confirmed that plant varieties or genotypes drive changes in AMF communities and further demonstrated that long-term nutrient enrichment reduces the diversity of loquat rhizosphere AMF communities. These results support the use of AMF biofertilizers and reducing fertilizer application.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhenteng Liang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Liangxun Zheng
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyang Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tingying Xu
- Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, United States
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Kryukov AA, Yurkov AP, Gorbunova AO, Kudriashova TR, Gorenkova AI, Kosulnikov YV, Laktionov YV. Evaluation of the biodiversity of arbuscular mycorrhizal fungi during regenerative succession in quarries. Vavilovskii Zhurnal Genet Selektsii 2025; 29:72-78. [PMID: 40144381 PMCID: PMC11933903 DOI: 10.18699/vjgb-25-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 03/28/2025] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) play a key role in the regenerative successions of plant communities after anthropogenic disturbances, particularly in quarries. AMF help plants with water and mineral nutrition, contributing to the restoration rate of vegetation cover. The research is aimed to study the biodiversity of AMF using molecular genetic methods at different stages of overgrowth of two quarries in the Leningrad region. Molecular genetic identification of fungi was carried out using Illumina MiSeq analysis of the ITS1 and ITS2 regions as barcodes for the identification of operational taxonomic units (OTUs) with species-level identification. An adapted and error-checked AMF genetic sequence database from NCBI was used as a reference. The study applied an optimized nucleic acid isolation technique for sandy soils. The results showed maximum AMF biodiversity at the initial stages of overgrowth - pioneer and grass stages - with minimum diversity observed at the shrub stage, where it decreased by five times. At the forest stage, the biodiversity of AMF was almost restored to the level seen at the grass stage. It has been shown that the biodiversity and species composition of AMF can vary greatly between the stages of regenerative succession and probably depends primarily on the biodiversity of grasses, with which AMF most effectively enter into symbiotic relationships. The analysis showed a reliable negative correlation between the number of AMF species and the number of woody plant species. Such studies can aid in understanding how plant-fungal symbiosis develops in regenerative successions and which AMF most effectively contribute to vegetation cover restoration.
Collapse
Affiliation(s)
- A A Kryukov
- The All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - A P Yurkov
- The All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - A O Gorbunova
- The All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - T R Kudriashova
- The All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - A I Gorenkova
- The All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Y V Kosulnikov
- The All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Y V Laktionov
- The All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| |
Collapse
|
3
|
Singh Rawat S, Laxmi A. Light at the end of the tunnel: integrating signaling pathways in the coordination of lateral root development. Biochem Soc Trans 2024; 52:1895-1908. [PMID: 39171690 DOI: 10.1042/bst20240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
4
|
Lepinay C, Větrovský T, Chytrý M, Dřevojan P, Fajmon K, Cajthaml T, Kohout P, Baldrian P. Effect of plant communities on bacterial and fungal communities in a Central European grassland. ENVIRONMENTAL MICROBIOME 2024; 19:42. [PMID: 38902816 PMCID: PMC11188233 DOI: 10.1186/s40793-024-00583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Grasslands provide fundamental ecosystem services that are supported by their plant diversity. However, the importance of plant taxonomic diversity for the diversity of other taxa in grasslands remains poorly understood. Here, we studied the associations between plant communities, soil chemistry and soil microbiome in a wooded meadow of Čertoryje (White Carpathians, Czech Republic), a European hotspot of plant species diversity. RESULTS High plant diversity was associated with treeless grassland areas with high primary productivity and high contents of soil nitrogen and organic carbon. In contrast, low plant diversity occurred in grasslands near solitary trees and forest edges. Fungal communities differed between low-diversity and high-diversity grasslands more strongly than bacterial communities, while the difference in arbuscular mycorrhizal fungi (AMF) depended on their location in soil versus plant roots. Compared to grasslands with low plant diversity, high-diversity plant communities had a higher diversity of fungi including soil AMF, a different fungal and soil AMF community composition and higher bacterial and soil AMF biomass. Root AMF composition differed only slightly between grasslands with low and high plant diversity. Trees dominated the belowground plant community in low-diversity grasslands, which influenced microbial diversity and composition. CONCLUSIONS The determinants of microbiome abundance and composition in grasslands are complex. Soil chemistry mainly influenced bacterial communities, while plant community type mainly affected fungal (including AMF) communities. Further studies on the functional roles of microbial communities are needed to understand plant-soil-microbe interactions and their involvement in grassland ecosystem services.
