1
|
Calixto CPG. Molecular aspects of heat stress sensing in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70069. [PMID: 40085177 PMCID: PMC11908636 DOI: 10.1111/tpj.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Heat stress impacts all aspects of life, from evolution to global food security. Therefore, it becomes essential to understand how plants respond to heat stress, especially in the context of climate change. The heat stress response (HSR) involves three main components: sensing, signal transduction, and cellular reprogramming. Here, I focus on the heat stress sensing component. How can cells detect heat stress if it is not a signalling particle? To answer this question, I have looked at the molecular definition of heat stress. It can be defined as any particular rise in the optimum growth temperature that leads to higher-than-normal levels of reactive molecular species and macromolecular damage to biological membranes, proteins, and nucleic acid polymers (DNA and RNA). It is precisely these stress-specific alterations that are detected by heat stress sensors, upon which they would immediately trigger the appropriate level of the HSR. In addition, the work towards thermotolerance is complemented by a second type of response, here called the cellular homeostasis response (CHR). Upon mild and extreme temperature changes, the CHR is triggered by plant thermosensors, which are responsible for monitoring temperature information. Heat stress sensors and thermosensors are distinct types of molecules, each with unique modes of activation and functions. While many recent reviews provide a comprehensive overview of plant thermosensors, there remains a notable gap in the review literature regarding an in-depth analysis of plant heat stress sensors. Here, I attempt to summarise our current knowledge of the cellular sensors involved in triggering the plant HSR.
Collapse
|
2
|
Hou M, Zhu J, Leng C, Huang X, Yang M, Yin Y, Xing Y, Chen J. Composition and Biodiversity of Culturable Endophytic Fungi in the Roots of Alpine Medicinal Plants in Xinjiang, China. J Fungi (Basel) 2025; 11:113. [PMID: 39997407 PMCID: PMC11856231 DOI: 10.3390/jof11020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
(1) Background: Endophytic fungi play an important role in plant growth and stress resistance. The presence of a special fungal taxon such as the dark septate endophytic (DSE) fungi in alpine environments is particularly important for plant resistance to environmental stresses. However, the composition of root endophytic fungi in different environments and between different host plants has not been well studied. (2) Results: A total of 408 culturable endophytic fungi were isolated from the roots of Saussurea involucrata and Rhodiola crenulata which were collected in 5 plots from the Tianshan and Karakoram Mountains of the Xinjiang region, belonging to 91 species, 54 genera, 31 families, and 3 phyla based on the morphological characteristics and molecular sequence. Among them, DSE fungi were the dominant group, accounting for 52.94%, and Leptodontidium orchidicola was the dominant species. In addition, we also compared the composition and diversity of root endophytic fungi from different plants and different sites, with emphasis on special fungal taxa such as DSE. (3) Conclusions: The composition and diversity of cultural endophytic fungi are significantly different in the two alpine medicinal plant species and across various locations. Some fungi showed the preferences of the host or environment. The endophytic fungal resources, especially DSE, were very rich in the two alpine medicinal plants, indicating that these fungi may play a crucial role in the ecological adaptation of host plants in harsh environments.
Collapse
Affiliation(s)
- Mengyan Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Jun Zhu
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China;
| | - Chunyan Leng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Xinjie Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Mingshu Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Yifei Yin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Yongmei Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Juan Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
3
|
Liu Y, Lisovski S, Courtin J, Stoof-Leichsenring KR, Herzschuh U. Plant interactions associated with a directional shift in the richness range size relationship during the Glacial-Holocene transition in the Arctic. Nat Commun 2025; 16:1128. [PMID: 39875364 PMCID: PMC11775137 DOI: 10.1038/s41467-025-56176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
A nearly ubiquitous negative relationship between taxonomic richness and mean range-size (average area of taxa) is observed across space. However, the complexity of the mechanism limits its applicability for conservation or range prediction. We explore whether the relationship holds over time, and whether plant speciation, environmental heterogeneity, or plant interactions are major factors of the relationship within northeast Siberia and Alaska. By analysing sedimentary ancient DNA from seven lakes, we reconstruct plant richness, biotic environmental heterogeneity, and mean range-size over the last 30,000 years. We find positive richness to range-size relationships during the glacial period, shifting to negative during the interglacial period. Our results indicate neither speciation nor environmental heterogeneity is the principal driver. Network analyses show more positive interactions during the glacial period, which may contribute to positive richness to range-size relationships. Conversely, in the interglacial environment, negative interactions may result in negative relationships. Our findings suggest potential susceptibility to invasion but conservation advantages in far northern tundra given their positive interactions.
