1
|
Harper L, Strandberg O, Spotorno N, Nilsson M, Lindberg O, Hansson O, Santillo AF. Structural and functional connectivity associations with anterior cingulate sulcal variability. Brain Struct Funct 2024; 229:1561-1576. [PMID: 38900167 PMCID: PMC11374863 DOI: 10.1007/s00429-024-02812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Sulcation of the anterior cingulate may be defined by presence of a paracingulate sulcus, a tertiary sulcus developing during the third gestational trimester with implications on cognitive function and disease. In this cross-sectional study we examine task-free resting state functional connectivity and diffusion-weighted tract segmentation data from a cohort of healthy adults (< 60-year-old, n = 129), exploring the impact of ipsilateral paracingulate sulcal presence on structural and functional connectivity. Presence of a left paracingulate sulcus was associated with reduced fractional anisotropy in the left cingulum bundle and the left peri-genual and dorsal bundle segments, suggesting reduced structural organisational coherence in these tracts. This association was not observed in the offsite temporal cingulum bundle segment. Left paracingulate sulcal presence was associated with increased left peri-genual radial diffusivity and tract volume possibly suggesting increased U-fibre density in this region. Greater network dispersity was identified in individuals with an absent left paracingulate sulcus by presence of a significant, predominantly intraregional, frontal component of resting state functional connectivity which was not present in individuals with a present left paracingulate sulcus. Seed-based functional connectivity in pre-defined networks was not associated with paracingulate sulcal presence. These results identify a novel association between sulcation and structural connectivity in a healthy adult population with implications for conditions where this variation is of interest. Presence of a left paracingulate sulcus appears to alter local structural and functional connectivity, possibly as a result of the presence of a local network reliant on short association fibres.
Collapse
Affiliation(s)
- Luke Harper
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden.
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
| | - Markus Nilsson
- Diagnostic Radiology, Faculty of Medicine, Department of Clinical Sciences, Lund, Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
| |
Collapse
|
2
|
Nica A. Drug-resistant juvenile myoclonic epilepsy: A literature review. Rev Neurol (Paris) 2024; 180:271-289. [PMID: 38461125 DOI: 10.1016/j.neurol.2024.02.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/11/2024]
Abstract
The ILAE's Task Force on Nosology and Definitions revised in 2022 its definition of juvenile myoclonic epilepsy (JME), the most common idiopathic generalized epilepsy disorder, but this definition may well change again in the future. Although good drug response could almost be a diagnostic criterion for JME, drug resistance (DR) is observed in up to a third of patients. It is important to distinguish this from pseudoresistance, which is often linked to psychosocial problems or psychiatric comorbidities. After summarizing these aspects and the various definitions applied to JME, the present review lists the risk factors for DR-JME that have been identified in numerous studies and meta-analyses. The factors most often cited are absence seizures, young age at onset, and catamenial seizures. By contrast, photosensitivity seems to favor good treatment response, at least in female patients. Current hypotheses on DR mechanisms in JME are based on studies of either simple (e.g., cortical excitability) or more complex (e.g., anatomical and functional connectivity) neurophysiological markers, bearing in mind that JME is regarded as a neural network disease. This research has revealed correlations between the intensity of some markers and DR, and above all shed light on the role of these markers in associated neurocognitive and neuropsychiatric disorders in both patients and their siblings. Studies of neurotransmission have mainly pointed to impaired GABAergic inhibition. Genetic studies have generally been inconclusive. Increasing restrictions have been placed on the use of valproate, the standard antiseizure medication for this syndrome, owing to its teratogenic and developmental risks. Levetiracetam and lamotrigine are prescribed as alternatives, as is vagal nerve stimulation, and there are several other promising antiseizure drugs and neuromodulation methods. The development of better alternative treatments is continuing to take place alongside advances in our knowledge of JME, as we still have much to learn and understand.
Collapse
Affiliation(s)
- A Nica
- Epilepsy Unit, Reference Center for Rare Epilepsies, Neurology Department, Clinical Investigation Center 1414, Rennes University Hospital, Rennes, France; Signal and Image Processing Laboratory (LTSI), INSERM, Rennes University, Rennes, France.
| |
Collapse
|
3
|
Daquin G, Bonini F. The landscape of drug resistant absence seizures in adolescents and adults: Pathophysiology, electroclinical spectrum and treatment options. Rev Neurol (Paris) 2024; 180:256-270. [PMID: 38413268 DOI: 10.1016/j.neurol.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 02/29/2024]
Abstract
The persistence of typical absence seizures (AS) in adolescence and adulthood may reduce the quality of life of patients with genetic generalized epilepsies (GGEs). The prevalence of drug resistant AS is probably underestimated in this patient population, and treatment options are relatively scarce. Similarly, atypical absence seizures in developmental and epileptic encephalopathies (DEEs) may be unrecognized, and often persist into adulthood despite improvement of more severe seizures. These two seemingly distant conditions, represented by typical AS in GGE and atypical AS in DEE, share at least partially overlapping pathophysiological and genetic mechanisms, which may be the target of drug and neurostimulation therapies. In addition, some patients with drug-resistant typical AS may present electroclinical features that lie in between the two extremes represented by these generalized forms of epilepsy.
Collapse
Affiliation(s)
- G Daquin
- Epileptology and Cerebral Rythmology, AP-HM, Timone hospital, Marseille, France
| | - F Bonini
- Epileptology and Cerebral Rythmology, AP-HM, Timone hospital, Marseille, France; Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
4
|
Devinsky O, Elder C, Sivathamboo S, Scheffer IE, Koepp MJ. Idiopathic Generalized Epilepsy: Misunderstandings, Challenges, and Opportunities. Neurology 2024; 102:e208076. [PMID: 38165295 PMCID: PMC11097769 DOI: 10.1212/wnl.0000000000208076] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024] Open
Abstract
The idiopathic generalized epilepsies (IGE) make up a fifth of all epilepsies, but <1% of epilepsy research. This skew reflects misperceptions: diagnosis is straightforward, pathophysiology is understood, seizures are easily controlled, epilepsy is outgrown, morbidity and mortality are low, and surgical interventions are impossible. Emerging evidence reveals that patients with IGE may go undiagnosed or misdiagnosed with focal epilepsy if EEG or semiology have asymmetric or focal features. Genetic, electrophysiologic, and neuroimaging studies provide insights into pathophysiology, including overlaps and differences from focal epilepsies. IGE can begin in adulthood and patients have chronic and drug-resistant seizures. Neuromodulatory interventions for drug-resistant IGE are emerging. Rates of psychiatric and other comorbidities, including sudden unexpected death in epilepsy, parallel those in focal epilepsy. IGE is an understudied spectrum for which our diagnostic sensitivity and specificity, scientific understanding, and therapies remain inadequate.
