1
|
Gan C, Cao X, Sun H, Ye S, Shi J, Shan A, Gao M, Wan C, Zhang K, Yuan Y. Multimodal neuroimaging fusion unravel structural-functional-neurotransmitter change in Parkinson's disease with impulse control disorders. Neurobiol Dis 2024; 198:106560. [PMID: 38852751 DOI: 10.1016/j.nbd.2024.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Impulse control disorders (ICD) in Parkinson's disease (PD) is highly multifactorial in etiology and has intricate neural mechanisms. Our multimodal neuroimaging study aimed to investigate the specific patterns of structure-function-neurotransmitter interactions underlying ICD. METHODS Thirty PD patients with ICD (PD-ICD), 30 without ICD (PD-NICD) and 32 healthy controls (HCs) were recruited. Gyrification and perivascular spaces (PVS) were computed to capture the alternations of cortical surface morphology and glymphatic function. Seed-based functional connectivity (FC) were performed to identify the corresponding functional changes. Further, JuSpace toolbox were employed for cross-modal correlations to evaluate whether the spatial patterns of functional alterations in ICD patients were associated with specific neurotransmitter system. RESULTS Compared to PD-NICD, PD-ICD patients showed hypogyrification and enlarged PVS volume fraction in the left orbitofrontal gyrus (OFG), as well as decreased FC between interhemispheric OFG. The interhemispheric OFG connectivity reduction was associated with spatial distribution of μ-opioid pathway (r = -0.186, p = 0.029, false discovery rate corrected). ICD severity was positively associated with the PVS volume fraction of left OFG (r = 0.422, p = 0.032). Furthermore, gyrification index (LGI) and percent PVS (pPVS) in OFG and their combined indicator showed good performance in differentiating PD-ICD from PD-NICD. CONCLUSIONS Our findings indicated that the co-altered structure-function-neurotransmitter interactions of OFG might be involved in the pathogenesis of ICD.
Collapse
Affiliation(s)
- Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shiyi Ye
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiaxin Shi
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Aidi Shan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mengxi Gao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenhui Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Giovannelli F, Gavazzi G, Noferini C, Palumbo P, Viggiano MP, Cincotta M. Impulsivity Traits in Parkinson's Disease: A Systematic Review and Meta-Analysis. Mov Disord Clin Pract 2023; 10:1448-1458. [PMID: 37868926 PMCID: PMC10585972 DOI: 10.1002/mdc3.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 10/24/2023] Open
Abstract
Background In Parkinson's disease (PD), impulsivity as a personality trait may be linked to the risk of developing impulse control disorders (ICDs) during dopaminergic therapy. However, studies evaluating differences in trait impulsivity between patients with PD and healthy controls or between patients with PD with and without ICDs reported partly inconsistent findings. Objectives We conducted a systematic review and meta-analysis (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) of studies comparing Barratt Impulsiveness Scale (BIS-11) scores between patients with PD and healthy controls and between patients with PD with and without ICDs. Methods Eligible studies were identified through a systematic search in 3 databases. Mean differences with 95% confidence intervals (CIs) for BIS-11 total and subscale scores were separately calculated for studies comparing patients with PD and healthy controls and patients with PD with and without ICDs. Meta-regressions were performed to explore sources of heterogeneity (percentage of men, age, disease duration, and levodopa equivalent daily dose). Results A total of 40 studies were included in the quantitative analyses. BIS-11 total scores were significantly higher in patients with PD compared with healthy controls (mean difference 2.43; 95% CI, 1.03, 3.83), and in patients with PD with active ICDs compared with patients without ICDs (6.62; 95% CI, 5.01, 8.23). No significant moderators emerged by meta-regression analyses. Conclusions The present meta-analysis supports that impulsivity, as a personality trait, may characterize patients with PD, even in the absence of ICDs. Moreover, these data corroborate findings of clinical studies reporting higher levels of trait impulsivity in PD patients with ICDs compared with patients without ICDs.
Collapse
Affiliation(s)
- Fabio Giovannelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of PsychologyUniversity of FlorenceFlorenceItaly
| | - Gioele Gavazzi
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of PsychologyUniversity of FlorenceFlorenceItaly
| | - Chiara Noferini
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of PsychologyUniversity of FlorenceFlorenceItaly
- European Laboratory for Non‐Linear Spectroscopy (LENS)Sesto FiorentinoItaly
| | - Pasquale Palumbo
- Unit of Neurology of Prato, Cerebrovascular and Neurodegenerative Disease Area of the Department of Medical SpecialtiesCentral Tuscany Local Health AuthorityPratoItaly
| | - Maria Pia Viggiano
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of PsychologyUniversity of FlorenceFlorenceItaly
| | - Massimo Cincotta
- Unit of Neurology of Florence, Cerebrovascular and Neurodegenerative Disease Area of the Department of Medical SpecialtiesCentral Tuscany Local Health AuthorityFlorenceItaly
| |
Collapse
|
3
|
Godefroy V, Sezer I, Bouzigues A, Montembeault M, Koban L, Plassmann H, Migliaccio R. Altered delay discounting in neurodegeneration: insight into the underlying mechanisms and perspectives for clinical applications. Neurosci Biobehav Rev 2023; 146:105048. [PMID: 36669749 DOI: 10.1016/j.neubiorev.2023.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Steeper delay discounting (i.e., the extent to which future rewards are perceived as less valuable than immediate ones) has been proposed as a transdiagnostic process across different health conditions, in particular psychiatric disorders. Impulsive decision-making is a hallmark of different neurodegenerative conditions but little is known about delay discounting in the domain of neurodegenerative conditions. We reviewed studies on delay discounting in patients with Parkinson's disease (PD) and in patients with dementia (Alzheimer's disease / AD or frontotemporal dementia / FTD). We proposed that delay discounting could be an early marker of the neurodegenerative process. We developed the idea that altered delay discounting is associated with overlapping but distinct neurocognitive mechanisms across neurodegenerative diseases: dopaminergic-related disorders of reward processing in PD, memory/projection deficits due to medial temporal atrophy in AD, modified reward processing due to orbitofrontal atrophy in FTD. Neurodegeneration could provide a framework to decipher the neuropsychological mechanisms of value-based decision-making. Further, delay discounting could become a marker of interest in clinical practice, in particular for differential diagnosis.
