1
|
Subramanian AK, Talbot A, Kim N, Parmigiani S, Cline CC, Solomon EA, Hartford JW, Huang Y, Mikulan E, Zauli FM, d'Orio P, Cardinale F, Mannini F, Pigorini A, Keller CJ. Scalp EEG predicts intracranial brain activity in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647612. [PMID: 40291696 PMCID: PMC12026988 DOI: 10.1101/2025.04.07.647612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Inferring deep brain activity from noninvasive scalp recordings remains a fundamental challenge in neuroscience. Here, we analyzed concurrent scalp and intracranial recordings from 1918 electrode contacts across 20 patients affected by drug-resistant epilepsy undergoing intracranial depth electrode monitoring for pre-surgical evaluation to establish predictive relationships between surface and deep brain signals. Using regularized and cross-validated linear regression within subjects, we demonstrate that scalp recordings can predict spontaneous intracranial activity, with accuracy varying by region, depth, and frequency. Low-frequency signals (<12 Hz) were most predictable, with our models explaining approximately 10% of intracranial signal variance across contacts. Prediction accuracy decreased with contact depth, particularly for high-frequency signals. Using Bayesian modeling with leave-one-patient-out cross-validation, we observed generalizable prediction of activity in mesial temporal, prefrontal, and orbitofrontal cortices, explaining 10-12% of low-frequency signal variance. This scalp-to-intracranial mapping derived from spontaneous activity was further validated by its correlation with scalp responses evoked by direct electrical stimulation. These findings support the development of improved inverse models of brain activity and potentially more accurate scalp-based markers of disease and treatment response.
Collapse
|
2
|
Kremen V, Sladky V, Mivalt F, Gregg NM, Brinkmann BH, Balzekas I, Marks V, Kucewicz M, Lundstrom BN, Cui J, St Louis EK, Croarkin P, Alden EC, Joseph B, Fields J, Crockett K, Adolf J, Bilderbeek J, Hermes D, Messina S, Miller KJ, Van Gompel J, Denison T, Worrell GA. Modulating limbic circuits in temporal lobe epilepsy: impacts on seizures, memory, mood and sleep. Brain Commun 2025; 7:fcaf106. [PMID: 40196395 PMCID: PMC11972686 DOI: 10.1093/braincomms/fcaf106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/11/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures that often originate within limbic networks involving amygdala and hippocampus. The limbic network is involved in crucial physiologic functions involving memory, emotion and sleep. Temporal lobe epilepsy is frequently drug-resistant, and people often experience comorbidities related to memory, mood and sleep. Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is an established therapy for temporal lobe epilepsy. However, the optimal stimulation parameters and their impact on memory, mood and sleep comorbidities remain unclear. We used an investigational brain sensing-stimulation implanted device to accurately track seizures, interictal epileptiform spikes (IES), and memory, mood and sleep comorbidities in five ambulatory subjects. Wireless streaming of limbic network local field potentials (LFPs) and subject behaviour were captured on a mobile device integrated with a cloud environment. Automated algorithms applied to the continuous LFPs were used to accurately cataloged seizures, IES and sleep-wake brain state. Memory and mood assessments were remotely administered to densely sample cognitive and behavioural response during ANT-DBS in ambulatory subjects living in their natural home environment. We evaluated the effect of continuous low-frequency and duty cycle high-frequency ANT-DBS on epileptiform activity and memory, mood and sleep comorbidities. Both low-frequency and high-frequency ANT-DBS paradigms reduced seizures. However, continuous low-frequency ANT-DBS showed greater reductions in IES, electrographic seizures and better sleep and memory outcomes. These results highlight the potential of synchronized brain sensing and dense behavioural tracking during ANT-DBS for optimizing neuromodulation therapy. While studies with larger patient numbers are needed to validate the benefits of low-frequency ANT-DBS, these findings are potentially translatable to individuals currently implanted with ANT-DBS systems.
Collapse
Affiliation(s)
- Vaclav Kremen
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague 16000, Czech Republic
| | - Vladimir Sladky
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno 27201, Czech Republic
| | - Filip Mivalt
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno 61600, Czech Republic
| | - Nicholas M Gregg
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin H Brinkmann
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Irena Balzekas
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Victoria Marks
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michal Kucewicz
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- BioTechMed Center, Brain and Mind Electrophysiology Lab, Multimedia Systems Department, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Brian Nils Lundstrom
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Cui
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik K St Louis
- Divisions of Sleep Neurology and Pulmonary and Critical Care Medicine, Departments of Neurology and Medicine, Center for Sleep Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul Croarkin
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eva C Alden
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Boney Joseph
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie Fields
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Karla Crockett
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Jindrich Adolf
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague 16000, Czech Republic
| | - Jordan Bilderbeek
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven Messina
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kai Joshua Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Jamie Van Gompel
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Denison
- Department of Engineering Science, Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford OX3 7DQ, UK
| | - Gregory A Worrell
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Holmes GL. Timing is everything: The effect of early-life seizures on developing neuronal circuits subserving spatial memory. Epilepsia Open 2025. [PMID: 40110908 DOI: 10.1002/epi4.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025] Open
Abstract
Spatial memory, the aspect of memory involving encoding and retrieval of information regarding one's environment and spatial orientation, is a complex biological function incorporating multiple neuronal networks. Hippocampus-dependent spatial memory is not innate and emerges during development in both humans and rodents. For spatial memory to occur, the hippocampus forms highly associative networks integrating external inputs conveying multi-sensory, proprioceptive, contextual, and emotional information onto internally generated dynamics. Hippocampal cognitive maps are produced by sequences of transient ordered neuronal activations that represent not only spatial information but also the temporal order of events in a memory episode. This patterned activity fine-tunes synaptic connectivity of the network and drives the emergence of specific firing necessary for spatial memory. In the rodent hippocampus, there is a sequence of spontaneous activities that are precisely timed, starting with early sharp waves progressing to theta and gamma oscillations, place and grid cell firing, and sharp wave-ripples that must occur for spatial memory to develop. Whereas normal activity patterns are required for circuit maturation, aberrant neuronal activity during development can have major adverse