Collapse
Affiliation(s)
- Orrin Devinsky
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| | - Christopher Elder
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| | - Shobi Sivathamboo
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| | - Ingrid E Scheffer
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| | - Matthias J Koepp
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| |
Collapse
|
5
|
Deng D, Sun H, Wang Y, Guo X, Yuan Y, Wang J, Qiu L. Structural and functional abnormalities in first-episode drug-naïve pediatric idiopathic generalized epilepsy. Cereb Cortex 2024; 34:bhae021. [PMID: 38314605 DOI: 10.1093/cercor/bhae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
The aim of this study was to investigate brain structure and corresponding static and dynamic functional connectivity (sFC & dFC) abnormalities in untreated, first-episode pediatric idiopathic generalized epilepsy (IGE), with the goal of better understanding the underlying pathological mechanisms of IGE. Thirty-one children with IGE and 31 age-matched healthy controls (HC) were recruited. Structural magnetic resonance imaging (sMRI) data were acquired, and voxel-based morphometry (VBM) analysis were performed to reveal abnormal gray matter volume (GMV). Moreover, sFC and dFC analyses were conducted using the brain areas exhibiting abnormal GMV as seed regions to explore abnormal functional couplings. Compared to HC, the IGE group exhibited increased GMV in left middle cingulate cortex (MCC) and right parahippocampus (ParaHipp). In addition, the analyses of dFC and sFC with MCC and ParaHipp as seeds revealed more extensive functional connectivity (FC) changes in dFC. Notably, the structurally and functionally abnormal brain areas were primarily localized in the default mode network (DMN). However, our study did not find any significant associations between these altered neuroimaging measurements and clinical outcomes. This study uncovered microstructural changes as well as corresponding sFC and dFC changes in patients with new-onset, untreated pediatric IGE. The affected brain regions were primarily located within the DMN, highlighting the DMN's crucial role in the development of pediatric IGE.
Collapse
Affiliation(s)
- Dingmei Deng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 18, South Section 3, First Ring Road, Wuhou District, Chengdu 610041, China
- Medical Imaging Center, The Second People's Hospital of Yibin, 96# Beida Street, Cuiping District, Yibin 644000, China
- Clinical Research and Translational Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, 96# Beida Street, Cuiping District, Yibin 644000, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, No. 24, South Section 1, First Ring Road, Wuhou District, Chengdu 610065, China
| | - Yuting Wang
- Medical Imaging Center, The Second People's Hospital of Yibin, 96# Beida Street, Cuiping District, Yibin 644000, China
- Clinical Research and Translational Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, 96# Beida Street, Cuiping District, Yibin 644000, China
| | - Xin Guo
- Medical Imaging Center, The Second People's Hospital of Yibin, 96# Beida Street, Cuiping District, Yibin 644000, China
- Clinical Research and Translational Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, 96# Beida Street, Cuiping District, Yibin 644000, China
| | - Yizhi Yuan
- Medical Imaging Center, The Second People's Hospital of Yibin, 96# Beida Street, Cuiping District, Yibin 644000, China
- Clinical Research and Translational Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, 96# Beida Street, Cuiping District, Yibin 644000, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, No.7, Zhiyuan Road, Chenggong District, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, No.7, Zhiyuan Road, Chenggong District, Kunming 650500, China
| | - Lihua Qiu
- Medical Imaging Center, The Second People's Hospital of Yibin, 96# Beida Street, Cuiping District, Yibin 644000, China
- Clinical Research and Translational Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, 96# Beida Street, Cuiping District, Yibin 644000, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, No. 24, South Section 1, First Ring Road, Wuhou District, Chengdu City, Sichuan Province, Chengdu 610065, China
| |
Collapse
|
6
|
Harper L, Strandberg O, Spotorno N, Nilsson M, Lindberg O, Hansson O, Santillo AF. Structural and functional connectivity associations with anterior cingulate sulcal variability. RESEARCH SQUARE 2024:rs.3.rs-3831519. [PMID: 38260469 PMCID: PMC10802698 DOI: 10.21203/rs.3.rs-3831519/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Sulcation of the anterior cingulate may be defined by presence of a paracingulate sulcus, a tertiary sulcus developing during the third gestational trimester with implications on cognitive function and disease. Methods In this retrospective analysis we examine task-free resting state functional connectivity and diffusion-weighted tract segmentation data from a cohort of healthy adults (< 60-year-old, n = 129), exploring the impact of ipsilateral paracingulate sulcal presence on structural and functional connectivity. Results Presence of a left paracingulate sulcus was associated with reduced fractional anisotropy in the left cingulum (P = 0.02) bundle and the peri-genual (P = 0.002) and dorsal (P = 0.03) but not the temporal cingulum bundle segments. Left paracingulate sulcal presence was associated with increased left peri-genual radial diffusivity (P = 0.003) and tract volume (P = 0.012). A significant, predominantly intraregional frontal component of altered resting state functional connectivity was identified in individuals possessing a left PCS (P = 0.01). Seed-based functional connectivity in pre-defined networks was not associated with paracingulate sulcal presence. Conclusion These results identify a novel association between neurodevelopmentally derived sulcation and altered structural connectivity in a healthy adult population with implications for conditions where this variation is of interest. Furthermore, they provide evidence of a link between the structural and functional connectivity of the brain in the presence of a paracingulate sulcus which may be mediated by a highly connected local functional network reliant on short association fibres.
