1
|
Liu X, Hu J. Association of serum magnesium level with small fiber neuropathy in patients with type 2 diabetes. Front Med (Lausanne) 2025; 12:1509820. [PMID: 40103795 PMCID: PMC11917368 DOI: 10.3389/fmed.2025.1509820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose We aimed to investigate the association between serum magnesium (Mg) levels and small fiber neuropathy among patients with type 2 diabetes mellitus (T2DM). Methods This study retrospectively collected data from patients with T2DM. Patients were divided based on the quartiles of the serum concentrations of Mg. Corneal confocal microscopy (CCM) was employed to determine the morphological parameters of corneal nerve fibers, including corneal nerve fiber length (CNFL), fiber density (CNFD), and branch density (CNBD). Pearson correlation analysis and multiple linear regression analyses were conducted to investigate the association between the serum levels of Mg and the morphological parameters of corneal nerve fibers. Results In total, 136 patients with T2DM were enrolled in this study. All morphological parameters of corneal nerve fibers increased with the increasing quartiles of serum Mg levels. Using Pearson correlation analysis, we found a significant and positive association between the serum levels of Mg and CNFL (r = 0.550, p < 0.001), CNFD (r = 0.432, p < 0.001), and CNBD (r = 0.425, p < 0.001). After adjusting for covariates, the serum levels of Mg remained positively correlated with CNFL (β = 0.495, p < 0.001), CNFD (β = 0.361, p < 0.001), and CNBD (β = 0.374, p < 0.001) in the fully adjusted model. Conclusion The serum levels of Mg were positively and independently correlated with the morphological parameters of the corneal nerve among patients with T2DM. Serum Mg levels can serve as a potential biomarker for screening corneal small fiber neuropathy in patients with T2DM.
Collapse
Affiliation(s)
- Xiaoting Liu
- Department of Ophthalmology, Fujian Provincial Governmental Hospital, Fuzhou, Fujian, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Dhanapalaratnam R, Issar T, Wang LL, Tran D, Poynten AM, Milner KL, Kwai NC, Krishnan AV. Effect of Metformin on Peripheral Nerve Morphology in Type 2 Diabetes: A Cross-Sectional Observational Study. Diabetes 2024; 73:1875-1882. [PMID: 39167630 PMCID: PMC11493759 DOI: 10.2337/db24-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Diabetic peripheral neuropathy (DPN) affects ∼50% of the 500 million people with type 2 diabetes worldwide and is considered disabling and irreversible. The current study was undertaken to assess the effect of metformin on peripheral neuropathy outcomes in type 2 diabetes. Participants with type 2 diabetes (n = 69) receiving metformin were recruited and underwent clinical assessment, peripheral nerve ultrasonography, nerve conduction studies, and axonal excitability studies. Also concurrently screened were 318 participants who were not on metformin, and 69 were selected as disease control subjects and matched to the metformin participants for age, sex, diabetes duration, BMI, HbA1c, and use of other diabetes therapies. Medical record data over the previous 20 years were analyzed for previous metformin use. Mean tibial nerve cross-sectional area was lower in the metformin group (metformin 14.1 ± 0.7 mm2, nonmetformin 16.2 ± 0.9 mm2, P = 0.038), accompanied by reduction in neuropathy symptom severity (P = 0.021). Axonal excitability studies demonstrated superior axonal function in the metformin group, and mathematical modeling demonstrated that these improvements were mediated by changes in nodal Na+and K+conductances. Metformin treatment is associated with superior nerve structure and clinical and neurophysiological measures. Treatment with metformin may be neuroprotective in DPN. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Roshan Dhanapalaratnam
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neurology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Tushar Issar
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Leiao Leon Wang
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Darren Tran
- Department of Endocrinology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ann M. Poynten
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Endocrinology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Kerry-Lee Milner
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Endocrinology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Natalie C.G. Kwai
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Arun V. Krishnan
