1
|
Raheem A, Yohanna P, Li G, Noh NJ, Iqbal B, Tang J, Du D, Alahmadi TA, Ansari MJ, Zhan A, Son Y. Unraveling the ecological threads: How invasive alien plants influence soil carbon dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120556. [PMID: 38537457 DOI: 10.1016/j.jenvman.2024.120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Invasive alien plants (IAPs) pose significant threats to native ecosystems and biodiversity worldwide. However, the understanding of their precise impact on soil carbon (C) dynamics in invaded ecosystems remains a crucial area of research. This review comprehensively explores the mechanisms through which IAPs influence soil C pools, fluxes, and C budgets, shedding light on their effects and broader consequences. Key mechanisms identified include changes in litter inputs, rates of organic matter decomposition, alterations in soil microbial communities, and shifts in nutrient cycling, all driving the impact of IAPs on soil C dynamics. These mechanisms affect soil C storage, turnover rates, and ecosystem functioning. Moreover, IAPs tend to increase gross primary productivity and net primary productivity leading to the alterations in fluxes and C budgets. The implications of IAP-induced alterations in soil C dynamics are significant and extend to plant-soil interactions, ecosystem structure, and biodiversity. Additionally, they have profound consequences for C sequestration, potentially impacting climate change mitigation. Restoring native plant communities, promoting soil health, and implementing species-specific management are essential measures to significantly mitigate the impacts of IAPs on soil C dynamics. Overall, understanding and mitigating the effects of IAPs on soil C storage, nutrient cycling, and related processes will contribute to the conservation of native biodiversity and complement global C neutrality efforts.
Collapse
Affiliation(s)
- Abdulkareem Raheem
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Paul Yohanna
- Department of Environmental Resource Management, Faculty of Earth and Environmental Sciences, Federal University Dustin-ma, Katsina State, Nigeria
| | - Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Nam Jin Noh
- Department of Forest Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jing Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh -11461, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), India
| | - Aibin Zhan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Yowhan Son
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Waring EF, Perkowski EA, Smith NG. Soil nitrogen fertilization reduces relative leaf nitrogen allocation to photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5166-5180. [PMID: 37235800 DOI: 10.1093/jxb/erad195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/25/2023] [Indexed: 05/28/2023]
Abstract
The connection between soil nitrogen availability, leaf nitrogen, and photosynthetic capacity is not perfectly understood. Because these three components tend to be positively related over large spatial scales, some posit that soil nitrogen positively drives leaf nitrogen, which positively drives photosynthetic capacity. Alternatively, others posit that photosynthetic capacity is primarily driven by above-ground conditions. Here, we examined the physiological responses of a non-nitrogen-fixing plant (Gossypium hirsutum) and a nitrogen-fixing plant (Glycine max) in a fully factorial combination of light by soil nitrogen availability to help reconcile these competing hypotheses. Soil nitrogen stimulated leaf nitrogen in both species, but the relative proportion of leaf nitrogen used for photosynthetic processes was reduced under elevated soil nitrogen in all light availability treatments due to greater increases in leaf nitrogen content than chlorophyll and leaf biochemical process rates. Leaf nitrogen content and biochemical process rates in G. hirsutum were more responsive to changes in soil nitrogen than those in G. max, probably due to strong G. max investments in root nodulation under low soil nitrogen. Nonetheless, whole-plant growth was significantly enhanced by increased soil nitrogen in both species. Light availability consistently increased relative leaf nitrogen allocation to leaf photosynthesis and whole-plant growth, a pattern that was similar between species. These results suggest that the leaf nitrogen-photosynthesis relationship varies under different soil nitrogen levels and that these species preferentially allocated more nitrogen to plant growth and non-photosynthetic leaf processes, rather than photosynthesis, as soil nitrogen increased.
Collapse
Affiliation(s)
- Elizabeth F Waring
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, USA
| | - Evan A Perkowski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
3
|
Chen J, Zhang HY, Liu MC, Han MX, Kong DL. Plant invasions facilitated by suppression of root nutrient acquisition rather than by disruption of mycorrhizal association in the native plant. PLANT DIVERSITY 2022; 44:499-504. [PMID: 36187553 PMCID: PMC9512660 DOI: 10.1016/j.pld.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 05/22/2023]
Abstract
Invasive species have profound negative impacts on native ranges. Unraveling the mechanisms employed by invasive plant species is crucial to controlling invasions. One important approach that invasive plants use to outcompete native plants is to disrupt mutualistic interactions between native roots and mycorrhizal fungi. However, it remains unclear how differences in the competitive ability of invasive plants affect native plant associations with mycorrhizae. Here, we examined how a native plant, Xanthium strumarium, responds to invasive plants that differed in competitive abilities (i.e., as represented by aboveground plant biomass) by measuring changes in root nitrogen concentration (root nutrient acquisition) and mycorrhizal colonization rate. We found that both root nitrogen concentration and mycorrhizal colonization rate in the native plant were reduced by invasive plants. The change in mycorrhizal colonization rate of the native plant was negatively correlated with both aboveground plant biomass of the invasive plants and the change in aboveground plant biomass of the native plant in monocultures relative to mixed plantings. In contrast, the change in root nitrogen concentration of the native plant was positively correlated with aboveground plant biomass of the invasive plants and the change in aboveground plant biomass of the native plant. When we compared the changes in mycorrhizal colonization rate and root nitrogen concentration in the native plant grown in monocultures with those of native plants grown with invasive plants, we observed a significant tradeoff. Our study shows that invasive plants can suppress native plants by reducing root nutrient acquisition rather than by disrupting symbiotic mycorrhizal associations, a novel finding likely attributable to a low dependence of the native plant on mycorrhizal fungi.
Collapse
Affiliation(s)
- Jing Chen
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Hai-Yan Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ming-Chao Liu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mei-Xu Han
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - De-Liang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Corresponding author.
| |
Collapse
|
4
|
Paganeli B, Toussaint A, Bueno CG, Fujinuma J, Reier Ü, Pärtel M. Dark diversity at home describes the success of cross‐continent tree invasions. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Bruno Paganeli
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Aurèle Toussaint
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Carlos Guillermo Bueno
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Junichi Fujinuma
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Ülle Reier
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Meelis Pärtel
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| |
Collapse
|