Collapse
|
7
|
Remore LG, Rifi Z, Nariai H, Eliashiv DS, Fallah A, Edmonds BD, Matsumoto JH, Salamon N, Tolossa M, Wei W, Locatelli M, Tsolaki EC, Bari AA. Structural connections of the centromedian nucleus of thalamus and their relevance for neuromodulation in generalized drug-resistant epilepsy: insight from a tractography study. Ther Adv Neurol Disord 2023; 16:17562864231202064. [PMID: 37822361 PMCID: PMC10563482 DOI: 10.1177/17562864231202064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
Background Epilepsy is a widespread neurologic disorder and almost one-third of patients suffer from drug-resistant epilepsy (DRE). Neuromodulation targeting the centromediannucleus of the thalamus (CM) has been showing promising results for patients with generalized DRE who are not surgical candidates. Recently, the effect of CM- deep brain stimulation (DBS) in DRE patients was investigated in the Electrical Stimulation of Thalamus for Epilepsy of Lennox-Gastaut phenotype (ESTEL) trial, a monocentric randomized-controlled study. The same authors described a 'cold-spot' and a 'sweet-spot', which are defined as the volume of stimulation in the thalamus yielding the least and the best clinical response, respectively. However, it remains unclear which structural connections may contribute to the anti-seizure effect of the stimulation. Objective We investigated the differences in structural connectivity among CM, the sweet-spot and the cold-spot. Furthermore, we tried to validate our results in a cohort of DRE patients who underwent CM-DBS or CM-RNS (responsive neurostimulation). We hypothesized that the sweet-spot would share similar structural connectivity with responder patients. Methods By using the software FMRIB Software Library (FSL), probabilistic tractography was performed on 100 subjects from the Human Connectome Project to calculate the probability of connectivity of the whole CM, the sweet-spot and the cold-spot to 45 cortical and subcortical areas. Results among the three seeds were compared with multivariate analysis of variance (MANOVA). Similarly, the structural connectivity of volumes of tissue activated (VTAs) from eight DRE patients was investigated. Patients were divided into responders and non-responders based on the degree of reduction in seizure frequency, and the mean probabilities of connectivity were similarly compared between the two groups. Results The sweet-spot demonstrated a significantly higher probability of connectivity (p < 0.001) with the precentral gyrus, superior frontal gyrus, and the cerebellum than the whole CM and the cold-spot. Responder patients displayed a higher probability of connectivity with both ipsilateral (p = 0.011) and contralateral cerebellum (p = 0.04) than the non-responders. Conclusion Cerebellar connections seem to contribute to the beneficial effects of CM-neuromodulation in patients with drug-resistant generalized epilepsy.
Collapse
Affiliation(s)
- Luigi G. Remore
- Surgical Neuromodulation and Brain Mapping Laboratory, ULCA
- Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, USA
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ziad Rifi
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Dawn S. Eliashiv
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin D. Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Joyce H. Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Meskerem Tolossa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Wexin Wei
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Locatelli
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Evangelia C. Tsolaki
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf A. Bari
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Geffen School of Medicine David California Los Angeles University of Angeles Los CA, USA
| |
Collapse
|
8
|
Gesche J, Beier CP. Drug resistance in idiopathic generalized epilepsies: Evidence and concepts. Epilepsia 2022; 63:3007-3019. [PMID: 36102351 PMCID: PMC10092586 DOI: 10.1111/epi.17410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/11/2023]
Abstract
Although approximately 10%-15% of patients with idiopathic generalized epilepsy (IGE)/genetic generalized epilepsy remain drug-resistant, there is no consensus or established concept regarding the underlying mechanisms and prevalence. This review summarizes the recent data and the current hypotheses on mechanisms that may contribute to drug-resistant IGE. A literature search was conducted in PubMed and Embase for studies on mechanisms of drug resistance published since 1980. The literature shows neither consensus on the definition nor a widely accepted model to explain drug resistance in IGE or one of its subsyndromes. Large-scale genetic studies have failed to identify distinct genetic causes or affected genes involved in pharmacokinetics. We found clinical and experimental evidence in support of four hypotheses: (1) "network hypothesis"-the degree of drug resistance in IGE reflects the severity of cortical network alterations, (2) "minor focal lesion in a predisposed brain hypothesis"-minor cortical lesions are important for drug resistance, (3) "interneuron hypothesis"-impaired functioning of γ-aminobutyric acidergic interneurons contributes to drug resistance, and (4) "changes in drug kinetics"-genetically impaired kinetics of antiseizure medication (ASM) reduce the effectiveness of available ASMs. In summary, the exact definition and cause of drug resistance in IGE is unknown. However, published evidence suggests four different mechanisms that may warrant further investigation.
Collapse
Affiliation(s)
- Joanna Gesche
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christoph P Beier
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Middlebrooks EH, He X, Grewal SS, Keller SS. Neuroimaging and thalamic connectomics in epilepsy neuromodulation. Epilepsy Res 2022; 182:106916. [PMID: 35367691 DOI: 10.1016/j.eplepsyres.2022.106916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
Abstract
Neuromodulation is an increasingly utilized therapy for the treatment of people with drug-resistant epilepsy. To date, the most common and effective target has been the thalamus, which is known to play a key role in multiple forms of epilepsy. Neuroimaging has facilitated rapid developments in the understanding of functional targets, surgical and programming techniques, and the effects of thalamic stimulation. In this review, the role of neuroimaging in neuromodulation is explored. First, the structural and functional changes of the thalamus in common epilepsy syndromes are discussed as the rationale for neuromodulation of the thalamus. Next, methods for imaging different thalamic nuclei are presented, as well as rationale for the need of direct surgical targeting rather than reliance on traditional stereotactic coordinates. Lastly, we discuss the potential role of neuroimaging in assessing the effects of thalamic stimulation and as a potential biomarker for neuromodulation outcomes.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| |
Collapse
|
10
|
Seneviratne U, Cook M, D'Souza W. Brainwaves beyond diagnosis: Wider applications of electroencephalography in idiopathic generalized epilepsy. Epilepsia 2021; 63:22-41. [PMID: 34755907 DOI: 10.1111/epi.17119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
Electroencephalography (EEG) has long been used as a versatile and noninvasive diagnostic tool in epilepsy. With the advent of digital EEG, more advanced applications of EEG have emerged. Compared with technologically advanced practice in focal epilepsies, the utilization of EEG in idiopathic generalized epilepsy (IGE) has been lagging, often restricted to a simple diagnostic tool. In this narrative review, we provide an overview of broader applications of EEG beyond this narrow scope, discussing how the current clinical and research applications of EEG may potentially be extended to IGE. The current literature, although limited, suggests that EEG can be used in syndromic classification, guiding antiseizure medication therapy, predicting prognosis, unraveling biorhythms, and investigating functional brain connectivity of IGE. We emphasize the need for longer recordings, particularly 24-h ambulatory EEG, to capture discharges reflecting circadian and sleep-wake cycle-associated variations for wider EEG applications in IGE. Finally, we highlight the challenges and limitations of the current body of literature and suggest future directions to encourage and enhance more extensive applications of this potent tool.
