1
|
James DG. Monarch Butterflies in Western North America: A Holistic Review of Population Trends, Ecology, Stressors, Resilience and Adaptation. INSECTS 2024; 15:40. [PMID: 38249046 PMCID: PMC10817040 DOI: 10.3390/insects15010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Monarch butterfly populations in western North America suffered a substantial decline, from millions of butterflies overwintering in California in the 1980s to less than 400,000 at the beginning of the 21st century. The introduction of neonicotinoid insecticides in the mid-1990s and their subsequent widespread use appears to be the most likely major factor behind this sudden decline. Habitat loss and unfavorable climates (high temperatures, aridity, and winter storms) have also played important and ongoing roles. These factors kept overwintering populations stable but below 300,000 during 2001-2017. Late winter storm mortality and consequent poor spring reproduction drove winter populations to less than 30,000 butterflies during 2018-2019. Record high temperatures in California during the fall of 2020 appeared to prematurely terminate monarch migration, resulting in the lowest overwintering population (1899) ever recorded. Many migrants formed winter-breeding populations in urban areas. Normal seasonal temperatures in the autumns of 2021 and 2022 enabled overwintering populations to return to around the 300,000 level, characteristic of the previous two decades. Natural enemies (predators, parasitoids, parasites, and pathogens) may be important regional or local drivers at times but they are a consistent and fundamental part of monarch ecology. Human interference (capture, rearing) likely has the least impact on monarch populations. The rearing of monarch caterpillars, particularly by children, is an important human link to nature that has positive ramifications for insect conservation beyond monarch butterflies and should be encouraged.
Collapse
Affiliation(s)
- David G James
- Department of Entomology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350, USA
| |
Collapse
|
3
|
Steele C, Ragonese IG, Majewska AA. Extent and impacts of winter breeding in the North American monarch butterfly. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101077. [PMID: 37336490 DOI: 10.1016/j.cois.2023.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Since the 1960s, scientists have observed the North American monarch butterfly (Danaus plexippus) continuing reproductive activities past the fall migration and into the winter months when the climate is mild. Recent work suggests that small populations of winter breeding monarchs are present in western and southeastern USA, as well as northwestern Mexico, with new winter breeding populations forming in areas where non-native milkweeds are planted. The year-round presence of milkweed plants and temperatures suitable for immature monarch development are vital factors allowing for winter breeding. Non-native milkweeds, in conjunction with novel barriers to migration, are likely contributing to the rise in winter breeding behavior. Warmer climates are already impacting milkweed phenology and range, possibly favoring winter breeding behavior. Similar pressures but different implications are expected for eastern and western winter breeding monarchs given the differences in the migration ecology, milkweed species, and climate changes in the two regions.
Collapse
Affiliation(s)
- Christen Steele
- Department of Ecology and Evolutionary Biology, Tulane University, 1430 Annunciation St, New Orleans, LA 70130, USA
| | - Isabella G Ragonese
- Odum School of Ecology, University of Georgia, 140 E Green Street, Athens, GA 30602, USA
| | - Ania A Majewska
- Department of Physiology and Pharmacology College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Peller T, Guichard F, Altermatt F. The significance of partial migration for food web and ecosystem dynamics. Ecol Lett 2023; 26:3-22. [PMID: 36443028 DOI: 10.1111/ele.14143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/30/2022] [Indexed: 11/30/2022]
Abstract
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.
Collapse
Affiliation(s)
- Tianna Peller
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
8
|
Yang LH, Swan K, Bastin E, Aguilar J, Cenzer M, Codd A, Gonzalez N, Hayes T, Higgins A, Lor X, Macharaga C, McMunn M, Oto K, Winarto N, Wong D, Yang T, Afridi N, Aguilar S, Allison A, Ambrose‐Winters A, Amescua E, Apse M, Avoce N, Bastin K, Bolander E, Burroughs J, Cabrera C, Candy M, Cavett A, Cavett M, Chang L, Claret M, Coleman D, Concha J, Danzer P, DaRosa J, Dufresne A, Duisenberg C, Earl A, Eckey E, English M, Espejo A, Faith E, Fang A, Gamez A, Garcini J, Garcini J, Gilbert‐Igelsrud G, Goedde‐Matthews K, Grahn S, Guerra P, Guerra V, Hagedorn M, Hall K, Hall G, Hammond J, Hargadon C, Henley V, Hinesley S, Jacobs C, Johnson C, Johnson T, Johnson Z, Juchau E, Kaplan C, Katznelson A, Keeley R, Kubik T, Lam T, Lansing C, Lara A, Le V, Lee B, Lee K, Lemmo M, Lucio S, Luo A, Malakzay S, Mangney L, Martin J, Matern W, McConnell B, McHale M, McIsaac G, McLennan C, Milbrodt S, Mohammed M, Mooney‐McCarthy M, Morgan L, Mullin C, Needles S, Nunes K, O'Keeffe F, O'Keeffe O, Osgood G, Padilla J, Padilla S, Palacio I, Panelli V, Paulson K, et alYang LH, Swan K, Bastin E, Aguilar J, Cenzer M, Codd A, Gonzalez N, Hayes T, Higgins A, Lor X, Macharaga