consequences, disrupting the development of spatial memory. Seizures during infancy, involving massive bursts of synchronized network activity, result in impaired spatial memory when animals are tested as adolescents or adults. This impaired spatial memory is accompanied by alterations in theta and gamma oscillations and spatial and temporal coding of place cells. Conversely, enhancement of oscillatory activity following early-life seizures can improve cognitive impairment. The plasticity of developing oscillatory activity in the immature brain provides exciting opportunities for therapeutic intervention in childhood epilepsy. PLAIN LANGUAGE SUMMARY: Children with epilepsy often struggle with memory and learning challenges. Research has shown that seizures can interfere with the brain's natural rhythms, which are crucial for these processes. Seizures in children are particularly harmful because they disrupt the development of brain connections, which are still growing and maturing during this critical time. Exciting new studies in both animals and humans suggest that using electrical or magnetic stimulation to adjust these brain rhythms can help restore memory and learning abilities. This breakthrough offers hope for improving the lives of children with epilepsy.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
4
|
Hollearn MK, Manns JR, Blanpain LT, Hamann SB, Bijanki K, Gross RE, Drane DL, Campbell JM, Wahlstrom KL, Light GF, Tasevac A, Demarest P, Brunner P, Willie JT, Inman CS. Exploring individual differences in amygdala-mediated memory modulation. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:188-209. [PMID: 39702728 DOI: 10.3758/s13415-024-01250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Amygdala activation by emotional arousal during memory formation can prioritize events for long-term memory. Building upon our prior demonstration that brief electrical stimulation to the human amygdala reliably improved long-term recognition memory for images of neutral objects without eliciting an emotional response, our study aims to explore and describe individual differences and stimulation-related factors in amygdala-mediated memory modulation. Thirty-one patients undergoing intracranial monitoring for intractable epilepsy were shown neutral object images paired with direct amygdala stimulation during encoding with recognition memory tested immediately and one day later. Adding to our prior sample, we found an overall memory enhancement effect without subjective emotional arousal at the one-day delay, but not at the immediate delay, for previously stimulated objects compared to not stimulated objects. Importantly, we observed a larger variation in performance across this larger sample than our initial sample, including some participants who showed a memory impairment for stimulated objects. Of the explored individual differences, the factor that most accounted for variability in memory modulation was each participant's pre-operative memory performance. Worse memory performance on standardized neuropsychological tests was associated with a stronger susceptibility to memory modulation in a positive or negative direction. Sex differences and the frequency of interictal epileptiform discharges (IEDs) during testing also accounted for some variance in amygdala-mediated memory modulation. Given the potential and challenges of this memory modulation approach, we discuss additional individual and stimulation factors that we hope will differentiate between memory enhancement and impairment to further optimize the potential of amygdala-mediated memory enhancement for therapeutic interventions.
Collapse
Affiliation(s)
- Martina K Hollearn
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA
| | | | - Lou T Blanpain
- Neuroscience, Emory School of Medicine, Atlanta, GA, USA
| | | | - Kelly Bijanki
- Neurosurgery, Baylor College of Medicine, Huston, TX, USA
| | - Robert E Gross
- Neurosurgery, Emory School of Medicine, Atlanta, GA, USA
| | | | - Justin M Campbell
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Krista L Wahlstrom
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA
| | - Griffin F Light
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA
| | - Aydin Tasevac
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA
| | - Phillip Demarest
- Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peter Brunner
- Neurosurgery, Washington University School of Medicine, Saint Louis, MO, USA
- Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jon T Willie
- Neurosurgery, Washington University School of Medicine, Saint Louis, MO, USA
- Barnes-Jewish Hospital, Saint Louis, MO, USA
| | - Cory S Inman
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA.
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Nakagawa Y, Satake Y, Hata M, Ikeda M. Anterograde amnesia recurrence in temporal lobe epilepsy with amygdala-enlargement. BMJ Case Rep 2024; 17:e262302. [PMID: 39730167 DOI: 10.1136/bcr-2024-262302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024] Open
Abstract
Temporal lobe epilepsy (TLE) can cause different types of memory impairments. Here, we report a case of immediate improvement of memory impairment following antiepileptic drug (AED) treatment in a patient with TLE with amygdala enlargement (TLE-AE), who rapidly developed recurrence. The patient was a man in his 60s whose family members complained of his amnesia. Neuropsychological investigations detected obvious recent and remote memory loss and executive function impairments. Our examinations revealed evidence of TLE and bilateral amygdala enlargement without any results suggesting organic diseases, resulting in a diagnosis of TLE-AE. Although treatment with levetiracetam immediately improved recent memory and executive function, the improvement of the former was temporary. His recent memory loss impairments recurred within 3 months, but were recovered again after switching drug treatment to lacosamide and suppressing epileptic seizures. Careful follow-up after starting AED and sufficient AED adjustment is important in the treatment of memory problems in TLE-AE.
Collapse
Affiliation(s)
- Yuta Nakagawa
- Department of Psychiatry, Osaka University, Suita, Osaka, Japan
- Asakayama General Hospital, Sakai, Osaka, Japan
| | - Yuto Satake
- Department of Psychiatry, Osaka University, Suita, Osaka, Japan
- Division of Psychiatry, University College London, London, UK
| | - Masahiro Hata
- Department of Psychiatry, Osaka University, Suita, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Yi JD, Pasdarnavab M, Kueck L, Tarcsay G, Ewell LA. Interictal spikes during spatial working memory carry helpful or distracting representations of space and have opposing impacts on performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623481. [PMID: 39605412 PMCID: PMC11601362 DOI: 10.1101/2024.11.13.623481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In temporal lobe epilepsy, interictal spikes (IS) - hypersynchronous bursts of network activity - occur at high rates in between seizures. We sought to understand the influence of IS on working memory by recording hippocampal local field potentials from epileptic mice while they performed a delayed alternation task. We found that IS disrupted performance when they were spatially non-restricted and occurred during running. In contrast, when IS were clustered at reward locations, animals performed well. A machine learning decoding approach revealed that IS at reward sites were larger than IS elsewhere on the maze, and could be classified as occurring at specific reward locations - suggesting they carry informative content for the memory task. Finally, a spiking model revealed that spatially clustered IS preserved hippocampal replay, while spatially dispersed IS disrupted replay by causing over-generalization. Together, these results show that IS can have opposing outcomes on memory.