Collapse
Affiliation(s)
- Udaya Seneviratne
- Department of Neuroscience, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Mark Cook
- Department of Neuroscience, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Wendyl D'Souza
- Department of Neuroscience, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Pegg EJ, McKavanagh A, Bracewell RM, Chen Y, Das K, Denby C, Kreilkamp BAK, Laiou P, Marson A, Mohanraj R, Taylor JR, Keller SS. Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy: a resting state functional MRI study. Brain Commun 2021; 3:fcab196. [PMID: 34514400 PMCID: PMC8417840 DOI: 10.1093/braincomms/fcab196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
Despite an increasing number of drug treatment options for people with idiopathic generalized epilepsy (IGE), drug resistance remains a significant issue and the mechanisms underlying it remain poorly understood. Previous studies have largely focused on potential cellular or genetic explanations for drug resistance. However, epilepsy is understood to be a network disorder and there is a growing body of literature suggesting altered topology of large-scale resting networks in people with epilepsy compared with controls. We hypothesize that network alterations may also play a role in seizure control. The aim of this study was to compare resting state functional network structure between well-controlled IGE (WC-IGE), drug resistant IGE (DR-IGE) and healthy controls. Thirty-three participants with IGE (10 with WC-IGE and 23 with DR-IGE) and 34 controls were included. Resting state functional MRI networks were constructed using the Functional Connectivity Toolbox (CONN). Global graph theoretic network measures of average node strength (an equivalent measure to mean degree in a network that is fully connected), node strength distribution variance, characteristic path length, average clustering coefficient, small-world index and average betweenness centrality were computed. Graphs were constructed separately for positively weighted connections and for absolute values. Individual nodal values of strength and betweenness centrality were also measured and ‘hub nodes’ were compared between groups. Outcome measures were assessed across the three groups and between both groups with IGE and controls. The IGE group as a whole had a higher average node strength, characteristic path length and average betweenness centrality. There were no clear differences between groups according to seizure control. Outcome metrics were sensitive to whether negatively correlated connections were included in network construction. There were no clear differences in the location of ‘hub nodes’ between groups. The results suggest that, irrespective of seizure control, IGE interictal network topology is more regular and has a higher global connectivity compared to controls, with no alteration in hub node locations. These alterations may produce a resting state network that is more vulnerable to transitioning to the seizure state. It is possible that the lack of apparent influence of seizure control on network topology is limited by challenges in classifying drug response. It is also demonstrated that network topological features are influenced by the sign of connectivity weights and therefore future methodological work is warranted to account for anticorrelations in graph theoretic studies.
Collapse
Affiliation(s)
- Emily J Pegg
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrea McKavanagh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Yachin Chen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kumar Das
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | | | - Barbara A K Kreilkamp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Petroula Laiou
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rajiv Mohanraj
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Torres Diaz CV, González-Escamilla G, Ciolac D, Navas García M, Pulido Rivas P, Sola RG, Barbosa A, Pastor J, Vega-Zelaya L, Groppa S. Network Substrates of Centromedian Nucleus Deep Brain Stimulation in Generalized Pharmacoresistant Epilepsy. Neurotherapeutics 2021; 18:1665-1677. [PMID: 33904113 PMCID: PMC8608991 DOI: 10.1007/s13311-021-01057-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 02/04/2023] Open
Abstract
Deep brain stimulation (DBS), specifically thalamic DBS, has achieved promising results to reduce seizure severity and frequency in pharmacoresistant epilepsies, thereby establishing it for clinical use. The mechanisms of action are, however, still unknown. We evidenced the brain networks directly modulated by centromedian (CM) nucleus-DBS and responsible for clinical outcomes in a cohort of patients uniquely diagnosed with generalized pharmacoresistant epilepsy. Preoperative imaging and long-term (2-11 years) clinical data from ten generalized pharmacoresistant epilepsy patients (mean age at surgery = 30.8 ± 5.9 years, 4 female) were evaluated. Volume of tissue activated (VTA) was included as seeds to reconstruct the targeted network to thalamic DBS from diffusion and functional imaging data. CM-DBS clinical outcome improvement (> 50%) appeared in 80% of patients and was tightly related to VTAs interconnected with a reticular system network encompassing sensorimotor and supplementary motor cortices, together with cerebellum/brainstem. Despite methodological differences, both structural and functional connectomes revealed the same targeted network. Our results demonstrate that CM-DBS outcome in generalized pharmacoresistant epilepsy is highly dependent on the individual connectivity profile, involving the cerebello-thalamo-cortical circuits. The proposed framework could be implemented in future studies to refine stereotactic implantation or the parameters for individualized neuromodulation.
Collapse
Affiliation(s)
| | - Gabriel González-Escamilla
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Rhine Main Neuroscience Network (rmn2), Mainz, Germany.
| | - Dumitru Ciolac
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Rhine Main Neuroscience Network (rmn2), Mainz, Germany
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemitanu, State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Marta Navas García
- Department of Neurosurgery, University Hospital La Princesa, Madrid, Spain
| | | | - Rafael G Sola
- Department of Neurosurgery, University Hospital La Princesa, Madrid, Spain
| | - Antonio Barbosa
- Department of Neuroradiology, University Hospital La Princesa, Madrid, Spain
| | - Jesús Pastor
- Department of Clinical, Neurophysiology University Hospital La Princesa, Madrid, Spain
| | - Lorena Vega-Zelaya
- Department of Clinical, Neurophysiology University Hospital La Princesa, Madrid, Spain
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Rhine Main Neuroscience Network (rmn2), Mainz, Germany
| |
Collapse
|
13
|
Revisiting the Morphology and Classification of the Paracingulate Gyrus with Commentaries on Ambiguous Cases. Brain Sci 2021; 11:brainsci11070872. [PMID: 34210078 PMCID: PMC8301833 DOI: 10.3390/brainsci11070872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/17/2022] Open
Abstract
The anterior cingulate cortex is considered to play a crucial role in cognitive and affective regulation. However, this area shows a high degree of morphological interindividual variability and asymmetry. It is especially true regarding the paracingulate sulcus and paracingulate gyrus (PCG). Since the reports described in the literature are mainly based on imaging techniques, the goal of this study was to verify the classification of the PCG based on anatomical material. Special attention was given to ambiguous cases. The PCG was absent in 26.4% of specimens. The gyrus was classified as present in 28.3% of cases. The prominent type of the PCG was observed in 37.7% of the total. Occasionally, the gyrus was well-developed and roughly only a few millimeters were missing for classifying the gyrus as prominent, as it ended slightly anterior the level of the VAC. The remaining four cases involved two inconclusive types. We observed that the callosomarginal artery ran within the cingulate sulcus and provided branches that crossed the PCG. Based on Klingler’s dissection technique, we observed a close relationship of the PCG with the superior longitudinal fascicle. The awareness of the anatomical variability observed within the brain cortex is an essential starting point for in-depth research.