Collapse
Affiliation(s)
- Ying Liu
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, 14473, Potsdam, Germany
- Institute of Environmental Science and Geography, University of Potsdam, 14476, Potsdam, Germany
| | - Simeon Lisovski
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, 14473, Potsdam, Germany
| | - Jérémy Courtin
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, 14473, Potsdam, Germany
| | - Kathleen R Stoof-Leichsenring
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, 14473, Potsdam, Germany
| | - Ulrike Herzschuh
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, 14473, Potsdam, Germany.
- Institute of Environmental Science and Geography, University of Potsdam, 14476, Potsdam, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| |
Collapse
|
4
|
Leroux J, Beauregard PB, Bellenger JP. Azotobacter vinelandii N 2 fixation increases in co-culture with the PGPR Bacillus subtilis in a nitrogen concentration-dependent manner. Appl Environ Microbiol 2024; 90:e0152824. [PMID: 39526803 PMCID: PMC11654798 DOI: 10.1128/aem.01528-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Biological nitrogen fixation (BNF) is an essential source of new nitrogen (N) for terrestrial ecosystems. The abiotic factors regulating BNF have been extensively studied in various ecosystems and laboratory settings. Despite this, our understanding of the impact of neighboring bacteria on N2 fixer activity remains limited. Here, we explored this question using a co-culture of the two model species: the free-living diazotroph Azotobacter vinelandii and the non-fixing plant growth-promoting rhizobacteria Bacillus subtilis. We observed that the interaction between the two bacteria was modulated by N availability. Under N-replete conditions, B. subtilis outcompeted A. vinelandii in the co-culture. Under N-limiting conditions, BNF activity by A. vinelandii was enhanced in the presence of B. subtilis. Reciprocally, the presence of A. vinelandii repressed sporulation by B. subtilis and supported its growth likely through N transfer. N inputs by A. vinelandii were doubled in the presence of B. subtilis compared to the monoculture, primarily due to the retention of a robust N2 fixation activity in the stationary phase. A proteomic analysis revealed that A. vinelandii N metabolism, particularly the molybdenum nitrogenase isoform protein levels (NifK and NifD), was upregulated during the stationary growth phase in the presence of B. subtilis. This study revealed that N stress drives bacterial interactions and activity in a two-species community, especially in the stationary phase. IMPORTANCE Reducing inputs of chemical N fertilizers is essential to develop a more sustainable agriculture. The stimulation of biological nitrogen fixation by N2 fixers in multispecies cultures, here the plant growth-promoting rhizobacteria Azotobacter vinelandii and Bacillus subtilis, opens opportunities for the formulation of biofertilizers consortia. While most research on N2 fixation historically focussed on the exponential growth phase of microorganisms, we observed that Bacillus subtilis stimulated Azotobacter vinelandii N2 fixation mostly during the stationary phase. This result highlights that more research on the factors controlling N2 fixation repression during the stationary growth phase, especially bacteria-bacteria interactions, is eagerly needed.