Collapse
Affiliation(s)
- Justin D. Yi
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- These authors contributed equally
| | | | | | - Gergely Tarcsay
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Laura A. Ewell
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Center for Learning and Memory, University of California, Irvine, Irvine, CA, USA
- Senior author
- Lead contact
| |
Collapse
|
7
|
Wheeler L, Worrell SE, Balzekas I, Bilderbeek J, Hermes D, Croarkin P, Messina S, Van Gompel J, Miller KJ, Kremen V, Worrell GA. Case report: Bridging limbic network epilepsy with psychiatric, memory, and sleep comorbidities: case illustrations of reversible psychosis symptoms during continuous, high-frequency ANT-DBS. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1426743. [PMID: 39175607 PMCID: PMC11338927 DOI: 10.3389/fnetp.2024.1426743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
The network nature of focal epilepsy is exemplified by mesial temporal lobe epilepsy (mTLE), characterized by focal seizures originating from the mesial temporal neocortex, amygdala, and hippocampus. The mTLE network hypothesis is evident in seizure semiology and interictal comorbidities, both reflecting limbic network dysfunction. The network generating seizures also supports essential physiological functions, including memory, emotion, mood, and sleep. Pathology in the mTLE network often manifests as interictal behavioral disturbances and seizures. The limbic circuit is a vital network, and here we review one of the most common focal epilepsies and its comorbidities. We describe two people with drug resistant mTLE implanted with an investigational device enabling continuous hippocampal local field potential sensing and anterior nucleus of thalamus deep brain stimulation (ANT-DBS) who experienced reversible psychosis during continuous high-frequency stimulation. The mechanism(s) of psychosis remain poorly understood and here we speculate that the anti-epileptic effect of high frequency ANT-DBS may provide insights into the physiology of primary disorders associated with psychosis.
Collapse
Affiliation(s)
- Lydia Wheeler
- Bioelectronic Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Samuel E. Worrell
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Irena Balzekas
- Bioelectronic Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Jordan Bilderbeek
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Paul Croarkin
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Steven Messina
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Jamie Van Gompel
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Kai J. Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Vaclav Kremen
- Bioelectronic Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University, Prague, Czechia
| | - Gregory A. Worrell
- Bioelectronic Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Kalogeropoulos K, Psarropoulou C. Immature Status Epilepticus Alters the Temporal Relationship between Hippocampal Interictal Epileptiform Discharges and High-frequency Oscillations. Neuroscience 2024; 543:108-120. [PMID: 38401712 DOI: 10.1016/j.neuroscience.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The aim was to investigate the long-term effects of a single episode of immature Status Epilepticus (SE) on the excitability of the septal and temporal hippocampus in vitro, by studying the relationship between interictal-like epileptiform discharges (IEDs) and high-frequency oscillations (HFOs; Ripples, Rs and Fast Ripples, FRs). A pentylenetetrazol-induced Status Epilepticus-(SE)-like generalized seizure was induced at postnatal day 20 in 22 male and female juvenile rats, sacrificed >40 days later to prepare hippocampal slices. Spontaneous IEDs induced by Mg2+-free ACSF were recorded from the CA3 area of temporal (T) or septal (S) slices. Recordings were band-pass filtered off-line revealing Rs and FRs and a series of measurements were conducted, with mean values compared with those obtained from age-matched controls (CTRs). In CTR S (vs T) slices, we recorded longer R & FR durations, a longer HFO-IED temporal overlap, higher FR peak power and more frequent FR initiation preceding IEDs (% events). Post-SE, in T slices all types of events duration (IED, R, FR) and the time lag between their onsets (R-IED, FR-IED, R-FR) increased, while FR/R peak power decreased; in S slices, the IED 1st population spike and the FR amplitudes, the R and FR peak power and the (percent) events where Rs or FRs preceded IEDs all decreased. The CA3 IED-HFO relationship offers insights to the septal-to-temporal synchronization patterns; its post-juvenile-SE changes indicate permanent modifications in the septotemporal excitability gradient. Moreover, these findings are in line to region-specific regulation of various currents post-SE, as reported in literature.
Collapse
Affiliation(s)
- Konstantinos Kalogeropoulos
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110, Greece.
| | - Caterina Psarropoulou
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110, Greece.
| |
Collapse
|
9
|
Kremen V, Sladky V, Mivalt F, Gregg NM, Balzekas I, Marks V, Brinkmann BH, Lundstrom BN, Cui J, St Louis EK, Croarkin P, Alden EC, Fields J, Crockett K, Adolf J, Bilderbeek J, Hermes D, Messina S, Miller KJ, Van Gompel J, Denison T, Worrell GA. A platform for brain network sensing and stimulation with quantitative behavioral tracking: Application to limbic circuit epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.09.24302358. [PMID: 38370724 PMCID: PMC10871449 DOI: 10.1101/2024.02.09.24302358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures. These seizures often originate from limbic networks and people also experience chronic comorbidities related to memory, mood, and sleep (MMS). Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is a proven therapy, but the optimal stimulation parameters remain unclear. We developed a neurotechnology platform for tracking seizures and MMS to enable data streaming between an investigational brain sensing-stimulation implant, mobile devices, and a cloud environment. Artificial Intelligence algorithms provided accurate catalogs of seizures, interictal epileptiform spikes, and wake-sleep brain states. Remotely administered memory and mood assessments were used to densely sample cognitive and behavioral response during ANT-DBS. We evaluated the efficacy of low-frequency versus high-frequency ANT-DBS. They both reduced seizures, but low-frequency ANT-DBS showed greater reductions and better sleep and memory. These results highlight the potential of synchronized brain sensing and behavioral tracking for optimizing neuromodulation therapy.