C, McMunn M, Oto K, Winarto N, Wong D, Yang T, Afridi N, Aguilar S, Allison A, Ambrose‐Winters A, Amescua E, Apse M, Avoce N, Bastin K, Bolander E, Burroughs J, Cabrera C, Candy M, Cavett A, Cavett M, Chang L, Claret M, Coleman D, Concha J, Danzer P, DaRosa J, Dufresne A, Duisenberg C, Earl A, Eckey E, English M, Espejo A, Faith E, Fang A, Gamez A, Garcini J, Garcini J, Gilbert‐Igelsrud G, Goedde‐Matthews K, Grahn S, Guerra P, Guerra V, Hagedorn M, Hall K, Hall G, Hammond J, Hargadon C, Henley V, Hinesley S, Jacobs C, Johnson C, Johnson T, Johnson Z, Juchau E, Kaplan C, Katznelson A, Keeley R, Kubik T, Lam T, Lansing C, Lara A, Le V, Lee B, Lee K, Lemmo M, Lucio S, Luo A, Malakzay S, Mangney L, Martin J, Matern W, McConnell B, McHale M, McIsaac G, McLennan C, Milbrodt S, Mohammed M, Mooney‐McCarthy M, Morgan L, Mullin C, Needles S, Nunes K, O'Keeffe F, O'Keeffe O, Osgood G, Padilla J, Padilla S, Palacio I, Panelli V, Paulson K, Pearson J, Perez T, Phrakonekham B, Pitsillides I, Preisler A, Preisler N, Ramirez H, Ransom S, Renaud C, Rocha T, Saris H, Schemrich R, Schoenig L, Sears S, Sharma A, Siu J, Spangler M, Standefer S, Strickland K, Stritzel M, Talbert E, Taylor S, Thomsen E, Toups K, Tran K, Tran H, Tuqiri M, Valdes S, VanVorhis G, Vue S, Wallace S, Whipple J, Yang P, Ye M, Yo D, Zeng Y. Different factors limit early- and late-season windows of opportunity for monarch development. Ecol Evol 2022; 12:e9039. [PMID: 35845370 PMCID: PMC9273743 DOI: 10.1002/ece3.9039] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/12/2022] Open
Abstract
Seasonal windows of opportunity are intervals within a year that provide improved prospects for growth, survival, or reproduction. However, few studies have sufficient temporal resolution to examine how multiple factors combine to constrain the seasonal timing and extent of developmental opportunities. Here, we document seasonal changes in milkweed (Asclepias fascicularis)-monarch (Danaus plexippus) interactions with high resolution throughout the last three breeding seasons prior to a precipitous single-year decline in the western monarch population. Our results show early- and late-season windows of opportunity for monarch recruitment that were constrained by different combinations of factors. Early-season windows of opportunity were characterized by high egg densities and low survival on a select subset of host plants, consistent with the hypothesis that early-spring migrant female monarchs select earlier-emerging plants to balance a seasonal trade-off between increasing host plant quantity and decreasing host plant quality. Late-season windows of opportunity were coincident with the initiation of host plant senescence, and caterpillar success was negatively correlated with heatwave exposure, consistent with the hypothesis that late-season windows were constrained by plant defense traits and thermal stress. Throughout this study, climatic and microclimatic variations played a foundational role in the timing and success of monarch developmental windows by affecting bottom-up, top-down, and abiotic limitations. More exposed microclimates were associated with higher developmental success during cooler conditions, and more shaded microclimates were associated with higher developmental success during warmer conditions, suggesting that habitat heterogeneity could buffer the effects of climatic variation. Together, these findings show an important dimension of seasonal change in milkweed-monarch interactions and illustrate how different biotic and abiotic factors can limit the developmental success of monarchs across the breeding season. These results also suggest the potential for seasonal sequences of favorable or unfavorable conditions across the breeding range to strongly affect monarch population dynamics.
Collapse
|
9
|
Majewska AA, Davis AK, Altizer S, de Roode JC. Parasite dynamics in North American monarchs predicted by host density and seasonal migratory culling. J Anim Ecol 2022; 91:780-793. [PMID: 35174493 DOI: 10.1111/1365-2656.13678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
Insect-pathogen dynamics can show seasonal and inter-annual variation that covaries with fluctuations in insect abundance and climate. Long-term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence. Monarch butterflies (Danaus plexippus) are commonly infected with the protozoan Ophryocystis elektroscirrha (OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand patterns and drivers of infection. 3. Here we compiled data on OE infection spanning 50 years, from wild monarchs sampled in the USA, Canada, and Mexico during summer breeding, fall migrating, and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate, and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration. 4. Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased three-fold since the mid-2000s. In the western region, the proportion of infected monarchs declined sharply from 2000-2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result of OE, highlighting the need to consider the parasite as a potential threat to the monarch population. 5. Increases in infection among eastern North American monarchs post-2002 suggest that changes to the host's ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.
Collapse
Affiliation(s)
| | - Andrew K Davis
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|