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neurology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Dhanapalaratnam R, Issar T, Poynten AM, Milner KL, Kwai NCG, Krishnan AV. Progression of axonal excitability abnormalities with increasing clinical severity of diabetic peripheral neuropathy. Clin Neurophysiol 2024; 160:12-18. [PMID: 38367309 DOI: 10.1016/j.clinph.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE Diabetic peripheral neuropathy (DPN) is a frequent complication for persons with type 2 diabetes. Previous studies have failed to demonstrate any significant impact of treatment for DPN. The present study assessed the role of axonal ion channel dysfunction in DPN and explored the hypothesis that there may be a progressive change in ion channel abnormalities that varied with disease stage. METHODS Neurophysiological studies were conducted using axonal excitability techniques, a clinical method of assessing ion channel dysfunction. Studies were conducted in 178 persons with type 2 diabetes, with participants allocated into four groups according to clinical severity of neuropathy, assessed using the Total Neuropathy Grade. RESULTS Analysis of excitability data demonstrated a progressive and stepwise reduction in two parameters that are related to the activity of Kv1.1 channels, namely superexcitability and depolarizing threshold electrotonus at 10-20 ms (p < 0.001), and mathematical modelling of axonal excitability findings supported progressive upregulation of Kv1.1 conductances with increasing greater disease severity. CONCLUSION The findings are consistent with a progressive upregulation of juxtaparanodal Kv1.1 conductances with increasing clinical severity of diabetic peripheral neuropathy. SIGNIFICANCE From a translational perspective, the study suggests that blockade of Kv1.1 channels using 4-aminopyridine derivatives such as fampridine may be a potential treatment for DPN.
Collapse
Affiliation(s)
- Roshan Dhanapalaratnam
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia; Department of Neurology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Tushar Issar
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia
| | - Ann M Poynten
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia; Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Kerry-Lee Milner
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia; Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Natalie C G Kwai
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Australia
| | - Arun V Krishnan
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia; Department of Neurology, Prince of Wales Hospital, Sydney, NSW 2031, Australia.
| |
Collapse
|
4
|
Asiedu K, Tummanapalli SS, Alotaibi S, Wang LL, Dhanapalaratnam R, Kwai N, Poynten A, Markoulli M, Krishnan AV. Impact of SGLT2 Inhibitors on Corneal Nerve Morphology and Dendritic Cell Density in Type 2 Diabetes. Ocul Immunol Inflamm 2024; 32:234-241. [PMID: 37801679 DOI: 10.1080/09273948.2023.2263789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
PURPOSE This study aims to determine the effects of SGLT2 inhibitors on corneal dendritic cell density and corneal nerve measures in type 2 diabetes. METHODS Corneal dendritic cell densities and nerve parameters were measured in people with type 2 diabetes treated with SGLT2 inhibitors (T2DM-SGLT2i) [n = 23] and those not treated with SGLT2 inhibitors (T2DM-no SGLT2i) [n = 23], along with 24 age and sex-matched healthy controls. RESULTS There was a reduction in all corneal nerve parameters in type 2 diabetes groups compared to healthy controls (All parameters: p < 0.05). No significant differences in corneal nerve parameters were observed between T2DM-SGLT2i and T2DM-no SGLT2i groups (All parameters: p > 0.05). Central corneal dendritic cells were significantly reduced [mature (p = 0.03), immature (p = 0.06) and total (p = 0.002)] in the T2DM-SGLT2i group compared to the T2DM-no SGLT2i group. Significantly, higher mature (p = 0.04), immature (p = 0.004), total (p = 0.002) dendritic cell densities in the T2DM-no SGLT2i group were observed compared to the healthy controls. In the inferior whorl, no significant difference in immature (p = 0.27) and total dendritic cell densities (p = 0.16) between T2DM-SGLT2i and T2DM-no SGLT2i were observed except mature dendritic cell density (p = 0.018). No differences in total dendritic cell density were observed in the central (p > 0.09) and inferior whorl (p = 0.88) between T2DM-SGLT2i and healthy controls. CONCLUSION The present study showed a reduced dendritic cell density in people with type 2 diabetes taking SGLT2 inhibitors compared to those not taking these medications.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | | | - Sultan Alotaibi
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Leiao Leon Wang
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | | | - Natalie Kwai
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Ann Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, Australia
| | - Maria Markoulli
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | - Arun V Krishnan
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Markoulli M, Ahmad S, Arcot J, Arita R, Benitez-Del-Castillo J, Caffery B, Downie LE, Edwards K, Flanagan J, Labetoulle M, Misra SL, Mrugacz M, Singh S, Sheppard J, Vehof J, Versura P, Willcox MDP, Ziemanski J, Wolffsohn JS. TFOS Lifestyle: Impact of nutrition on the ocular surface. Ocul Surf 2023; 29:226-271. [PMID: 37100346 DOI: 10.1016/j.jtos.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