Collapse
Affiliation(s)
- Clémentine Lepinay
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Milan Chytrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Pavel Dřevojan
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Karel Fajmon
- Regional Office Protected Landscape Area Bílé Karpaty, Nature Conservation Agency of the Czech Republic, Nádražní 318, 763 26, Luhačovice, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| |
Collapse
|
5
|
Guillen-Otero T, Hertel D, Quintanilla LG, Lehnert M, Schmid M, Kharazishvili D, Fawcett S, Kessler M. Comparative analysis of mycorrhizal communities associated with Struthiopteris spicant (L.) Weiss across Europe and North America. FRONTIERS IN PLANT SCIENCE 2024; 15:1402946. [PMID: 38899157 PMCID: PMC11186384 DOI: 10.3389/fpls.2024.1402946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Introduction Ferns constitute the second largest group of vascular plants. Previous studies have shown that the diversity and composition of fern communities are influenced by resource availability and water stress, among other factors. However, little is known about the influence of these environmental factors on their biotic interactions, especially regarding the relationship between mycorrhizal fungi and ferns. The present study compares the mycorrhizal communities associated with 36 populations of Struthiopteris spicant L. Weiss across Europe and North America. This species exhibits a great tolerance to variations in light, nutrient, and pH conditions, and it can survive with and without mycorrhizae. Methods With the aim of determining which environmental factors impact the composition and abundance of the root-associated fungal communities in this species, we used an ITS-focused metabarcoding approach to identify the mycorrhizal fungi present and analyzed the influence of climatic and edaphic variables at global and regional scales. Results and discussion We encountered striking differences in the relative abundance of arbuscular mycorrhizal fungi (AMF) between S. spicant populations at both spatial levels. We recorded a total of 902 fungal ASVs, but only 2- 4% of the total fungal diversity was observed in each individual, revealing that each fern had a unique fungal community. Light availability and the interactive action of pH and soil nitrogen concentration showed a positive influence on AMF relative abundance, explaining 89% of the variance. However, environmental factors could only explain 4- 8% of the variability in AMF community composition, indicating that it might be determined by stochastic processes. These results support the hypothesis that ferns may be more independent of mycorrhization than other plant groups and interact with fungi in a more opportunistic manner.
Collapse
Affiliation(s)
- Thais Guillen-Otero
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Dietrich Hertel
- Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Luis G. Quintanilla
- School of Environmental Sciences and Technology, University Rey Juan Carlos, Móstoles, Spain
| | - Marcus Lehnert
- Geobotany and Botanical Garden Area, Herbarium, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Mattia Schmid
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Davit Kharazishvili
- Deputy Director of Research management of the Batumi Botanical Garden, Batumi, Georgia
| | - Susan Fawcett
- University and Jepson Herbaria, University of California, Berkeley, Berkeley, United States
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Guillen-Otero T, Lee SJ, Hertel D, Kessler M. Facultative mycorrhization in a fern (Struthiopteris spicant L. Weiss) is bound to light intensity. BMC PLANT BIOLOGY 2024; 24:103. [PMID: 38331718 PMCID: PMC10854079 DOI: 10.1186/s12870-024-04782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The establishment of mycorrhizal relationships between a fungus and a plant typically enhances nutrient and water uptake for the latter while securing a carbon source for the fungus. However, under a particular set of environmental conditions, such as low availability of light and abundant nutrients in the soil, the resources invested in the maintenance of the fungi surpass the benefits obtained by the host. In those cases, facultative mycorrhizal plants are capable of surviving without symbiosis. Facultative mycorrhization in ferns has been overlooked until now. The present study measured the response of Struthiopteris spicant L. Weiss, and its root-associated fungi to different levels of light and nutrient availability in terms of growth, mycorrhizal presence, and leaf nutrient content. This fern species exhibits a great tolerance to variable light, nutrient, and pH conditions, and it has been found with and without mycorrhizae. We conducted a greenhouse experiment with 80 specimens of S. spicant and three factors (Light, Phosphorus, and Nitrogen) resulting in eight treatments. RESULTS We found a significant influence of the factor light on fungal community composition, plant biomass, and nutrient accumulation. Departing from a lack of colonization at the initial stage, plants showed a remarkable increment of more than 80% in the arbuscular mycorrhizal fungi (AMF) richness and abundance in their roots when grown under high light conditions, compared with the ones in low light. We also observed an upward trend of C:P and C:N ratios and the above- and belowground biomass production when AMF abundance increased. Furthermore, the compositional analysis of the whole fungal communities associated with S. spicant roots revealed clear differences among low-light and high-light treatments. CONCLUSIONS This study is the first to investigate the importance of light and nutrient availability in determining fern-AMF relationships. We confirmed that Struthiopteris spicant is a facultative mycorrhizal plant. The composition and diversity of AMF found in the roots of this fern are strongly influenced by light and less by nutrient conditions. Our study shows that ferns respond very sensitively to changes in environmental factors, leading to shifts in the associated mycorrhizal communities.