Collapse
|
14
|
Pegg EJ, Taylor JR, Laiou P, Richardson M, Mohanraj R. Interictal electroencephalographic functional network topology in drug-resistant and well-controlled idiopathic generalized epilepsy. Epilepsia 2021; 62:492-503. [PMID: 33501642 DOI: 10.1111/epi.16811] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The study aim was to compare interictal encephalographic (EEG) functional network topology between people with well-controlled idiopathic generalized epilepsy (WC-IGE) and drug-resistant IGE (DR-IGE). METHODS Nineteen participants with WC-IGE, 18 with DR-IGE, and 20 controls underwent a resting state, 64-channel EEG. An artifact-free epoch was bandpass filtered into the frequency range of high and low extended alpha. Weighted functional connectivity matrices were calculated. Mean degree, degree distribution variance, characteristic path length (L), clustering coefficient, small world index (SWI), and betweenness centrality were measured. A Kruskal-Wallis H-test assessed effects across groups. Where significant differences were found, Bonferroni-corrected Mann-Whitney pairwise comparisons were calculated. RESULTS In the low alpha band (6-9 Hz), there was a significant difference in L at the three-group level (p < .0001). This was lower in controls than both WC-IGE and DR-IGE (p < .0001 for both), with no difference in L between WC-IGE and DR-IGE. Mean degree (p = .031), degree distribution variance (p = .032), and SWI (p = .023) differed across the three groups in the high alpha band (10-12 Hz). Mean degree and degree distribution variance were lower in WC-IGE than controls (p = .029 for both), and SWI was higher in WC-IGE compared with controls (p = .038), with no differences in other pairwise comparisons. SIGNIFICANCE IGE network topology is more regular in the low alpha frequency band, potentially reflecting a more vulnerable structure. WC-IGE network topology is different from controls in the high alpha band. This may reflect drug-induced network changes that have stabilized the WC-IGE network by rendering it less likely to synchronize. These results are of potential importance in advancing the understanding of mechanisms of epilepsy drug resistance and as a possible basis for a biomarker of DR-IGE.
Collapse
Affiliation(s)
- Emily J Pegg
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, UK.,Manchester Academic Health Sciences Centre, Manchester, UK
| | - Petroula Laiou
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Mark Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Rajiv Mohanraj
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Nenert R, Allendorfer JB, Bebin EM, Gaston TE, Grayson LE, Houston JT, Szaflarski JP. Cannabidiol normalizes resting-state functional connectivity in treatment-resistant epilepsy. Epilepsy Behav 2020; 112:107297. [PMID: 32745959 DOI: 10.1016/j.yebeh.2020.107297] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Resting-state (rs) network dysfunction is a contributing factor to treatment resistance in epilepsy. In treatment-resistant epilepsy (TRE), pharmacological and nonpharmacological therapies have been shown to improve such dysfunction. In this study, our goal was to prospectively evaluate the effect of highly purified plant-derived cannabidiol (CBD; Epidiolex®) on rs functional magnetic resonance imaging (fMRI) functional connectivity (rs-FC). We hypothesized that CBD would change and potentially normalize the rs-FC in TRE. METHODS Twenty-two of 27 participants with TRE completed all study procedures including longitudinal pre-/on-CBD rs-fMRI (8M/14F, mean age = 36.2 ± 15.9 years, TRE duration = 18.3 ± 12.6 years); there were no differences in age (p = 0.99) or sex (p = 0.15) between groups. Assessments collected included seizure frequency (SF), Chalfont Seizure Severity Scale (CSSS), Columbia Suicide Severity Rating Scale (C-SSRS), Adverse Events Profile (AEP), and Profile of Mood States (POMS). Twenty-three healthy controls (HCs) received rs-fMRI and POMS once. RESULTS Participants with TRE showed average decrease of 71.7% in SF (p < 0.0001) and improved CSSS, AEP, and POMS confusion, depression, and fatigue subscores (all p < 0.05) on-CBD with POMS scores becoming similar to those of HCs. Paired t-tests showed significant pre-/on-CBD changes in rs-FC in cerebellum, frontal areas, temporal areas, hippocampus, and amygdala with some of them correlating with improvement in behavioral measures. Significant differences in rs-FC between pre-CBD and HCs were found in cerebellum, frontal, and occipital regions. After controlling for changes in SF with CBD, these differences were no longer present when comparing on-CBD to HCs. SIGNIFICANCE This study indicates that highly purified CBD modulates and potentially normalizes rs-FC in the epileptic brain. This effect may underlie its efficacy. This study provides Class III evidence for CBD's normalizing effect on rs-FC in TRE.
Collapse
Affiliation(s)
- Rodolphe Nenert
- Department of Neurology, the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jane B Allendorfer
- Department of Neurology, the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Martina Bebin
- Department of Neurology, the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tyler E Gaston
- Department of Neurology, the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA; Veteran's Administration Medical Center, Birmingham, AL, USA
| | - Leslie E Grayson
- Department of Neurology, the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA; Veteran's Administration Medical Center, Birmingham, AL, USA
| | - James T Houston
- Department of Neurology, the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jerzy P Szaflarski
- Department of Neurology, the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
16
|
Gonen OM, Kwan P, O'Brien TJ, Lui E, Desmond PM. Resting-state functional MRI of the default mode network in epilepsy. Epilepsy Behav 2020; 111:107308. [PMID: 32698105 DOI: 10.1016/j.yebeh.2020.107308] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 02/09/2023]
Abstract
The default mode network (DMN) is a major neuronal network that deactivates during goal-directed tasks. Recent advances in neuroimaging have shed light on its structure and function. Alterations in the DMN are increasingly recognized in a range of neurological and psychiatric conditions including epilepsy. This review first describes the current understanding of the DMN in health, normal aging, and disease as it is acquired via resting-state functional magnetic resonance imaging (MRI), before focusing on how it is affected in various types of focal and generalized epilepsy. These findings support the potential use of DMN parameters as future biomarkers in epilepsy research, diagnosis, and management.