Collapse
Affiliation(s)
- Valérie Godefroy
- FrontLab, INSERM U1127, Institut du cerveau, Hôpital Pitié-Salpêtrière, Paris, France; Marketing Area, INSEAD, Fontainebleau, France; Control-Interoception-Attention Team, Paris Brain Institute (ICM), INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France.
| | - Idil Sezer
- FrontLab, INSERM U1127, Institut du cerveau, Hôpital Pitié-Salpêtrière, Paris, France
| | - Arabella Bouzigues
- FrontLab, INSERM U1127, Institut du cerveau, Hôpital Pitié-Salpêtrière, Paris, France
| | - Maxime Montembeault
- Douglas Research Centre, Montréal, Canada; Department of Psychiatry, McGill University, Montréal, Canada
| | - Leonie Koban
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| | - Hilke Plassmann
- Marketing Area, INSEAD, Fontainebleau, France; Control-Interoception-Attention Team, Paris Brain Institute (ICM), INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Raffaella Migliaccio
- FrontLab, INSERM U1127, Institut du cerveau, Hôpital Pitié-Salpêtrière, Paris, France; Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
4
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|
5
|
Marín‐Lahoz J, Martinez‐Horta S, Pagonabarraga J, Horta‐Barba A, Aracil‐Bolaños I, Bejr‐kasem H, Sampedro F, Campolongo A, Kulisevsky J. Predicting Impulse Control Disorders in Parkinson’s disease through incentive biomarkers. Ann Neurol 2022; 92:974-984. [DOI: 10.1002/ana.26486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Juan Marín‐Lahoz
- Neurology Department Miguel Servet University Hospital Zaragoza Spain
- Instituto de Investigación Sanitaria de Aragón Zaragoza Spain
- Universitat Autònoma de Barcelona (U.A.B.), Medicine Department Barcelona Spain
| | - Saül Martinez‐Horta
- Universitat Autònoma de Barcelona (U.A.B.), Medicine Department Barcelona Spain
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital Barcelona Spain
- Institut d´Investigacions Biomèdiques‐ Sant Pau (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Spain
| | - Javier Pagonabarraga
- Universitat Autònoma de Barcelona (U.A.B.), Medicine Department Barcelona Spain
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital Barcelona Spain
- Institut d´Investigacions Biomèdiques‐ Sant Pau (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Spain
| | - Andrea Horta‐Barba
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital Barcelona Spain
- Institut d´Investigacions Biomèdiques‐ Sant Pau (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Spain
| | - Ignacio Aracil‐Bolaños
- Universitat Autònoma de Barcelona (U.A.B.), Medicine Department Barcelona Spain
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital Barcelona Spain
- Institut d´Investigacions Biomèdiques‐ Sant Pau (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Spain
| | - Helena Bejr‐kasem
- Universitat Autònoma de Barcelona (U.A.B.), Medicine Department Barcelona Spain
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital Barcelona Spain
- Institut d´Investigacions Biomèdiques‐ Sant Pau (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Spain
| | - Frederic Sampedro
- Institut d´Investigacions Biomèdiques‐ Sant Pau (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital Barcelona Spain
- Institut d´Investigacions Biomèdiques‐ Sant Pau (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Spain
| | - Jaime Kulisevsky
- Universitat Autònoma de Barcelona (U.A.B.), Medicine Department Barcelona Spain
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital Barcelona Spain
- Institut d´Investigacions Biomèdiques‐ Sant Pau (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Spain
| |
Collapse
|
6
|
Relationships between Personality Traits and Brain Gray Matter Are Different in Risky and Non-risky Drivers. Behav Neurol 2022; 2022:1775777. [PMID: 35422888 PMCID: PMC9005327 DOI: 10.1155/2022/1775777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Personality traits such as impulsivity or sensitivity to rewards and punishments have been associated with risky driving behavior, but it is still unclear how brain anatomy is related to these traits as a function of risky driving. In the present study, we explore the neuroanatomical basis of risky driving behavior and how the level of risk-taking influences the relationship between the traits of impulsivity and sensitivity to rewards and punishments and brain gray matter volume. One hundred forty-four participants with different risk-taking tendencies assessed by real-life driving situations underwent MRI. Personality traits were assessed with self-report measures. We observed that the total gray matter volume varied as a function of risky driving tendencies, with higher risk individuals showing lower gray matter volumes. Similar results were found for volumes of brain areas involved in the reward and cognitive control networks, such as the frontotemporal, parietal, limbic, and cerebellar cortices. We have also shown that sensitivity to reward and punishment and impulsivity are differentially related to gray matter volumes as a function of risky driving tendencies. Highly risky individuals show lower absolute correlations with gray matter volumes than less risk-prone individuals. Taken together, our results show that risky drivers differ in the brain structure of the areas involved in reward processing, cognitive control, and behavioral modulation, which may lead to dysfunctional decision-making and riskier driving behavior.
Collapse
|
7
|
Decision Making Under Uncertainty In Parkinson’s Disease With Rem Sleep Behavior Disorder. Sleep Med 2022; 90:214-221. [DOI: 10.1016/j.sleep.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 11/18/2022]
|