Collapse
Affiliation(s)
- Thais Guillen-Otero
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
| | - Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Dietrich Hertel
- Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Cheng Y, Rutten G, Liu X, Ma M, Song Z, Maaroufi NI, Zhou S. Host plant height explains the effect of nitrogen enrichment on arbuscular mycorrhizal fungal communities. THE NEW PHYTOLOGIST 2023; 240:399-411. [PMID: 37482960 DOI: 10.1111/nph.19140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023]
Abstract
Nitrogen (N) enrichment is widely known to affect the root-associated arbuscular mycorrhizal fungal (AMF) community in different ways, for example, via altering soil properties and/or shifting host plant functional structure. However, empirical knowledge of their relative importance is still lacking. Using a long-term N addition experiment, we measured the AMF community taxonomic and phylogenetic diversity at the single plant species (roots of 15 plant species) and plant community (mixed roots) levels. We also measured four functional traits of 35 common plant species along the N addition gradient. We found divergent responses of AMF diversity to N addition for host plants with different innate heights (i.e. plant natural height under unfertilized treatment). Furthermore, our data showed that species-specific responses of AMF diversity to N addition were negatively related to the change in maximum plant height. When scaling up to the community level, N addition affected AMF diversity mainly through increasing the maximum plant height, rather than altering soil properties. Our results highlight the importance of plant height in driving AMF community dynamics under N enrichment at both species and community levels, thus providing important implications for understanding the response of AMF diversity to anthropogenic N deposition.
Collapse
Affiliation(s)
- Yikang Cheng
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Gemma Rutten
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems & College of Ecology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems & College of Ecology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Nadia I Maaroufi
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
- Department of Soil and Environment, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Shurong Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, 570228, China
| |
Collapse
|
8
|
López-Angulo J, Matesanz S, Illuminati A, Pescador DS, Sánchez AM, Pías B, Chacón-Labella J, de la Cruz M, Escudero A. Ecological drivers of fine-scale distribution of arbuscular mycorrhizal fungi in a semiarid Mediterranean scrubland. ANNALS OF BOTANY 2023; 131:1107-1119. [PMID: 36976581 PMCID: PMC10457037 DOI: 10.1093/aob/mcad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Arbuscular mycorrhizal (AM) fungi enhance the uptake of water and minerals by the plant hosts, alleviating plant stress. Therefore, AM fungal-plant interactions are particularly important in drylands and other stressful ecosystems. We aimed to determine the combined and independent effects of above- and below-ground plant community attributes (i.e. diversity and composition), soil heterogeneity and spatial covariates on the spatial structure of the AM fungal communities in a semiarid Mediterranean scrubland. Furthermore, we evaluated how the phylogenetic relatedness of both plants and AM fungi shapes these symbiotic relationships. METHODS We characterized the composition and diversity of AM fungal and plant communities in a dry Mediterranean scrubland taxonomically and phylogenetically, using DNA metabarcoding and a spatially explicit sampling design at the plant neighbourhood scale. KEY RESULTS The above- and below-ground plant community attributes, soil physicochemical properties and spatial variables explained unique fractions of AM fungal diversity and composition. Mainly, variations in plant composition affected the AM fungal composition and diversity. Our results also showed that particular AM fungal taxa tended to be associated with closely related plant species, suggesting the existence of a phylogenetic signal. Although soil texture, fertility and pH affected AM fungal community assembly, spatial factors had a greater influence on AM fungal community composition and diversity than soil physicochemical properties. CONCLUSIONS Our results highlight that the more easily accessible above-ground vegetation is a reliable indicator of the linkages between plant roots and AM fungi. We also emphasize the importance of soil physicochemical properties in addition to below-ground plant information, while accounting for the phylogenetic relationships of both plants and fungi, because these factors improve our ability to predict the relationships between AM fungal and plant communities.