Collapse
|
10
|
Fu Y, Zhang J, Cao Y, Ye L, Zheng R, Li Q, Shen B, Shi Y, Cao J, Fang J. Recognition memory deficits detected through eye-tracking in well-controlled children with self-limited epilepsy with centrotemporal spikes. Epilepsia 2024; 65:1128-1140. [PMID: 38299621 DOI: 10.1111/epi.17902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
OBJECTIVE Children with self-limited epilepsy characterized by centrotemporal spikes (SeLECTS) exhibit cognitive deficits in memory during the active phase, but there is currently a lack of studies and techniques to assess their memory development after well-controlled seizures. In this study, we employed eye-tracking techniques to investigate visual memory and its association with clinical factors and global intellectual ability, aiming to identify potential risk factors by examining encoding and recognition processes. METHODS A total of 26 recruited patients diagnosed with SeLECTS who had been seizure-free for at least 2 years, along with 24 control subjects, underwent Wechsler cognitive assessment and an eye-movement-based memory task while video-electroencephalographic (EEG) data were recorded. Fixation and pupil data related to eye movements were utilized to detect distinct memory processes and subsequently to compare the cognitive performance of patients exhibiting different regression patterns on EEG. RESULTS The findings revealed persistent impairments in visual memory among children with SeLECTS after being well controlled, primarily observed in the recognition stage rather than the encoding phase. Furthermore, the age at onset, frequency of seizures, and interictal epileptiform discharges exhibited significant correlations with eye movement data. SIGNIFICANCE Children with SeLECTS exhibit persistent recognition memory impairment after being well controlled for the disease. Controlling the frequency of seizures and reducing prolonged epileptiform activity may improve memory cognitive development. The application of the eye-tracking technique may provide novel insights into exploring memory cognition as well as underlying mechanisms associated with pediatric epilepsy.
Collapse
Affiliation(s)
- Yanlu Fu
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jingxin Zhang
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yina Cao
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Linmei Ye
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Runze Zheng
- Artificial Intelligence Institute, Hangzhou Dianzi University School of Automation, Hangzhou, Zhejiang, China
| | - Qiwei Li
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Beibei Shen
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yi Shi
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jiuwen Cao
- Artificial Intelligence Institute, Hangzhou Dianzi University School of Automation, Hangzhou, Zhejiang, China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
11
|
Liu AA, Barr WB. Overlapping and distinct phenotypic profiles in Alzheimer's disease and late onset epilepsy: a biologically-based approach. Front Neurol 2024; 14:1260523. [PMID: 38545454 PMCID: PMC10965692 DOI: 10.3389/fneur.2023.1260523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/18/2023] [Indexed: 04/05/2024] Open
Abstract
Due to shared hippocampal dysfunction, patients with Alzheimer's dementia and late-onset epilepsy (LOE) report memory decline. Multiple studies have described the epidemiological, pathological, neurophysiological, and behavioral overlap between Alzheimer's Disease and LOE, implying a bi-directional relationship. We describe the neurobiological decline occurring at different spatial in AD and LOE patients, which may explain why their phenotypes overlap and differ. We provide suggestions for clinical recognition of dual presentation and novel approaches for behavioral testing that reflect an "inside-out," or biologically-based approach to testing memory. New memory and language assessments could detect-and treat-memory impairment in AD and LOE at an earlier, actionable stage.
Collapse
Affiliation(s)
- Anli A. Liu
- Langone Medical Center, New York University, New York, NY, United States
- Department of Neurology, School of Medicine, New York University, New York, NY, United States
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, United States
| | - William B. Barr
- Department of Neurology, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
12
|
McLaren JR, Kahle KT, Richardson RM, Chu CJ. Epilepsy Surgery for Cognitive Improvement in Epileptic Encephalopathy. Neurosurg Clin N Am 2024; 35:49-59. [PMID: 38000841 PMCID: PMC11384968 DOI: 10.1016/j.nec.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Epileptic encephalopathies are defined by the presence of frequent epileptiform activity that causes neurodevelopmental slowing or regression. Here, we review evidence that epilepsy surgery improves neurodevelopment in children with epileptic encephalopathies. We describe an example patient with epileptic encephalopathy without drug refractory seizures, who underwent successful diagnostic and therapeutic surgeries. In patients with epileptic encephalopathy, cognitive improvement alone is a sufficient indication to recommend surgical intervention in experienced centers.
Collapse
Affiliation(s)
- John R McLaren
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School
| | - Kristopher T Kahle
- Harvard Medical School; Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Wang Building Room 333, Boston, MA 02114, USA
| | - R Mark Richardson
- Harvard Medical School; Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Their Building, 4th Floor, Boston, MA 02114, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School.
| |
Collapse
|
13
|
Silva AB, Leonard MK, Oganian Y, D’Esopo E, Krish D, Kopald B, Tran EB, Chang EF, Kleen JK. Interictal epileptiform discharges contribute to word-finding difficulty in epilepsy through multiple cognitive mechanisms. Epilepsia 2023; 64:3266-3278. [PMID: 37753856 PMCID: PMC10841419 DOI: 10.1111/epi.17781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Cognitive impairment often impacts quality of life in epilepsy even if seizures are controlled. Word-finding difficulty is particularly prevalent and often attributed to etiological (static, baseline) circuit alterations. We sought to determine whether interictal discharges convey significant superimposed contributions to word-finding difficulty in patients, and if so, through which cognitive mechanism(s). METHODS Twenty-three patients undergoing intracranial monitoring for drug-resistant epilepsy participated in multiple tasks involving word production (auditory naming, short-term verbal free recall, repetition) to probe word-finding difficulty across different cognitive domains. We compared behavioral performance between trials with versus without interictal discharges across six major brain areas and adjusted for intersubject differences using mixed-effects models. We also evaluated for subjective word-finding difficulties through retrospective chart review. RESULTS Subjective word-finding difficulty was reported by the majority (79%) of studied patients preoperatively. During intracranial recordings, interictal epileptiform discharges (IEDs) in the medial temporal lobe were associated with long-term lexicosemantic memory impairments as indexed by auditory naming (p = .009), in addition to their established impact on short-term verbal memory as indexed by free recall (p = .004). Interictal discharges involving the lateral temporal cortex and lateral frontal cortex were associated with delayed reaction time in the auditory naming task (p = .016 and p = .018), as well as phonological working memory impairments as indexed by repetition reaction time (p = .002). Effects of IEDs across anatomical regions were strongly dependent on their precise timing within the task. SIGNIFICANCE IEDs appear to act through multiple cognitive mechanisms to form a convergent basis for the debilitating clinical word-finding difficulty reported by patients with epilepsy. This was particularly notable for medial temporal spikes, which are quite common in adult focal epilepsy. In parallel with the treatment of seizures, the modulation of interictal discharges through emerging pharmacological means and neurostimulation approaches may be an opportunity to help address devastating memory and language impairments in epilepsy.