Collapse
Affiliation(s)
- Julie Leroux
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pascale B. Beauregard
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | |
Collapse
|
5
|
Hu Y, Zhang H, Sun X, Zhang B, Wang Y, Rafiq A, Jia H, Liang C, An S. Impact of grassland degradation on soil multifunctionality: Linking to protozoan network complexity and stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172724. [PMID: 38663601 DOI: 10.1016/j.scitotenv.2024.172724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Soil protozoa, as predators of microbial communities, profoundly influence multifunctionality of soils. Understanding the relationship between soil protozoa and soil multifunctionality (SMF) is crucial to unraveling the driving mechanisms of SMF. However, this relationship remains unclear, particularly in grassland ecosystems that are experiencing degradation. By employing 18S rRNA gene sequencing and network analysis, we examined the diversity, composition, and network patterns of the soil protozoan community along a well-characterized gradient of grassland degradation at four alpine sites, including two alpine meadows (Cuona and Jiuzhi) and two alpine steppes (Shuanghu and Gonghe) on the Qinghai-Tibetan Plateau. Our findings showed that grassland degradation decreased SMF for 1-2 times in all four sites but increased soil protozoan diversity (Shannon index) for 13.82-298.01 % in alpine steppes. Grassland degradation-induced changes in soil protozoan composition, particularly to the Intramacronucleata with a large body size, were consistently observed across all four sites. The enhancing network complexity (average degree), stability (robustness), and cooperative relationships (positive correlation) are the responses of protozoa to grassland degradation. Further analyses revealed that the increased network complexity and stability led to a decrease in SMF by affecting microbial biomass. Overall, protozoa increase their diversity and strengthen their cooperative relationships to resist grassland degradation, and emphasize the critical role of protozoan network complexity and stability in regulating SMF. Therefore, not only protozoan diversity and composition but also their interactions should be considered in evaluating SMF responses to grassland degradation, which has important implications for predicting changes in soil function under future scenarios of anthropogenic change.
Collapse
Affiliation(s)
- Yang Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Haolin Zhang
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Xinya Sun
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Bicheng Zhang
- Institute of Soil and Water Conservation, CAS & MWR, Yangling, Shannxi 712100, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yubin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Anum Rafiq
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
6
|
Liu S, Stoof-Leichsenring KR, Harms L, Schulte L, Mischke S, Kruse S, Zhang C, Herzschuh U. Tibetan terrestrial and aquatic ecosystems collapsed with cryosphere loss inferred from sedimentary ancient metagenomics. SCIENCE ADVANCES 2024; 10:eadn8490. [PMID: 38781339 PMCID: PMC11114237 DOI: 10.1126/sciadv.adn8490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Glacier and permafrost shrinkage and land-use intensification threaten mountain wildlife and affect nature conservation strategies. Here, we present paleometagenomic records of terrestrial and aquatic taxa from the southeastern Tibetan Plateau covering the last 18,000 years to help understand the complex alpine ecosystem dynamics. We infer that steppe-meadow became woodland at 14 ka (cal BP) controlled by cryosphere loss, further driving a herbivore change from wild yak to deer. These findings weaken the hypothesis of top-down control by large herbivores in the terrestrial ecosystem. We find a turnover in the aquatic communities at 14 ka, transitioning from glacier-related (blue-green) algae to abundant nonglacier-preferring picocyanobacteria, macrophytes, fish, and otters. There is no evidence for substantial effects of livestock herding in either ecosystem. Using network analysis, we assess the stress-gradient hypothesis and reveal that root hemiparasitic and cushion plants are keystone taxa. With ongoing cryosphere loss, the protection of their habitats is likely to be of conservation benefit on the Tibetan Plateau.
Collapse
Affiliation(s)
- Sisi Liu
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam 14469, Germany
| | - Kathleen R. Stoof-Leichsenring
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
| | - Lars Harms
- Computing and Data Centre, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Luise Schulte
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
| | - Steffen Mischke
- Institute of Earth Sciences, University of Iceland, Reykjavík 102, Iceland
| | - Stefan Kruse
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
| | - Chengjun Zhang
- School of Earth Sciences, Lanzhou University, Lanzhou 73000, China
| | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam 14469, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
7
|
Vázquez-González C, Castagneyrol B, Muiruri EW, Barbaro L, Abdala-Roberts L, Barsoum N, Fründ J, Glynn C, Jactel H, McShea WJ, Mereu S, Mooney KA, Morillas L, Nock CA, Paquette A, Parker JD, Parker WC, Roales J, Scherer-Lorenzen M, Schuldt A, Verheyen K, Weih M, Yang B, Koricheva J. Tree diversity enhances predation by birds but not by arthropods across climate gradients. Ecol Lett 2024; 27:e14427. [PMID: 38698677 DOI: 10.1111/ele.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.