Collapse
Affiliation(s)
- Jesús López-Angulo
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich (ETH), 8092 Zurich, Switzerland
| | - Silvia Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - Angela Illuminati
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - David S Pescador
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ana M Sánchez
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - Beatriz Pías
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | - Marcelino de la Cruz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - Adrián Escudero
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| |
Collapse
|
9
|
Xi N, McCarthy-Neumann S, Feng J, Wu H, Wang W, Semchenko M. Light availability and plant shade tolerance modify plant-microbial interactions and feedbacks in subtropical trees. THE NEW PHYTOLOGIST 2023; 238:393-404. [PMID: 36647239 DOI: 10.1111/nph.18737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Plant-soil feedbacks (PSFs) are an important mechanism of species coexistence in forest communities. However, evidence remains limited for how light availability regulates PSFs in species with different shade tolerance via changes in plant-microbial interactions. Here we tested in a glasshouse experiment how PSFs changed as a function of light availability and tree shade tolerance. Soil bacterial and fungal communities were profiled using the 16S rRNA and ITS2 gene sequencing, respectively. Under low light, individual PSFs were positively related to shade tolerance, while the least shade-tolerant species produced the most positive PSFs under high light. Pairwise PSFs between species with contrasting shade tolerance were strongly positive under high light but negative under low light, thereby promoting the dominance of less shade-tolerant species in forest gaps and species coexistence under closed canopy, respectively. Under high light, PSFs were related to soil microbial composition and diversity, with the relative abundance of arbuscular mycorrhizal fungi being the primary driver of PSFs. Under low light, none of soil microbial properties were significantly related to PSFs. These findings indicate PSFs and plant shade tolerance interact to promote species coexistence and improve our understanding of how soil microbes contribute to variation in PSFs.
Collapse
Affiliation(s)
- Nianxun Xi
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, 570228, China
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Sarah McCarthy-Neumann
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Jiayi Feng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Haibin Road 1119, Nansha, Guangzhou, 511458, China
| | - Hangyu Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Weitao Wang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005, Tartu, Estonia
| |
Collapse
|
10
|
Li JH, Muhammad Aslam M, Gao YY, Dai L, Hao GF, Wei Z, Chen MX, Dini-Andreote F. Microbiome-mediated signal transduction within the plant holobiont. Trends Microbiol 2023; 31:616-628. [PMID: 36702670 DOI: 10.1016/j.tim.2022.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
Microorganisms colonizing the plant rhizosphere and phyllosphere play crucial roles in plant growth and health. Recent studies provide new insights into long-distance communication from plant roots to shoots in association with their commensal microbiome. In brief, these recent advances suggest that specific plant-associated microbial taxa can contribute to systemic plant responses associated with the enhancement of plant health and performance in face of a variety of biotic and abiotic stresses. However, most of the mechanisms associated with microbiome-mediated signal transduction in plants remain poorly understood. In this review, we provide an overview of long-distance signaling mechanisms within plants mediated by the commensal plant-associated microbiomes. We advocate the view of plants and microbes as a holobiont and explore key molecules and mechanisms associated with plant-microbe interactions and changes in plant physiology activated by signal transduction.