Collapse
Affiliation(s)
- Alexander B. Silva
- Department of Neurosurgery, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Matthew K. Leonard
- Department of Neurosurgery, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Emma D’Esopo
- Department of Neurology, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Devon Krish
- Department of Neurology, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Brandon Kopald
- Department of Neurology, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Edwina B. Tran
- Department of Neurology, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Edward F. Chang
- Department of Neurosurgery, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Jonathan K. Kleen
- Department of Neurology, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Sheybani L, Vivekananda U, Rodionov R, Diehl B, Chowdhury FA, McEvoy AW, Miserocchi A, Bisby JA, Bush D, Burgess N, Walker MC. Wake slow waves in focal human epilepsy impact network activity and cognition. Nat Commun 2023; 14:7397. [PMID: 38036557 PMCID: PMC10689494 DOI: 10.1038/s41467-023-42971-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Slow waves of neuronal activity are a fundamental component of sleep that are proposed to have homeostatic and restorative functions. Despite this, their interaction with pathology is unclear and there is only indirect evidence of their presence during wakefulness. Using intracortical recordings from the temporal lobe of 25 patients with epilepsy, we demonstrate the existence of local wake slow waves (LoWS) with key features of sleep slow waves, including a down-state of neuronal firing. Consistent with a reduction in neuronal activity, LoWS were associated with slowed cognitive processing. However, we also found that LoWS showed signatures of a homeostatic relationship with interictal epileptiform discharges (IEDs): exhibiting progressive adaptation during the build-up of network excitability before an IED and reducing the impact of subsequent IEDs on network excitability. We therefore propose an epilepsy homeostasis hypothesis: that slow waves in epilepsy reduce aberrant activity at the price of transient cognitive impairment.
Collapse
Affiliation(s)
- Laurent Sheybani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Umesh Vivekananda
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Roman Rodionov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Fahmida A Chowdhury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - James A Bisby
- Division of Psychiatry, University College London, London, UK
| | - Daniel Bush
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Neil Burgess
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
- NIHR University College London Hospitals Biomedical Research Centre, London, UK.
| |
Collapse
|
15
|
Ciliento R, Gjini K, Dabbs K, Hermann B, Riedner B, Jones S, Fatima S, Johnson S, Bendlin B, Lam AD, Boly M, Struck AF. Prevalence and localization of nocturnal epileptiform discharges in mild cognitive impairment. Brain Commun 2023; 5:fcad302. [PMID: 37965047 PMCID: PMC10642616 DOI: 10.1093/braincomms/fcad302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Recent evidence shows that identifying and treating epileptiform abnormalities in patients with Alzheimer's disease could represent a potential avenue to improve clinical outcome. Specifically, animal and human studies have revealed that in the early phase of Alzheimer's disease, there is an increased risk of seizures. It has also been demonstrated that the administration of anti-seizure medications can slow the functional progression of the disease only in patients with EEG signs of cortical hyperexcitability. In addition, although it is not known at what disease stage hyperexcitability emerges, there remains no consensus regarding the imaging and diagnostic methods best able to detect interictal events to further distinguish different phenotypes of Alzheimer's disease. In this exploratory work, we studied 13 subjects with amnestic mild cognitive impairment and 20 healthy controls using overnight high-density EEG with 256 channels. All participants also underwent MRI and neuropsychological assessment. Electronic source reconstruction was also used to better select and localize spikes. We found spikes in six of 13 (46%) amnestic mild cognitive impairment compared with two of 20 (10%) healthy control participants (P = 0.035), representing a spike prevalence similar to that detected in previous studies of patients with early-stage Alzheimer's disease. The interictal events were low-amplitude temporal spikes more prevalent during non-rapid eye movement sleep. No statistically significant differences were found in cognitive performance between amnestic mild cognitive impairment patients with and without spikes, but a trend in immediate and delayed memory was observed. Moreover, no imaging findings of cortical and subcortical atrophy were found between amnestic mild cognitive impairment participants with and without epileptiform spikes. In summary, our exploratory study shows that patients with amnestic mild cognitive impairment reveal EEG signs of hyperexcitability early in the disease course, while no other significant differences in neuropsychological or imaging features were observed among the subgroups. If confirmed with longitudinal data, these exploratory findings could represent one of the first signatures of a preclinical epileptiform phenotype of amnestic mild cognitive impairment and its progression.
Collapse
Affiliation(s)
- Rosario Ciliento
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Klevest Gjini
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Kevin Dabbs
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Bruce Hermann
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Brady Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Stephanie Jones
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Safoora Fatima
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Sterling Johnson
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Barbara Bendlin
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Alice D Lam
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Melanie Boly
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Aaron F Struck
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Neurology, William S. Middleton Veterans Administration Hospital, Madison, WI 53705, USA
| |
Collapse
|
16
|
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 2023; 187:106294. [PMID: 37714307 PMCID: PMC10617404 DOI: 10.1016/j.nbd.2023.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| |
Collapse
|
17
|
Kim MS, Torres K, Kang HJ, Drane DL. Specificity of performance validity tests in patients with confirmed epilepsy. Clin Neuropsychol 2023; 37:1530-1547. [PMID: 36219095 DOI: 10.1080/13854046.2022.2127424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/16/2022] [Indexed: 11/03/2022]
Abstract
Objective: While assessment of performance validity is essential to neuropsychological evaluations, use of performance validity tests (PVTs) in an epilepsy population has raised concerns due to factors that may result in performance fluctuations. The current study assessed whether specificity was maintained at previously suggested cutoffs in a confirmed epilepsy population on the Warrington Recognition Memory Test (WRMT) - Words and Test of Memory Malingering (TOMM). Method: Eighty-two confirmed epilepsy patients were administered the WRMT-Words and TOMM as part of a standardized neuropsychological evaluation. Frequency tables were utilized to investigate specificity rates on these two PVTs. Results: The suggested WRMT-Words Accuracy Score cutoff of ≤42 was associated with a specificity rate of 90.2%. Five out of the 8 individuals falling below the Accuracy Score cutoff scored 42, suggesting specificity could be further improved by slightly lowering the cutoff. The WRMT-Words Total Time cutoff of ≥207 seconds was associated with 95.1% specificity. A TOMM Trial 1 cutoff of <40 was associated with 93.9% specificity, while the established cutoff of <45 on Trial 2 and the Retention Trial yielded specificity rates of 98.6% and 100.0%, respectively. Conclusions: Our findings demonstrate acceptable performance on two PVTs in a select confirmed epilepsy population without a history of brain surgery, active seizures during testing, and/or low IQ, irrespective of various factors such as seizure type, seizure lateralization/localization, and language lateralization. The possible presence of interictal discharges were not controlled for in the current study, which may have contributed to reduced PVT performances.