Collapse
Affiliation(s)
- Carla Vázquez-González
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Pontevedra, España
| | | | - Evalyne W Muiruri
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Luc Barbaro
- Dynafor, INRAE-INPT, University of Toulouse, Castanet-Tolosan, France
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Nadia Barsoum
- Forest Research, Alice Holt Lodge, Farnham, Surrey, UK
| | - Jochen Fründ
- Biometry and Environmental System Analysis, University of Freiburg, Freiburg, Germany
- Animal Network Ecology, Department of Biology, Universität Hamburg, Hamburg, Germany
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Carolyn Glynn
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hervé Jactel
- BIOGECO, University of Bordeaux, INRAE, Bordeaux, France
| | - William J McShea
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute 1500 Remount Road, Front Royal, Virginia, USA
| | - Simone Mereu
- Institute of BioEconomy, National Research Council of Italy, Sassari, Italy
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
| | - Lourdes Morillas
- Department of Plant Biology and Ecology, University of Sevilla, C/ Professor García González s/n, Sevilla, Spain
| | - Charles A Nock
- College of Natural and Applied Sciences, Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Alain Paquette
- Center for Forest Research, Université du Québec à Montréal, Montréal, Canada
| | - John D Parker
- Smithsonian Environmental Research Center, Front Royal, Maryland, USA
| | - William C Parker
- Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, Ontario, Canada
| | - Javier Roales
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra, Seville, Spain
| | | | - Andreas Schuldt
- Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Melle-Gontrode, Belgium
| | - Martin Weih
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bo Yang
- Jiangxi Key Laboratory of Plant Resources and Biodiversity, Jingdezhen University, Jingdezhen, China
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
8
|
Hoang KL, Salguero-Gómez R, Pike VL, King KC. The impacts of host association and perturbation on symbiont fitness. Symbiosis 2024; 92:439-451. [PMID: 38666134 PMCID: PMC11039428 DOI: 10.1007/s13199-024-00984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Symbiosis can benefit hosts in numerous ways, but less is known about whether interactions with hosts benefit symbionts-the smaller species in the relationship. To determine the fitness impact of host association on symbionts in likely mutualisms, we conducted a meta-analysis across 91 unique host-symbiont pairings under a range of spatial and temporal contexts. Specifically, we assess the consequences to symbiont fitness when in and out of symbiosis, as well as when the symbiosis is under suboptimal or varying environments and biological conditions (e.g., host age). We find that some intracellular symbionts associated with protists tend to have greater fitness when the symbiosis is under stressful conditions. Symbionts of plants and animals did not exhibit this trend, suggesting that symbionts of multicellular hosts are more robust to perturbations. Symbiont fitness also generally increased with host age. Lastly, we show that symbionts able to proliferate in- and outside host cells exhibit greater fitness than those found exclusively inside or outside cells. The ability to grow in multiple locations may thus help symbionts thrive. We discuss these fitness patterns in light of host-driven factors, whereby hosts exert influence over symbionts to suit their own needs. Supplementary Information The online version contains supplementary material available at 10.1007/s13199-024-00984-6.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of Biology, University of Oxford, Oxford, UK
- Emory University School of Medicine, Atlanta, GA USA
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Wu Y, Li H, Cui J, Han Y, Li H, Miao B, Tang Y, Li Z, Zhang J, Wang L, Liang C. Precipitation variation: a key factor regulating plant diversity in semi-arid livestock grazing lands. FRONTIERS IN PLANT SCIENCE 2024; 15:1294895. [PMID: 38645388 PMCID: PMC11027165 DOI: 10.3389/fpls.2024.1294895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/06/2024] [Indexed: 04/23/2024]
Abstract
Livestock presence impacts plant biodiversity (species richness) in grassland ecosystems, yet extent and direction of grazing impacts on biodiversity vary greatly across inter-annual periods. In this study, an 8-year (2014-2021) grazing gradient experiment with sheep was conducted in a semi-arid grassland to investigate the impact of grazing under different precipitation variability on biodiversity. The results suggest no direct impact of grazing on species richness in semi-arid Stipa grassland. However, increased grazing indirectly enhanced species richness by elevating community dominance (increasing the sheltering effect of Stipa grass). Importantly, intensified grazing also regulates excessive community biomass resulting from increased inter-annual wetness (SPEI), amplifying the positive influence of annual humidity index on species richness. Lastly, we emphasize that, in water-constrained grassland ecosystems, intra-annual precipitation variability (PCI) was the most crucial factor driving species richness. Therefore, the water-heat synchrony during the growing season may alleviate physiological constraints on plants, significantly enhancing species richness as a result of multifactorial interactions. Our study provides strong evidence for how to regulate grazing intensity to increase biodiversity under future variable climate patterns. We suggest adapting grazing intensity according to local climate variability to achieve grassland biodiversity conservation.