Collapse
Affiliation(s)
- Ofer M Gonen
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia; The Alfred Hospital, VIC, Australia.
| | - Patrick Kwan
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia; The Alfred Hospital, VIC, Australia; Monash University, VIC, Australia
| | - Terence J O'Brien
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia; The Alfred Hospital, VIC, Australia; Monash University, VIC, Australia
| | - Elaine Lui
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia
| | - Patricia M Desmond
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia
| |
Collapse
|
17
|
Mesraoua B, Koepp M, Schuknecht B, Deleu D, Al Hail HJ, Melikyan G, Elsheikh L, Asadi-Pooya AA. Unexpected brain imaging findings in patients with seizures. Epilepsy Behav 2020; 111:107241. [PMID: 32590182 DOI: 10.1016/j.yebeh.2020.107241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/26/2020] [Accepted: 06/07/2020] [Indexed: 11/25/2022]
Abstract
New imaging technologies have advanced our ability to localize the epileptogenic zone in patients with epilepsy. As a result of the constant improvement of the image quality, magnetic resonance imaging (MRI) has become the most important ancillary tool in the management of patients with epilepsy. Magnetic resonance imaging for the evaluation of patients with epilepsy should be done using a special temporal lobe protocol and read by physicians experienced with the findings in patients with epilepsy. On the other hand, in the healthy populations, incidental structural brain abnormalities have been reported in 18% of people. Incidental, subtle, or unexpected structural brain abnormalities have also been reported in many patients who were investigated because of having seizures. In the current narrative review, we will discuss some of these instances, where structural brain abnormalities are discovered unexpectedly, are subtle (but important) and/or may be considered as incidental.
Collapse
Affiliation(s)
- Boulenouar Mesraoua
- Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medical College, Doha, Qatar.
| | | | | | - Dirk Deleu
- Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medical College, Doha, Qatar.
| | - Hassan J Al Hail
- Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medical College, Doha, Qatar.
| | - Gayane Melikyan
- Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medical College, Doha, Qatar.
| | | | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
18
|
Parsons N, Bowden SC, Vogrin S, D’Souza WJ. Default mode network dysfunction in idiopathic generalised epilepsy. Epilepsy Res 2020; 159:106254. [DOI: 10.1016/j.eplepsyres.2019.106254] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/13/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022]
|
19
|
A pilot study of combined endurance and resistance exercise rehabilitation for verbal memory and functional connectivity improvement in epilepsy. Epilepsy Behav 2019; 96:44-56. [PMID: 31078935 DOI: 10.1016/j.yebeh.2019.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/18/2022]
Abstract
Memory impairment is common in persons with epilepsy (PWE), and exercise may be a strategy for its improvement. In this pilot study, we hypothesized that exercise rehabilitation would improve physical fitness and verbal memory and induce changes in brain networks involved in memory processes. We examined the effects of combined endurance and resistance exercise rehabilitation on memory and resting state functional connectivity (rsFC). Participants were randomized to exercise (PWE-E) or control (PWE-noE). The exercise intervention consisted of 18 supervised sessions on nonconsecutive days over 6 weeks. Before and after the intervention period, both groups completed self-report assessments (Short Form-36 (SF-36), Baecke Questionnaire (BQ) of habitual physical activity, and Profile of Mood States (POMS)), cognitive testing (California Verbal Learning Test-II (CVLT-II)), and magnetic resonance imaging (MRI); PWE-E also completed exercise performance tests. After completing the study, PWE-noE were offered cross-over to the exercise arm. There were no differences in baseline demographic, clinical, or assessment variables between 8 PWE-noE and 9 PWE-E. Persons with epilepsy that participated in exercise intervention increased maximum voluntary strength (all strength tests p < 0.05) and exhibited nonsignificant improvement in cardiorespiratory fitness (p = 0.15). Groups did not show significant changes in quality of life (QOL) or habitual physical activity between visits. However, there was an effect of visit on POMS total mood disturbance (TMD) measure showing improvement from baseline to visit 2 (p = 0.023). There were significant group by visit interactions on CVLT-II learning score (p = 0.044) and total recognition discriminability (d') (p = 0.007). Persons with epilepsy that participated in exercise intervention had significant reductions in paracingulate rsFC with the anterior cingulate and increases in rsFC for the cerebellum, thalamus, posterior cingulate cortex (PCC), and left and right inferior parietal lobule (IPL) (corrected p < 0.05). Change in CVLT-II learning score was associated with rsFC changes for the paracingulate cortex (rS = -0.67; p = 0.0033), left IPL (rS = 0.70; p = 0.0019), and right IPL (rS = 0.71; p = 0.0015) while change in d' was associated with change in cerebellum rsFC to angular/middle occipital gyrus (rS = 0.68; p = 0.0025). Our conclusion is that exercise rehabilitation may facilitate verbal memory improvement and brain network functional connectivity changes in PWE and that improved memory performance is associated with changes in rsFC. A larger randomized controlled trial of exercise rehabilitation for cognitive improvement in PWE is warranted.
Collapse
|
20
|
Amyloid causes intermittent network disruptions in cognitively intact older subjects. Brain Imaging Behav 2018; 13:699-716. [DOI: 10.1007/s11682-018-9869-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
|
22
|
Abstract
In recent years, the field of neuroimaging has undergone dramatic development. Specifically, of importance for clinicians and researchers managing patients with epilepsies, new methods of brain imaging in search of the seizure-producing abnormalities have been implemented, and older methods have undergone additional refinement. Methodology to predict seizure freedom and cognitive outcome has also rapidly progressed. In general, the image data processing methods are very different and more complicated than even a decade ago. In this review, we identify the recent developments in neuroimaging that are aimed at improved management of epilepsy patients. Advances in structural imaging, diffusion imaging, fMRI, structural and functional connectivity, hybrid imaging methods, quantitative neuroimaging, and machine-learning are discussed. We also briefly summarize the potential new developments that may shape the field of neuroimaging in the near future and may advance not only our understanding of epileptic networks as the source of treatment-resistant seizures but also better define the areas that need to be treated in order to provide the patients with better long-term outcomes.