Nutrients, required by human bodies to perform life-sustaining functions, are obtained from the diet. They are broadly classified into macronutrients (carbohydrates, lipids, and proteins), micronutrients (vitamins and minerals) and water. All nutrients serve as a source of energy, provide structural support to the body and/or regulate the chemical processes of the body. Food and drinks also consist of non-nutrients that may be beneficial (e.g., antioxidants) or harmful (e.g., dyes or preservatives added to processed foods) to the body and the ocular surface. There is also a complex interplay between systemic disorders and an individual's nutritional status. Changes in the gut microbiome may lead to alterations at the ocular surface. Poor nutrition may exacerbate select systemic conditions. Similarly, certain systemic conditions may affect the uptake, processing and distribution of nutrients by the body. These disorders may lead to deficiencies in micro- and macro-nutrients that are important in maintaining ocular surface health. Medications used to treat these conditions may also cause ocular surface changes. The prevalence of nutrition-related chronic diseases is climbing worldwide. This report sought to review the evidence supporting the impact of nutrition on the ocular surface, either directly or as a consequence of the chronic diseases that result. To address a key question, a systematic review investigated the effects of intentional food restriction on ocular surface health; of the 25 included studies, most investigated Ramadan fasting (56%), followed by bariatric surgery (16%), anorexia nervosa (16%), but none were judged to be of high quality, with no randomized-controlled trials.
Collapse
Affiliation(s)
- Maria Markoulli
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia.
| | - Sumayya Ahmad
- Icahn School of Medicine of Mt. Sinai, New York, NY, USA
| | - Jayashree Arcot
- Food and Health, School of Chemical Engineering, UNSW Sydney, Australia
| | - Reiko Arita
- Department of Ophthalmology, Itoh Clinic, Saitama, Japan
| | | | | | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Katie Edwards
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Judith Flanagan
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia; Vision CRC, USA
| | - Marc Labetoulle
- Ophthalmology Department, Hospital Bicêtre, APHP, Paris-Saclay University, Le Kremlin-Bicêtre, France; IDMIT (CEA-Paris Saclay-Inserm U1184), Fontenay-aux-Roses, France
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | | | - Sumeer Singh
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - John Sheppard
- Virginia Eye Consultants, Norfolk, VA, USA; Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jelle Vehof
- Departments of Ophthalmology and Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK; Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Piera Versura
- Cornea and Ocular Surface Analysis - Translation Research Laboratory, Ophthalmology Unit, DIMEC Alma Mater Studiorum Università di Bologna, Italy; IRCCS AOU di Bologna Policlinico di Sant'Orsola, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Jillian Ziemanski
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James S Wolffsohn
- College of Health & Life Sciences, School of Optometry, Aston University, Birmingham, UK
| |
Collapse
|
6
|
Sen CK, Roy S, Khanna S. Diabetic Peripheral Neuropathy Associated with Foot Ulcer: One of a Kind. Antioxid Redox Signal 2023. [PMID: 35850520 DOI: 10.1089/ars.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Significance: Diabetic peripheral neuropathy (DPN) associated with a diabetic foot ulcer (DFU) is likely to be complicated with critical factors such as biofilm infection and compromised skin barrier function of the diabetic skin. Repaired skin with a history of biofilm infection is known to be compromised in barrier function. Loss of barrier function is also observed in the oxidative stress affected diabetic and aged skin. Recent Advances: Loss of barrier function makes the skin prone to biofilm infection and cellulitis, which contributes to chronic inflammation and vasculopathy. Hyperglycemia favors biofilm formation as glucose lowering led to reduction in biofilm development. While vasculopathy limits oxygen supply, the O2 cost of inflammation is high increasing hypoxia severity. Critical Issues: The host nervous system can be inhabited by bacteria. Because electrical impulses are a part of microbial physiology, polymicrobial colonization of the host's neural circuit is likely to influence transmission of action potential. The identification of perineural apatite in diabetic patients with peripheral neuropathy suggests bacterial involvement. DPN starts in both feet at the same time. Future Directions: Pair-matched studies of DPN in the foot affected with DFU (i.e., DFU-DPN) compared with DPN in the without ulcer, and intact skin barrier function, are likely to provide critical insight that would help inform effective care strategies. This review characterizes DFU-DPN from a translational science point of view presenting a new paradigm that recognizes the current literature in the context of factors that are unique to DFU-DPN.