Collapse
Affiliation(s)
- Yantao Wu
- College of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Hao Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jiahe Cui
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
- College of Resources Environment and Tourism, Capital Normal University, Beijing, China
| | - Ying Han
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Hangyu Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Bailing Miao
- Inner Mongolia Meteorological Institute, Hohhot, China
| | | | - Zhiyong Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jinghui Zhang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Lixin Wang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cunzhu Liang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
10
|
El-Sappah AH, Yan K, Li J. The plant is neither dumb nor deaf; it talks and hears. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38281239 DOI: 10.1111/tpj.16650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Animals and insects communicate using vibrations that are frequently too low or too high for human ears to detect. Plants and trees can communicate and sense sound. Khait et al. used a dependable recording system to capture airborne sounds produced by stressed plants. In addition to allowing plants to communicate their stress, sound aids in plant defense, development, and resilience. It also serves as a warning that danger is approaching. Demey et al. and others discussed the audit examinations that were conducted to investigate sound discernment in plants at the atomic and biological levels. The biological significance of sound in plants, the morphophysiological response of plants to sound, and the airborne noises that plants make and can hear from a few meters away were all discussed.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
11
|
Díaz-Sierra R, Rietkerk M, Verwijmeren M, Baudena M. Facilitation and competition deconstructed: a mechanistic modelling approach to the stress gradient hypothesis applied to drylands. Sci Rep 2024; 14:2205. [PMID: 38272965 PMCID: PMC10810957 DOI: 10.1038/s41598-024-52447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Facilitative interactions among species are key in plant communities. While experimental tests support the Stress Gradient Hypothesis (SGH) as an association between facilitation and stress, whether the shape of net effects along stress gradients can be predicted is controversial, with no available mathematical modelling approaches. We proposed a novel test, using a modification of the R* model to study how negative and positive partial effects of plant interactions in drylands combine along two common stress gradients. We modelled different interactions: competition for water and light, amelioration of soil infiltration and/or grazing protection, obtaining that intensity and importance of facilitation did not generally increase along stress gradients, being dependent on the interaction type. While along the water stress gradient net interactions became more positive, reaching a maximum and then waning again, various outcomes were observed along the grazing gradient. Shape variety was mainly driven by the various shapes of the partial positive effects. Under resource stress, additive interaction effects can be expected, whereas when including grazing, the effects were non-additive. In the context of the SGH, deconstructing the effect of positive and negative interaction in a pairwise mechanistic models of drylands does not show a unique shape along stress gradients.
Collapse
Affiliation(s)
- Rubén Díaz-Sierra
- Mathematical and Fluid Physics Department, Faculty of Sciences, Universidad Nacional de Educación a Distancia, UNED, 28040, Madrid, Spain.
- Section Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
- Centre for Complex Systems Studies, 4th Floor Minnaert Building, Leuvenlaan 4, Utrecht, The Netherlands.