Collapse
Affiliation(s)
- Michelle S Kim
- Department of Neurology, University of Washington, Seattle, USA
| | - Karen Torres
- Department of Neurology, University of Washington, Seattle, USA
| | - Hyun Jin Kang
- Department of Neurology, University of Washington, Seattle, USA
| | - Daniel L Drane
- Department of Neurology, University of Washington, Seattle, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| |
Collapse
|
18
|
Sarkis RA, Lam AD, Pavlova M, Locascio JJ, Putta S, Puri N, Pham J, Yih A, Marshall GA, Stickgold R. Epilepsy and sleep characteristics are associated with diminished 24-h memory retention in older adults with epilepsy. Epilepsia 2023; 64:2771-2780. [PMID: 37392445 PMCID: PMC10592425 DOI: 10.1111/epi.17707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVE Individuals with epilepsy often have memory difficulties, and older adults with epilepsy are especially vulnerable, due to the additive effect of aging. The goal of this study was to assess factors that are associated with 24-h memory retention in older adults with epilepsy. METHODS Fifty-five adults with epilepsy, all aged >50 years, performed a declarative memory task involving the recall of the positions of 15 card pairs on a computer screen prior to a 24-h ambulatory electroencephalogram (EEG). We assessed the percentage of encoded card pairs that were correctly recalled after 24 h (24-h retention rate). EEGs were evaluated for the presence and frequency of scalp interictal epileptiform activity (IEA) and scored for total sleep. Global slow wave activity (SWA) power during non-rapid eye movement sleep was also calculated. RESULTS Forty-four participants successfully completed the memory task. Two were subsequently excluded due to seizures on EEG. The final cohort (n = 42) had a mean age of 64.3 ± 7.5 years, was 52% female, and had an average 24-h retention rate of 70.9% ± 30.2%. Predictors of 24-h retention based on multivariate regression analysis when controlling for age, sex, and education included number of antiseizure medications (β = -.20, p = .013), IEA frequency (β = -.08, p = .0094), and SWA power (β = +.002, p = .02). SIGNIFICANCE In older adults with epilepsy, greater frequency of IEA, reduced SWA power, and higher burden of antiseizure medications correlated with worse 24-h memory retention. These factors represent potential treatment targets to improve memory in older adults with epilepsy.
Collapse
Affiliation(s)
- Rani A Sarkis
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alice D Lam
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Milena Pavlova
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Joseph J Locascio
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Swapna Putta
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nirajan Puri
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jonathan Pham
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alison Yih
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Gad A Marshall
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Hoshino H, Miyasato Y, Handa T, Tomi Y, Kanemura H. Effect of Lacosamide on Interictal Epileptiform Discharges in Pediatric Patients With Newly Diagnosed Focal Epilepsy. Pediatr Neurol 2023; 147:1-8. [PMID: 37499552 DOI: 10.1016/j.pediatrneurol.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/24/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The purpose of this study was to determine the efficacy of lacosamide (LCM) on interictal epileptiform discharges (IEDs) and evaluate the relationships between IEDs and seizure outcome in pediatric patients with focal epilepsy. METHODS Patient inclusion criteria included (1) newly diagnosed focal epilepsy with unknown etiology; and (2) electroencephalogram recorded twice (before and after starting LCM) under the same conditions. The difference between the highest number of IEDs over five successive minutes (IEDs/5 min) and the location of IEDs was determined. Seizure outcome was evaluated one year after achieving the maintenance dose of LCM. Responders were identified as showing a ≥50% reduction in the pre-LCM seizure frequency. RESULTS Of 22 patients, 10 showed an increase in IEDs/5 min after starting LCM. The median IEDs/5 min before and after starting LCM was not significantly different, at 1.5 (interquartile range: 0, 31.75) and 10.5 (0, 80.5), respectively. No relationship was identified between the difference in IEDs/5 min and seizure outcome. Patients with multiple regional or diffuse IEDs had significantly poorer seizure outcome compared with patients without those IEDs (P = 0.036 and P = 0.039, respectively). Of 10 patients with single regional IEDs, a tendency of IEDs to disappear was observed between patients with frontal and non-frontal IEDs. CONCLUSION The effects of LCM on the number of IEDs may be unrelated to seizure outcome. LCM may be ineffective at improving seizure outcomes in patients with multiple regional or diffuse IEDs.
Collapse
Affiliation(s)
- Hiroki Hoshino
- Department of Pediatrics, Toho University Medical Center Sakura Hospital, Sakura, Chiba, Japan.
| | - Yoshihiro Miyasato
- Department of Pediatrics, Toho University Medical Center Sakura Hospital, Sakura, Chiba, Japan
| | - Takayuki Handa
- Department of Pediatrics, Toho University Medical Center Sakura Hospital, Sakura, Chiba, Japan; Department of Pediatrics, Toho University Medical Center Omori Hospital, Ota, Tokyo, Japan
| | - Yutaro Tomi
- Department of Pediatrics, Toho University Medical Center Sakura Hospital, Sakura, Chiba, Japan; Department of Pediatrics, Toho University Medical Center Omori Hospital, Ota, Tokyo, Japan
| | - Hideaki Kanemura
- Department of Pediatrics, Toho University Medical Center Sakura Hospital, Sakura, Chiba, Japan
| |
Collapse
|
20
|
Kleen JK, Davis KA. Is It Reasonable to Drive When There Is a (Spike) Train? Neurology 2023; 101:377-379. [PMID: 37414566 DOI: 10.1212/wnl.0000000000207651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Affiliation(s)
- Jonathan K Kleen
- From the Department of Neurology (J.K.K.), and Weill Institute for Neurosciences (J.K.K.), University of California, San Francisco; and Department of Neurology (K.A.D.), Perelman School of Medicine, and Center for Neuroengineering & Therapeutics (K.A.D.), University of Pennsylvania, Philadelphia
| | - Kathryn A Davis
- From the Department of Neurology (J.K.K.), and Weill Institute for Neurosciences (J.K.K.), University of California, San Francisco; and Department of Neurology (K.A.D.), Perelman School of Medicine, and Center for Neuroengineering & Therapeutics (K.A.D.), University of Pennsylvania, Philadelphia.