Collapse
Affiliation(s)
- Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Dhanapalaratnam R, Issar T, Poynten AM, Milner K, Kwai NCG, Krishnan AV. Diagnostic accuracy of nerve ultrasonography for the detection of peripheral neuropathy in type 2 diabetes. Eur J Neurol 2022; 29:3571-3579. [PMID: 36039540 PMCID: PMC9826521 DOI: 10.1111/ene.15534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE Nerve conduction studies (NCS) are the current objective measure for diagnosis of peripheral neuropathy in type 2 diabetes but do not assess nerve structure. This study investigated the utility of peripheral nerve ultrasound as a marker of the presence and severity of peripheral neuropathy in type 2 diabetes. METHODS A total of 156 patients were recruited, and nerve ultrasound was undertaken on distal tibial and distal median nerves. Neuropathy severity was graded using the modified Toronto Clinical Neuropathy Scale (mTCNS) and Total Neuropathy Score (TNS). Studies were undertaken by a single ultrasonographer blinded to nerve conduction results. RESULTS A stepwise increase in tibial nerve cross-sectional area (CSA) was noted with increasing TNS grade (p < 0.001) and each mTCNS quartile (p < 0.001). Regression analysis demonstrated a correlation between tibial nerve CSA and neuropathy severity (p < 0.001). Using receiver operator curve analysis, tibial nerve CSA of >12.88 mm yielded a sensitivity of 70.5% and specificity of 85.7% for neuropathy detection. Binary logistic regression revealed that tibial nerve CSA was a predictor of abnormal sural sensory nerve action potential amplitude (odds ratio = 1.239, 95% confidence interval [CI] = 1.142-1.345) and abnormal neuropathy score (odds ratio = 1.537, 95% confidence interval [CI] = 1.286-1.838). CONCLUSIONS Tibial nerve ultrasound has good specificity and sensitivity for neuropathy diagnosis in type 2 diabetes. The study demonstrates that tibial nerve CSA correlates with neuropathy severity. Future serial studies using both ultrasound and NCS may be useful in determining whether changes in ultrasound occur prior to development of nerve conduction abnormalities and neuropathic symptoms.
Collapse
Affiliation(s)
- Roshan Dhanapalaratnam
- Prince of Wales Clinical School, University of New South WalesSydneyNew South WalesAustralia
- Institute of Neurological Sciences, Prince of Wales HospitalSydneyNew South WalesAustralia
| | - Tushar Issar
- Prince of Wales Clinical School, University of New South WalesSydneyNew South WalesAustralia
| | - Ann M. Poynten
- Prince of Wales Clinical School, University of New South WalesSydneyNew South WalesAustralia
- Department of EndocrinologyPrince of Wales HospitalSydneyNew South WalesAustralia
| | - Kerry‐Lee Milner
- Prince of Wales Clinical School, University of New South WalesSydneyNew South WalesAustralia
- Department of EndocrinologyPrince of Wales HospitalSydneyNew South WalesAustralia
| | - Natalie C. G. Kwai
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Arun V. Krishnan
- Prince of Wales Clinical School, University of New South WalesSydneyNew South WalesAustralia
- Institute of Neurological Sciences, Prince of Wales HospitalSydneyNew South WalesAustralia
| |
Collapse
|
8
|
Current and Emerging Pharmacotherapeutic Interventions for the Treatment of Peripheral Nerve Disorders. Pharmaceuticals (Basel) 2022; 15:ph15050607. [PMID: 35631433 PMCID: PMC9144529 DOI: 10.3390/ph15050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral nerve disorders are caused by a range of different aetiologies. The range of causes include metabolic conditions such as diabetes, obesity and chronic kidney disease. Diabetic neuropathy may be associated with severe weakness and the loss of sensation, leading to gangrene and amputation in advanced cases. Recent studies have indicated a high prevalence of neuropathy in patients with chronic kidney disease, also known as uraemic neuropathy. Immune-mediated neuropathies including Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy may cause significant physical disability. As survival rates continue to improve in cancer, the prevalence of treatment complications, such as chemotherapy-induced peripheral neuropathy, has also increased in treated patients and survivors. Notably, peripheral neuropathy associated with these conditions may be chronic and long-lasting, drastically affecting the quality of life of affected individuals, and leading to a large socioeconomic burden. This review article explores some of the major emerging clinical and experimental therapeutic agents that have been investigated for the treatment of peripheral neuropathy due to metabolic, toxic and immune aetiologies.