| | - Max Rietkerk
- Section Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Mart Verwijmeren
- Section Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mara Baudena
- Section Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
- Centre for Complex Systems Studies, 4th Floor Minnaert Building, Leuvenlaan 4, Utrecht, The Netherlands
- Institute of Atmospheric Sciences and Climate (CNR-ISAC), National Research Council of Italy, Corso Fiume 4, 10133, Torino, Italy
- National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
12
|
Liu X, Shi Y, Yang T, Gao G, Chu H. QCMI: A method for quantifying putative biotic associations of microbes at the community level. IMETA 2023; 2:e92. [PMID: 38868428 PMCID: PMC10989849 DOI: 10.1002/imt2.92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 06/14/2024]
Abstract
A workflow has been compiled as "qcmi" R package-the quantifying community-level microbial interactions-to identify and quantify the putative biotic associations of microbes at the community level from ecological networks.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Gui‐Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Anthony CR, Germino MJ. Does post-fire recovery of native grasses across abiotic-stress and invasive-grass gradients match theoretical predictions, in sagebrush steppe? Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
14
|
Kemppinen J, Niittynen P. Microclimate relationships of intraspecific trait variation in sub‐Arctic plants. OIKOS 2022. [DOI: 10.1111/oik.09507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Pekka Niittynen
- Dept of Geosciences and Geography, Univ. of Helsinki Helsinki Finland
| |
Collapse
|
15
|
Li Y, Pan J, Zhang R, Wang J, Tian D, Niu S. Environmental factors, bacterial interactions and plant traits jointly regulate epiphytic bacterial community composition of two alpine grassland species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155665. [PMID: 35513157 DOI: 10.1016/j.scitotenv.2022.155665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Epiphytic microbes on the surfaces of leaves and roots can bring substantial benefits or damages to their plant hosts. Although various factors have been proposed for shaping the epiphytic microbial composition, the contributions of environment factors, endogenous microbial taxa interactions, host plant traits, and their interactive effects are poorly understood. Here, we conducted a field investigation along a precipitation gradient and collected leaf and root surface microbes of two alpine plant species for 16S rRNA sequencing. We found that epiphytic bacterial community composition significantly changed along the precipitation gradient through ordination analyses and permutational multivariate analysis of variance. Beneficial bacterial taxa from Caulobacteraceae, Sphingomonadaceae, Comamonadaceae and Rhizobiales were enriched in the high precipitation zones. The stress-tolerant Hymenobacteraceae, Micrococcaceae, and Geodermatophilaceae occurred more frequently in the phyllosphere, and the Thermoleophilia, Thermomicrobiales and Bacillales were enriched in the rhizosphere at the drier sites. Mean annual precipitation was the most important factor regulating the epiphytic bacterial community composition. The direct effect of climate on bacterial community composition was higher in the phyllosphere than in the rhizosphere where joint effects of climate, plant traits and soil properties predominated. Distinct leaf trichome cover and plant height clearly explained the host effect on the phyllosphere bacterial community composition while belowground traits did not explain the host effect well on the rhizosphere bacterial community composition. We detected a significant role of bacterial taxa interactions in shaping microbial communities, where greater negative taxa interactions led to lesser composition changes. Structural equation modeling showed that environmental factors and bacterial interactions substantially contributed to the variation in epiphytic community composition, followed by host plant traits. This study advances our understanding of complex factors affecting alpine epiphytic community assembly and further confirms the role of biotic interactions.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Junxiao Pan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
16
|
Lucero JE, Faist AM, Lortie CJ, Callaway RM. Risk of Facilitated Invasion Depends Upon Invader Identity, Not Environmental Severity, Along an Aridity Gradient. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.886690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Positive interactions can drive the assembly of desert plant communities, but we know little about the species-specificity of positive associations between native shrubs and invasive annual species along aridity gradients. These measures are essential for explaining, predicting, and managing community-level responses to plant invasions and environmental change. Here, we measured the intensity of spatial associations among native shrubs and the annual plant community—including multiple invasive species and their native neighbors—along an aridity gradient across the Mojave and San Joaquin Deserts, United States. Along the gradient, we sampled the abundance and species richness of invasive and native annual species using 180 pairs of shrub and open microsites. Across the gradient, the invasive annuals Bromus madritensis ssp. rubens (B. rubens), B. tectorum, B. diandrus, Hordeum murinum, and Brassica tournefortii were consistently more abundant under shrubs than away from shrubs, suggesting positive effects of shrubs on these species. In contrast, abundance of the invasive annual Schismus spp. was greater away from shrubs than under shrubs, suggesting negative effects of shrubs on this species. Similarly, native annual abundance (pooled) and native species richness were greater away from shrubs than under shrubs. Shrub-annual associations were not influenced by shrub size or aridity. Interestingly, we found correlative evidence that B. rubens reduced native abundance (pooled), native species richness, and exotic abundance (pooled) under, but not away from shrubs. We conclude that native shrubs have considerable potential to directly (by increasing invader abundance) and indirectly (by increasing negative impacts of invaders on neighbors) facilitate plant invasions along broad environmental gradients, but these effects may depend more upon invader identity than environmental severity.
Collapse
|