Collapse
Affiliation(s)
- Jian-Hong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Mehtab Muhammad Aslam
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yang-Yang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
11
|
Nitrogen Addition Does Not Change AMF Colonization but Alters AMF Composition in a Chinese Fir (Cunninghamia lanceolata) Plantation. FORESTS 2022. [DOI: 10.3390/f13070979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims: Our aim was to investigate how N addition affects arbuscular mycorrhizal fungal (AMF) growth in Chinese fir plantations. Methods: A Chinese fir plantation was treated with four different N addition treatments for one and half years starting in April 2019. AMF colonization, hyphal length density, community composition, and soil properties were under measurement. Results: N addition caused inapparent effects on AMF colonization, hyphal length density, and functional guilds (rhizophilic, edaphophilic, and ancestral). The predominant AMF species in the soil was Septoglomus viscosum. N addition altered AMF community and some rare species (e.g., Entrophospora infrequens) disappeared with N addition. Conclusion: AMF community structure was more sensitive to short-time N deposition than the symbiotic relationship between AMF and host plants.
Collapse
|
12
|
Aavik T, Träger S, Zobel M, Honnay O, Van Geel M, Bueno CG, Koorem K. The joint effect of host plant genetic diversity and arbuscular mycorrhizal fungal communities on restoration success. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tsipe Aavik
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Sabrina Träger
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
- Institute of Biology/Geobotany and Botanical Garden Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
| | - Martin Zobel
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Olivier Honnay
- Plant Conservation and Population Biology Biology Department University of Leuven Heverlee Belgium
| | - Maarten Van Geel
- Plant Conservation and Population Biology Biology Department University of Leuven Heverlee Belgium
| | - C. Guillermo Bueno
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Kadri Koorem
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| |
Collapse
|
13
|
Motivans Švara E, Ştefan V, Sossai E, Feldmann R, Aguilon DJ, Bontsutsnaja A, E‐Vojtkó A, Kilian IC, Lang P, Mõtlep M, Prangel E, Viljur M, Knight TM, Neuenkamp L. Effects of different types of low-intensity management on plant-pollinator interactions in Estonian grasslands. Ecol Evol 2021; 11:16909-16926. [PMID: 34938481 PMCID: PMC8668793 DOI: 10.1002/ece3.8325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
In the face of global pollinator decline, extensively managed grasslands play an important role in supporting stable pollinator communities. However, different types of extensive management may promote particular plant species and thus particular functional traits. As the functional traits of flowering plant species (e.g., flower size and shape) in a habitat help determine the identity and frequency of pollinator visitors, they can also influence the structures of plant-pollinator interaction networks (i.e., pollination networks). The aim of this study was to examine how the type of low-intensity traditional management influences plant and pollinator composition, the structure of plant-pollinator interactions, and their mediation by floral and insect functional traits. Specifically, we compared mown wooded meadows to grazed alvar pastures in western Estonia. We found that both management types fostered equal diversity of plants and pollinators, and overlapping, though still distinct, plant and pollinator compositions. Wooded meadow pollination networks had significantly higher connectance and specialization, while alvar pasture networks achieved higher interaction diversity at a standardized sampling of interactions. Pollinators with small body sizes and short proboscis lengths were more specialized in their preference for particular plant species and the specialization of individual pollinators was higher in alvar pastures than in wooded meadows. All in all, the two management types promoted diverse plant and pollinator communities, which enabled the development of equally even and nested pollination networks. The same generalist plant and pollinator species were important for the pollination networks of both wooded meadows and alvar pastures; however, they were complemented by management-specific species, which accounted for differences in network structure. Therefore, the implementation of both management types in the same landscape helps to maintain high species and interaction diversity.