Collapse
|
23
|
Poleon S, Szaflarski JP. Photosensitivity in generalized epilepsies. Epilepsy Behav 2017; 68:225-233. [PMID: 28215998 DOI: 10.1016/j.yebeh.2016.10.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 11/24/2022]
Abstract
Photosensitivity, which is the hallmark of photosensitive epilepsy (PSE), is described as an abnormal EEG response to visual stimuli known as a photoparoxysmal response (PPR). The PPR is a well-recognized phenomenon, occurring in 2-14% of patients with epilepsy but its pathophysiology is not clearly understood. PPR is electrographically described as 2-5Hz spike, spike-wave, or slow wave complexes with frontal and paracentral prevalence. Diagnosis of PPR is confirmed using intermittent photic stimulation (IPS) as well as video monitoring. The PPR can be elicited by certain types of visual stimuli including flicker, high contrast gratings, moving patterns, and rapidly modulating luminance patterns which may be encountered during e.g., watching television, playing video games, or attending discotheques. Photosensitivity may present in different idiopathic (genetic) epilepsy syndromes e.g. juvenile myoclonic epilepsy (JME) as well as non-IGE syndromes e.g. severe myoclonic epilepsy of infancy. Consequently, PPR is present in patients with diverse seizure types including absence, myoclonic, and generalized tonic-clonic (GTC) seizures. Across syndromes, abnormalities in structural connectivity, functional connectivity, cortical excitability, cortical morphology, and behavioral and neuropsychological function have been reported. Treatment of photosensitivity includes antiepileptic drug administration, and the use of non-pharmacological agents, e.g. tinted or polarizing glasses, as well as occupational measures, e.g. avoidance of certain stimuli.
Collapse
Affiliation(s)
- Shervonne Poleon
- University of Alabama at Birmingham, Department of Neurology and UAB Epilepsy Center, Birmingham, AL, USA.
| | - Jerzy P Szaflarski
- University of Alabama at Birmingham, Department of Neurology and UAB Epilepsy Center, Birmingham, AL, USA
| |
Collapse
|
24
|
Szaflarski JP. Are Idiopathic Generalized Epilepsies Focal? Epilepsy Curr 2016; 16:242-4. [PMID: 27582661 PMCID: PMC4988074 DOI: 10.5698/1535-7511-16.4.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Szaflarski JP, Lee S, Allendorfer JB, Gaston TE, Knowlton RC, Pati S, Ver Hoef LW, Deutsch G. White Matter Abnormalities in Patients with Treatment-Resistant Genetic Generalized Epilepsies. Med Sci Monit 2016; 22:1966-75. [PMID: 27283395 PMCID: PMC4917325 DOI: 10.12659/msm.897002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Genetic generalized epilepsies (GGEs) are associated with microstructural brain abnormalities that can be evaluated with diffusion tensor imaging (DTI). Available studies on GGEs have conflicting results. Our primary goal was to compare the white matter structure in a cohort of patients with video/EEG-confirmed GGEs to healthy controls (HCs). Our secondary goal was to assess the potential effect of age at GGE onset on the white matter structure. Material/Methods A convenience sample of 23 patients with well-characterized treatment-resistant GGEs (13 female) was compared to 23 HCs. All participants received MRI at 3T. DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD), were compared between groups using Tract-Based Spatial Statistics (TBSS). Results After controlling for differences between groups, abnormalities in DTI parameters were observed in patients with GGEs, including decreases in functional anisotropy (FA) in the hemispheric (left>right) and brain stem white matter. The examination of the effect of age at GGE onset on the white matter integrity revealed a significant negative correlation in the left parietal white matter region FA (R=−0.504; p=0.017); similar trends were observed in the white matter underlying left motor cortex (R=−0.357; p=0.103) and left posterior limb of the internal capsule (R=−0.319; p=0.148). Conclusions Our study confirms the presence of widespread white matter abnormalities in patients with GGEs and provides evidence that the age at GGE onset may have an important effect on white matter integrity.
Collapse
Affiliation(s)
- Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Seongtaek Lee
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tyler E Gaston
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert C Knowlton
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Sandipan Pati
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lawrence W Ver Hoef
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Georg Deutsch
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Braga AMDS, Fujisao EK, Verdade RC, Paschoalato RP, Paschoalato RP, Yamashita S, Betting LE. Investigation of the cingulate cortex in idiopathic generalized epilepsy. Epilepsia 2015; 56:1803-11. [PMID: 26417846 DOI: 10.1111/epi.13205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Studies using quantitative neuroimaging have shown subtle abnormalities in patients with idiopathic generalized epilepsy (IGE). These findings have several locations, but the midline parasagittal structures are most commonly implicated. The cingulate cortex is related and may be involved. The objective of the current investigation was to perform a comprehensive analysis of the cingulate cortex using multiple quantitative structural neuroimaging techniques. METHODS Thirty-two patients (18 women, 30 ± 10 years) and 36 controls (18 women, 32 ± 11 years) were imaged by 3 Tesla magnetic resonance imaging (MRI). A volumetric three-dimensional (3D) sequence was acquired and used for this investigation. Regions-of-interest were selected and voxel-based morphometry (VBM) analyses compared the cingulate cortex of the two groups using Statistical Parametric Mapping (SPM8) and VBM8 software. Cortical analyses of the cingulate gyrus was performed using Freesurfer. Images were submitted to automatic processing using built-in routines and recommendations. Structural parameters were extracted for individual analyses, and comparisons between groups were restricted to the cingulate gyrus. Finally, shape analyses was performed on the anterior rostral, anterior caudal, posterior, and isthmus cingulate using spherical harmonic description (SPHARM). RESULTS VBM analyses of cingulate gyrus showed areas of gray matter atrophy, mainly in the anterior cingulate gyrus (972 mm(3) ) and the isthmus (168 mm(3) ). Individual analyses of the cingulate cortex were similar between patients with IGE and controls. Surface-based comparisons revealed abnormalities located mainly in the posterior cingulate cortex (718.12 mm(2) ). Shape analyses demonstrated a predominance of anterior and posterior cingulate abnormalities. SIGNIFICANCE This study suggests that patients with IGE have structural abnormalities in the cingulate gyrus mainly localized at the anterior and posterior portions. This finding is subtle and variable among patients.