Collapse
|
9
|
Zhou T, Lee A, Lo ACY, Kwok JSWJ. Diabetic Corneal Neuropathy: Pathogenic Mechanisms and Therapeutic Strategies. Front Pharmacol 2022; 13:816062. [PMID: 35281903 PMCID: PMC8905431 DOI: 10.3389/fphar.2022.816062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus (DM) is a major global public health problem that can cause complications such as diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. Besides the reporting of reduction in corneal nerve density and decrease in corneal sensitivity in diabetic patients, there may be a subsequent result in delayed corneal wound healing and increased corneal infections. Despite being a potential cause of blindness, these corneal nerve changes have not gained enough attention. It has been proposed that corneal nerve changes may be an indicator for diabetic neuropathy, which can provide a window for early diagnosis and treatment. In this review, the authors aimed to give an overview of the relationship between corneal nerves and diabetic neuropathy as well as the underlying pathophysiological mechanisms of corneal nerve fiber changes caused by DM for improved prediction and prevention of diabetic neuropathy. In addition, the authors summarized current and novel therapeutic methods for delayed corneal wound healing, nerve protection and regeneration in the diabetic cornea.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Allie Lee
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jeremy Sze Wai John Kwok
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
10
|
Issar T, Walker S, Arnold R, Poynten AM, Endre ZH, Krishnan AV. Peripheral nerve morphology and intraneural blood flow in chronic kidney disease with and without diabetes. Muscle Nerve 2022; 65:603-607. [PMID: 35119701 PMCID: PMC9305967 DOI: 10.1002/mus.27513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
Introduction/Aims Sonographic alterations of peripheral nerves in pre‐dialytic kidney disease are yet to be determined. We aimed to assess peripheral nerve cross‐sectional area (CSA) and intraneural blood flow in patients with pre‐dialytic chronic kidney disease (CKD) and diabetic kidney disease (DKD). Methods Subjects with CKD (n = 20) or DKD (n = 20) underwent ultrasound to assess CSA of the median and tibial nerves as well as intraneural blood flow of the median nerve. Blood flow was quantified using maximum perfusion intensity. Neuropathy was assessed using the Total Neuropathy Score. A 6‐m timed walk test was also performed. Healthy controls (n = 28) were recruited for comparison. Results The DKD group had more severe neuropathy (p = .024), larger tibial nerve CSA (p = .002) and greater median nerve blood flow than the CKD group (p = .023). Blood flow correlated with serum potassium in disease groups (r = 0.652, p = .022). Disease groups had larger tibial nerve CSA than controls (p < .05). No blood flow was detected in controls. Tibial nerve enlargement was associated with slower maximal walking speeds in disease groups (r = −0.389, p = .021). Discussion Subjects with DKD demonstrated enlarged tibial nerve CSA and increased median nerve blood flow compared to those with CKD. Elevations in serum potassium were associated with increased blood flow. Sonographic alterations were detectable in pre‐dialytic kidney disease compared to controls, highlighting the utility of ultrasound in the assessment of nerve pathology in these patient groups.