Collapse
Affiliation(s)
- Elena Motivans Švara
- Department of Community EcologyHelmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Valentin Ştefan
- Department of Community EcologyHelmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Esther Sossai
- Department of Community EcologyHelmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
| | - Reinart Feldmann
- Department of Community EcologyHelmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
| | - Dianne Joy Aguilon
- Doctoral School of Environmental SciencesUniversity of SzegedSzegedHungary
- Department of Forest Biological SciencesCollege of Forestry and Natural ResourcesUniversity of the Philippines Los BañosLagunaPhilippines
- Department of EcologyUniversity of SzegedSzegedHungary
| | - Anna Bontsutsnaja
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Anna E‐Vojtkó
- Department of BotanyFaculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of BotanyCzech Academy of SciencesTřeboňCzech Republic
| | - Isabel C. Kilian
- Zoological Research Museum Alexander KoenigLeibniz Institute for Animal BiodiversityBonnGermany
- Agroecology and Organic Farming Group (INRES‐AOL)University of BonnBonnGermany
| | - Piret Lang
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Marilin Mõtlep
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Elisabeth Prangel
- Department of BotanyInstitute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Mari‐Liis Viljur
- Department of ZoologyInstitute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Tiffany M. Knight
- Department of Community EcologyHelmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Lena Neuenkamp
- Department of BotanyInstitute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| |
Collapse
|
14
|
Wang Y, Bao X, Li S. Effects of Arbuscular Mycorrhizal Fungi on Rice Growth Under Different Flooding and Shading Regimes. Front Microbiol 2021; 12:756752. [PMID: 34764946 PMCID: PMC8577809 DOI: 10.3389/fmicb.2021.756752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are present in paddy fields, where they suffer from periodic soil flooding and sometimes shading stress, but their interaction with rice plants in these environments is not yet fully explained. Based on two greenhouse experiments, we examined rice-growth response to AMF under different flooding and/or shading regimes to survey the regulatory effects of flooding on the mycorrhizal responses of rice plants under different light conditions. AMF had positive or neutral effects on the growth and yields of both tested rice varieties under non-flooding conditions but suppressed them under all flooding and/or shading regimes, emphasizing the high importance of flooding and shading conditions in determining the mycorrhizal effects. Further analyses indicated that flooding and shading both reduced the AMF colonization and extraradical hyphal density (EHD), implying a possible reduction of carbon investment from rice to AMF. The expression profiles of mycorrhizal P pathway marker genes (GintPT and OsPT11) suggested the P delivery from AMF to rice roots under all flooding and shading conditions. Nevertheless, flooding and shading both decreased the mycorrhizal P benefit of rice plants, as indicated by the significant decrease of mycorrhizal P responses (MPRs), contributing to the negative mycorrhizal effects on rice production. The expression profiles of rice defense marker genes OsPR1 and OsPBZ1 suggested that regardless of mycorrhizal growth responses (MGRs), AMF colonization triggered the basal defense response, especially under shading conditions, implying the multifaceted functions of AMF symbiosis and their effects on rice performance. In conclusion, this study found that flooding and shading both modulated the outcome of AMF symbiosis for rice plants, partially by influencing the mycorrhizal P benefit. This finding has important implications for AMF application in rice production.
Collapse
Affiliation(s)
- Yutao Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaozhe Bao
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
15
|
Corrigendum. Ecol Lett 2021; 25:252. [PMID: 34708483 DOI: 10.1111/ele.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Hou S, Wolinska KW, Hacquard S. Microbiota-root-shoot-environment axis and stress tolerance in plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102028. [PMID: 33713892 DOI: 10.1016/j.pbi.2021.102028] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 05/19/2023]
Abstract
Reminiscent to the microbiota-gut-brain axis described in animals, recent advances indicate that plants can take advantage of belowground microbial commensals to orchestrate aboveground stress responses. Integration of plant responses to microbial cues belowground and environmental cues aboveground emerges as a mechanism that promotes stress tolerance in plants. Using recent examples obtained from reductionist and community-level approaches, we discuss the extent to which perception of aboveground biotic and abiotic stresses can cascade along the shoot-root axis to sculpt root microbiota assembly and modulate the growth of root commensals that bolster aboveground stress tolerance. We propose that host modulation of microbiota-root-shoot circuits contributes to phenotypic plasticity and decision-making in plants, thereby promoting adaptation to rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Shiji Hou
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | - Stéphane Hacquard
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| |
Collapse
|