| |
Collapse
|
21
|
Krestel H, Schreier DR, Sakiri E, von Allmen A, Abukhadra Y, Nirkko A, Steinlin M, Rosenow F, Markhus R, Schneider G, Jagella C, Mathis J, Blumenfeld H. Predictive Power of Interictal Epileptiform Discharges in Fitness-to-Drive Evaluation. Neurology 2023; 101:e866-e878. [PMID: 37414567 PMCID: PMC10501101 DOI: 10.1212/wnl.0000000000207531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/04/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES This study aimed to evaluate and predict the effects of interictal epileptiform discharges (IEDs) on driving ability using simple reaction tests and a driving simulator. METHODS Patients with various epilepsies were evaluated with simultaneous EEGs during their response to visual stimuli in a single-flash test, a car-driving video game, and a realistic driving simulator. Reaction times (RTs) and missed reactions or crashes (miss/crash) during normal EEG and IEDs were measured. IEDs, as considered in this study, were a series of epileptiform potentials (>1 potential) and were classified as generalized typical, generalized atypical, or focal. RT and miss/crash in relation to IED type, duration, and test type were analyzed. RT prolongation, miss/crash probability, and odds ratio (OR) of miss/crash due to IEDs were calculated. RESULTS Generalized typical IEDs prolonged RT by 164 ms, compared with generalized atypical IEDs (77.0 ms) and focal IEDs (48.0 ms) (p < 0.01). Generalized typical IEDs had a session miss/crash probability of 14.7% compared with a zero median for focal and generalized atypical IEDs (p < 0.01). Long repetitive bursts of focal IEDs lasting >2 seconds had a 2.6% miss/crash probabilityIED. Cumulated miss/crash probability could be predicted from RT prolongation: 90.3 ms yielded a 20% miss/crash probability. All tests were nonsuperior to each other in detecting miss/crash probabilitiesIED (zero median for all 3 tests) or RT prolongations (flash test: 56.4 ms, car-driving video game: 75.5 ms, simulator 86.6 ms). IEDs increased the OR of miss/crash in the simulator by 4.9-fold compared with normal EEG. A table of expected RT prolongations and miss/crash probabilities for IEDs of a given type and duration was created. DISCUSSION IED-associated miss/crash probability and RT prolongation were comparably well detected by all tests. Long focal IED bursts carry a low risk, while generalized typical IEDs are the primary cause of miss/crash. We propose a cumulative 20% miss/crash risk at an RT prolongation of 90.3 ms as a clinically relevant IED effect. The IED-associated OR in the simulator approximates the effects of sleepiness or low blood alcohol level while driving on real roads. A decision aid for fitness-to-drive evaluation was created by providing the expected RT prolongations and misses/crashes when IEDs of a certain type and duration are detected in routine EEG.
Collapse
Affiliation(s)
- Heinz Krestel
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway.
| | - David R Schreier
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway
| | - Elmaze Sakiri
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway
| | - Andreas von Allmen
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway
| | - Yasmina Abukhadra
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway
| | - Arto Nirkko
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway
| | - Maja Steinlin
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway
| | - Felix Rosenow
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway
| | - Rune Markhus
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway
| | - Gaby Schneider
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway
| | - Caroline Jagella
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway
| | - Johannes Mathis
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway
| | - Hal Blumenfeld
- From the Departments of Neurology (H.K., Y.A., C.J., H.B.), Neuroscience (H.B.), and Neurosurgery (H.B.), Yale School of Medicine, New Haven, CT; Epilepsy Center Frankfurt Rhine-Main (H.K., F.R.), University Hospital Frankfurt, Center for Personalized Translational Epilepsy Research (CePTER), and Institute of Mathematics (G.S.), Department of Computer Science and Mathematics, Goethe University, Frankfurt, Germany; Department of Neurology (D.R.S., A.N., J.M.); Departments of Cardiology (E.S.) and Pediatric Neurology (M.S.), Bern University Hospital and University of Bern; Neurocenter Lucerne (A.N.), Switzerland; and National Centre for Epilepsy (R.M.), Division of Clinical Neuroscience Oslo University Hospital, Norway
| |
Collapse
|
22
|
Lisgaras CP, Scharfman HE. Interictal Spikes in Alzheimer's Disease: Preclinical Evidence for Dominance of the Dentate Gyrus and Cholinergic Control by Medial Septum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537999. [PMID: 37163065 PMCID: PMC10168266 DOI: 10.1101/2023.04.24.537999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
HIGHLIGHTS Interictal spikes (IIS) occur in 3 mouse lines with Alzheimer's disease featuresIIS in all 3 mouse lines were most frequent during rapid eye movement (REM) sleepThe dentate gyrus showed larger IIS and earlier current sources vs. CA1 or cortexChemogenetic silencing of medial septum (MS) cholinergic neurons reduced IIS during REMMS silencing did not change REM latency, duration, number of bouts or theta power. Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS.We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep.We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects.Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
|
23
|
Alexander HB, Allendorfer JB. The relationship between physical activity and cognitive function in people with epilepsy: A systematic review. Epilepsy Behav 2023; 142:109170. [PMID: 36940504 PMCID: PMC10173358 DOI: 10.1016/j.yebeh.2023.109170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/22/2023]
Abstract
BACKGROUND This study aimed to systematically review the published literature evaluating the association between physical activity and cognitive function in people with epilepsy (PWE). METHODS A comprehensive search of PubMed, Cochrane, Embase, and PsychInfo was performed on June 20, 2022. Studies were excluded if they were not available in the English language, contained animal data only, did not include any original data, were not peer-reviewed, or did not include PWE as a discrete group. PRISMA guidelines were followed. The GRADE scale was used to assess the risk of bias. RESULTS Six studies were identified with a total of 123 participants. These included one observational study and five interventional studies, only one of which was a randomized controlled trial. In all studies, there was a positive association between physical activity and cognitive function in PWE. Both interventional studies showed improvement in at least one domain of cognitive functioning, though there was heterogeneity in the outcome measures used. CONCLUSIONS There is a potential positive association between physical activity and cognitive function in PWE, but available data is limited by heterogeneity, small sample size, and an overall lack of published studies in this area of research. There is a need for more robust studies to be performed in larger samples of PWE.