Collapse
Affiliation(s)
- Tushar Issar
- Prince of Wales Clinical School, UNSW Sydney, NSW, Australia
| | - Susan Walker
- Prince of Wales Clinical School, UNSW Sydney, NSW, Australia
| | - Ria Arnold
- School of Medical Sciences, UNSW Sydney, NSW, Australia
| | - Ann M Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Zoltan H Endre
- Department of Nephrology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, UNSW Sydney, NSW, Australia
| |
Collapse
|
11
|
Gad H, Petropoulos IN, Khan A, Ponirakis G, MacDonald R, Alam U, Malik RA. Corneal confocal microscopy for the diagnosis of diabetic peripheral neuropathy: A systematic review and meta-analysis. J Diabetes Investig 2022; 13:134-147. [PMID: 34351711 PMCID: PMC8756328 DOI: 10.1111/jdi.13643] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that identifies corneal nerve fiber damage. Small studies suggest that CCM could be used to assess patients with diabetic peripheral neuropathy (DPN). AIM To undertake a systematic review and meta-analysis assessing the diagnostic utility of CCM for sub-clinical DPN (DPN- ) and established DPN (DPN+ ). DATA SOURCES Databases (PubMed, Embase, Central, ProQuest) were searched for studies using CCM in patients with diabetes up to April 2020. STUDY SELECTION Studies were included if they reported on at least one CCM parameter in patients with diabetes. DATA EXTRACTION Corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL), and inferior whorl length (IWL) were compared between patients with diabetes with and without DPN and controls. Meta-analysis was undertaken using RevMan V.5.3. DATA SYNTHESIS Thirty-eight studies including ~4,000 participants were included in this meta-analysis. There were significant reductions in CNFD, CNBD, CNFL, and IWL in DPN- vs controls (P < 0.00001), DPN+ vs controls (P < 0.00001), and DPN+ vs DPN- (P < 0.00001). CONCLUSION This systematic review and meta-analysis shows that CCM detects small nerve fiber loss in subclinical and clinical DPN and concludes that CCM has good diagnostic utility in DPN.
Collapse
Affiliation(s)
- Hoda Gad
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
| | | | - Adnan Khan
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
| | | | | | - Uazman Alam
- Diabetes and Neuropathy ResearchDepartment of Eye and Vision Sciences and Pain Research InstituteInstitute of Ageing and Chronic DiseaseUniversity of Liverpool and Aintree University Hospital NHS Foundation TrustLiverpoolUK
- Department of Diabetes and EndocrinologyRoyal Liverpool and Broadgreen University NHS Hospital TrustLiverpoolUK
- Division of Endocrinology, Diabetes and GastroenterologyUniversity of ManchesterManchesterUK
| | - Rayaz A Malik
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
- Institute of Cardiovascular MedicineUniversity of ManchesterManchesterUK
| |
Collapse
|
12
|
Chen J, Wu J, Huang X, Sun R, Xiang Z, Xu Y, Chen S, Xu W, Yang J, Chen Y. Differences in structural connectivity between diabetic and psychological erectile dysfunction revealed by network-based statistic: A diffusion tensor imaging study. Front Endocrinol (Lausanne) 2022; 13:892563. [PMID: 35966068 PMCID: PMC9365033 DOI: 10.3389/fendo.2022.892563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) has been found to be associated with abnormalities of the central and peripheral vascular nervous system, which were considered to be involved in the development of cognitive impairments and erectile dysfunction (ED). In addition, altered brain function and structure were identified in patients with ED, especially psychological ED (pED). However, the similarities and the differences of the central neural mechanisms underlying pED and T2DM with ED (DM-ED) remained unclear. METHODS Diffusion tensor imaging data were acquired from 30 T2DM, 32 ED, and 31 DM-ED patients and 47 healthy controls (HCs). Then, whole-brain structural networks were constructed, which were mapped by connectivity matrices (90 × 90) representing the white matter between 90 brain regions parcellated by the anatomical automatic labeling template. Finally, the method of network-based statistic (NBS) was applied to assess the group differences of the structural connectivity. RESULTS Our NBS analysis demonstrated three subnetworks with reduced structural connectivity in DM, pED, and DM-ED patients when compared to HCs, which were predominantly located in the prefrontal and subcortical areas. Compared with DM patients, DM-ED patients had an impaired subnetwork with increased structural connectivity, which were primarily located in the parietal regions. Compared with pED patients, an altered subnetwork with increased structural connectivity was identified in DM-ED patients, which were mainly located in the prefrontal and cingulate areas. CONCLUSION These findings highlighted that the reduced structural connections in the prefrontal and subcortical areas were similar mechanisms to those associated with pED and DM-ED. However, different connectivity patterns were found between pED and DM-ED, and the increased connectivity in the frontal-parietal network might be due to the compensation mechanisms that were devoted to improving erectile function.