Collapse
Affiliation(s)
- Aline M da S Braga
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Elaine K Fujisao
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Roberto C Verdade
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Rômulo P Paschoalato
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Ricardo P Paschoalato
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Seizo Yamashita
- Department of Tropical Diseases and Diagnostic Imaging, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Luiz E Betting
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
27
|
Salinas FS, Szabó CÁ. Resting-state functional connectivity in the baboon model of genetic generalized epilepsy. Epilepsia 2015; 56:1580-9. [PMID: 26290449 DOI: 10.1111/epi.13115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The baboon provides a natural model of genetic generalized epilepsy (GGE). This study compares the intrinsic connectivity networks of epileptic and healthy control baboons using resting-state functional magnetic resonance imaging (rs-fMRI) and data-driven functional connectivity mapping. METHODS Twenty baboons, matched for gender, age, and weight, were classified into two groups (10 epileptic [EPI], 10 control [CTL]) on the basis of scalp electroencephalography (EEG) findings. Each animal underwent one MRI session that acquired one 5-min resting state fMRI scan and one anatomic MRI scan-used for registration and spatial normalization. Using independent component analysis, we identified 14 unique components/networks, which were then used to characterize each group's functional connectivity maps of each brain network. RESULTS The epileptic group demonstrated network-specific differences in functional connectivity when compared to the control animals. The sensitivity and specificity of the two groups' functional connectivity maps differed significantly in the visual, motor, amygdala, insular, and default mode networks. Significant increases were found in the occipital gyri of the epileptic group's functional connectivity map for the default mode, cingulate, intraparietal, motor, visual, amygdala, and thalamic regions. SIGNIFICANCE This is the first study using resting-state fMRI to demonstrate intrinsic functional connectivity differences between epileptic and control nonhuman primates. These results are consistent with seed-based GGE studies in humans; however, our use of a data-driven approach expands the scope of functional connectivity mapping to include brain regions/networks comprising the whole brain.
Collapse
Affiliation(s)
- Felipe S Salinas
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, U.S.A
| | - C Ákos Szabó
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, U.S.A
| |
Collapse
|
28
|
Maloney TC, Tenney JR, Szaflarski JP, Vannest J. Simultaneous Electroencephalography and Functional Magnetic Resonance Imaging and the Identification of Epileptic Networks in Children. JOURNAL OF PEDIATRIC EPILEPSY 2015; 4:174-183. [PMID: 26744634 DOI: 10.1055/s-0035-1559812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
EEG/fMRI takes advantage of the high temporal resolution of EEG in combination with the high spatial resolution of fMRI. These features make it particularly applicable to the study of epilepsy in which the event duration (e.g., interictal epileptiform discharges) is short, typically less than 200 milliseconds. Interictal or ictal discharges can be identified on EEG and be used for source localization in fMRI analyses. The acquisition of simultaneous EEG/fMRI involves the use of specialized EEG hardware that is safe in the MR environment and comfortable to the participant. Advanced data analysis approaches such as independent component analysis conducted alone or sometimes combined with other, e.g., Granger Causality or "sliding window" analyses are currently thought to be most appropriate for EEG/fMRI data. These approaches make it possible to identify networks of brain regions associated with ictal and/or interictal events allowing examination of the mechanisms critical for generation and propagation through these networks. After initial evaluation in adults, EEG/fMRI has been applied to the examination of the pediatric epilepsy syndromes including Childhood Absence Epilepsy, Benign Epilepsy with Centrotemporal Spikes (BECTS), Dravet Syndrome, and Lennox-Gastaut Syndrome. Results of EEG/fMRI studies suggest that the hemodynamic response measured by fMRI may have a different shape in response to epileptic events compared to the response to external stimuli; this may be especially true in the developing brain. Thus, the main goal of this review is to provide an overview of the pediatric applications of EEG/fMRI and its associated findings up until this point.
Collapse
|
29
|
Brain amyloid-β burden is associated with disruption of intrinsic functional connectivity within the medial temporal lobe in cognitively normal elderly. J Neurosci 2015; 35:3240-7. [PMID: 25698758 DOI: 10.1523/jneurosci.2092-14.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The medial temporal lobe is implicated as a key brain region involved in the pathogenesis of Alzheimer's disease (AD) and consequent memory loss. Tau tangle aggregation in this region may develop concurrently with cortical Aβ deposition in preclinical AD, but the pathological relationship between tau and Aβ remains unclear. We used task-free fMRI with a focus on the medical temporal lobe, together with Aβ PET imaging, in cognitively normal elderly human participants. We found that cortical Aβ load was related to disrupted intrinsic functional connectivity of the perirhinal cortex, which is typically the first brain region affected by tauopathies in AD. There was no concurrent association of cortical Aβ load with cognitive performance or brain atrophy. These findings suggest that dysfunction in the medial temporal lobe may represent a very early sign of preclinical AD and may predict future memory loss.
Collapse
|
30
|
Kay B, Szaflarski JP. EEG/fMRI contributions to our understanding of genetic generalized epilepsies. Epilepsy Behav 2014; 34:129-35. [PMID: 24679893 PMCID: PMC4008674 DOI: 10.1016/j.yebeh.2014.02.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/26/2014] [Indexed: 12/26/2022]
Abstract
The first reports of combined EEG and fMRI used for evaluation of epileptic spikes date back to the mid-90s. At that time, the technique was called EEG-triggered fMRI--the "triggered" corresponded to an epilepsy specialist reviewing live EEG while the patient was located in the scanner; after the spike was identified, a scan was initiated to collect the data. Since then major progress has been made in combined EEG/fMRI data collection and analyses. These advances allow studying the electrophysiology of genetic generalized epilepsies (GGEs) in vivo in greater detail than ever. In addition to continuous data collection, we now have better methods for removing physiologic and fMRI-related artifacts, more advanced understanding of the hemodynamic response functions, and better computational methods to address the questions regarding the origins of the epileptiform discharge generators in patients with GGEs. These advances have allowed us to examine numerous cohorts of children and adults with GGEs while not only looking for spike and wave generators but also examining specific types of GGEs (e.g., juvenile myoclonic epilepsy or childhood absence epilepsy), drug-naïve patients, effects of medication resistance, or effects of epileptiform abnormalities and/or seizures on brain connectivity. While the discussion is ongoing, the prevailing thought is that the GGEs as a group are a network disorder with participation from multiple nodes including the thalami and cortex with the clinical presentation depending on which node of the participating network is affected by the disease process. This review discusses the contributions of EEG/fMRI to our understanding of GGEs.
Collapse
Affiliation(s)
- Benjamin Kay
- Graduate Program in Neuroscience, University of Cincinnati Academic Health Center, Cincinnati, OH, USA,Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Jerzy P. Szaflarski
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA,Department of Neurology and the University of Alabama at Birmingham (UAB) Epilepsy Center, UAB, Birmingham, AL, USA
| |
Collapse
|