Collapse
Affiliation(s)
- Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jindan Wu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinfei Huang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Sun
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziliang Xiang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Xu
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shi Chen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Weilong Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Yang
- Department of Urology, Jiangsu Provincial People’s Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, People’s Hospital of Xinjiang Kizilsu Kirgiz Autonomous Prefecture, Artux, Xinjiang, China
- *Correspondence: Yun Chen, ; Jie Yang,
| | - Yun Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yun Chen, ; Jie Yang,
| |
Collapse
|
13
|
Effect of exenatide on peripheral nerve excitability in type 2 diabetes. Clin Neurophysiol 2021; 132:2532-2539. [PMID: 34455311 DOI: 10.1016/j.clinph.2021.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To assess the effect of exenatide (a GLP-1 receptor agonist), dipeptidyl peptidase-IV (DPP-IV) inhibitors, and sodium-glucose co-transporter 2 (SGLT-2) inhibitors on measures of peripheral nerve excitability in patients with type 2 diabetes. METHODS Patients receiving either exenatide (n = 32), a DPP-IV inhibitor (n = 31), or a SGLT-2 inhibitor (n = 27) underwent motor nerve excitability assessments. Groups were similar in age, sex, HbA1c, diabetes duration, lipids, and neuropathy severity. An additional 10 subjects were assessed prospectively over 3 months while oral anti-hyperglycaemic therapy was kept constant. A cohort of healthy controls (n = 32) were recruited for comparison. RESULTS Patients receiving a DPP-IV or SGLT-2 inhibitor demonstrated abnormalities in peak threshold reduction, S2 accommodation, superexcitability, and subexcitability. In contrast, patients treated with exenatide were observed to have normal nerve excitability. In the prospective arm, exenatide therapy was associated with an improvement in nerve function as patients demonstrated corrections in S2 accommodation, superexcitability, and subexcitability at follow-up. These changes were independent of the reductions in HbA1c following exenatide treatment. CONCLUSIONS Exenatide was associated with an improvement in measures of nerve excitability in patients with type 2 diabetes. SIGNIFICANCE Exenatide may improve peripheral nerve function in type 2 diabetes.
Collapse
|
14
|
Hannaford A, Vucic S, Kiernan MC, Simon NG. Review Article "Spotlight on Ultrasonography in the Diagnosis of Peripheral Nerve Disease: The Evidence to Date". Int J Gen Med 2021; 14:4579-4604. [PMID: 34429642 PMCID: PMC8378935 DOI: 10.2147/ijgm.s295851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022] Open
Abstract
Neuromuscular ultrasound is rapidly becoming incorporated into clinical practice as a standard tool in the assessment of peripheral nerve diseases. Ultrasound complements clinical phenotyping and electrodiagnostic evaluation, providing critical structural anatomical information to enhance diagnosis and identify structural pathology. This review article examines the evidence supporting neuromuscular ultrasound in the diagnosis of compressive mononeuropathies, traumatic nerve injury, generalised peripheral neuropathy and motor neuron disease. Extending the sonographic evaluation of nerves beyond simple morphological measurements has the potential to improve diagnostics in peripheral neuropathy, as well as advancing the understanding of pathological mechanisms, which in turn will promote precise therapies and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Andrew Hannaford
- Westmead Clinical School, Westmead Hospital, University of Sydney, Sydney, Australia
| | - Steve Vucic
- Westmead Clinical School, Westmead Hospital, University of Sydney, Sydney, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, University of Sydney and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Neil G Simon
- Northern Beaches Clinical School, Macquarie University, Sydney, Australia
| |
Collapse
|