Collapse
Affiliation(s)
- Halley B Alexander
- Wake Forest University School of Medicine, Department of Neurology, Winston-Salem, NC, USA.
| | - Jane B Allendorfer
- University of Alabama at Birmingham, Departments of Neurology and Neurobiology, Birmingham, AL, USA
| |
Collapse
|
24
|
Long S, Bruzzone M, Mitropanopoulos S, Kalamangalam G, Gunduz A. Identification and classification of pathology and artifacts for human intracranial cognitive research. Neuroimage 2023; 270:119961. [PMID: 36848970 PMCID: PMC10461234 DOI: 10.1016/j.neuroimage.2023.119961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Intracranial electroencephalography (iEEG) presents a unique opportunity to extend human neuroscientific understanding. However, typically iEEG is collected from patients diagnosed with focal drug-resistant epilepsy (DRE) and contains transient bursts of pathological activity. This activity disrupts performances on cognitive tasks and can distort findings from human neurophysiology studies. In addition to manual marking by a trained expert, numerous IED detectors have been developed to identify these pathological events. Even so, the versatility and usefulness of these detectors is limited by training on small datasets, incomplete performance metrics, and lack of generalizability to iEEG. Here, we employed a large annotated public iEEG dataset from two institutions to train a random forest classifier (RFC) to distinguish data segments as either 'non-cerebral artifact' (n = 73,902), 'pathological activity' (n = 67,797), or 'physiological activity' (n = 151,290). We found our model performed with an accuracy of 0.941, specificity of 0.950, sensitivity of 0.908, precision of 0.911, and F1 score of 0.910, averaged across all three event types. We extended the generalizability of our model to continuous bipolar data collected in a task-state at a different institution with a lower sampling rate and found our model performed with an accuracy of 0.789, specificity of 0.806, and sensitivity of 0.742, averaged across all three event types. Additionally, we created a custom graphical user interface to implement our classifier and enhance usability.
Collapse
Affiliation(s)
- Sarah Long
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, United States
| | - Maria Bruzzone
- Wilder Center for Epilepsy, Department of Neurology, University of Florida, United States
| | | | - Giridhar Kalamangalam
- Wilder Center for Epilepsy, Department of Neurology, University of Florida, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, United States; Wilder Center for Epilepsy, Department of Neurology, University of Florida, United States.
| |
Collapse
|
25
|
Steimel SA, Meisenhelter S, Quon RJ, Camp EJ, Tom R, Bujarski KA, Testorf ME, Song Y, Roth RM, Jobst BC. Accelerated long-term forgetting of recall and recognition memory in people with epilepsy. Epilepsy Behav 2023; 141:109152. [PMID: 36893721 DOI: 10.1016/j.yebeh.2023.109152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/11/2023]
Abstract
PURPOSE Persons with epilepsy (PWE) report memory deficits as one of the most distressing aspects of their disorder. Recently, a long-term memory deficit known as Accelerated Long-Term Forgetting (ALF) has been described in PWE. ALF is characterized by the initial retention of learned information, followed by an accelerated rate of memory decay. However, the rate of ALF varies widely across literature and it is unclear how it impacts different memory retrieval types. The current study aimed to capture the time course of ALF on both free recall and recognition memory using a movie-based task in PWE. METHODS A sample of 30 PWE and 30 healthy comparison (HC) subjects watched a nature documentary and were tested on their recall and recognition of the film's content immediately after viewing and at delays of 24 hours, 48 hours, and 72 hours. Participants also rated the confidence they had in their recognition memory trial responses. RESULTS For recall, PWE exhibit ALF at 72 hours (β = -19.840, SE = 3.743, z(226) = -5.301, p < 0.001). For recognition, PWE had decreased performance compared to controls at the 24-hour (β = -10.165, SE = 4.174, z(224) = -3.166, p = 0.004), 48-hour (β = -8.113, SE = 3.701, z(224) = -2.195, p = 0.044), and 72-hour (β = -10.794, SE = 3.017, z(224) = -3.295, p = 0.003) delays. The PWE group showed positive correlations (tau = 0.165, p < 0.001) between confidence ratings and accuracy, with higher confidence reflecting successful recognition. PWE were 49% less likely to answer either retrieval type correctly at 72 hours (OR 0.51, 95% CI [0.35, 0.74], p < 0.001). Left hemispheric seizure onset decreased the odds of successful retrieval by 88% (OR 0.12, 95% CI [0.01, 0.42], p = 0.019). CONCLUSIONS These findings provide evidence of ALF in PWE, with a differential impact on recall and recognition memory. This further supports the call to include ALF assessments in standard memory evaluations in PWE. Additionally, identifying the neural correlates of ALF in the future will be important in developing targeted therapies to alleviate the burden of memory impairment for PWE.
Collapse
Affiliation(s)
- Sarah A Steimel
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA.
| | - Stephen Meisenhelter
- Department of Neurology, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03766, USA.
| | - Robert J Quon
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA
| | - Edward J Camp
- Department of Neurology, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03766, USA
| | - Rebecca Tom
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA
| | - Krzysztof A Bujarski
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA; Department of Neurology, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03766, USA.
| | - Markus E Testorf
- Thayer School of Engineering at Dartmouth College, 15 Thayer Dr, Hanover, NH 03755, USA.
| | - Yinchen Song
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA; Department of Neurology, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03766, USA.
| | - Robert M Roth
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA; Neuropsychology Program, Department of Psychiatry, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03766, USA.
| | - Barbara C Jobst
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA; Department of Neurology, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03766, USA.
| |
Collapse
|
26
|
Zhang L, Wang X, Jiang J, Xiao N, Guo J, Zhuang K, Li L, Yu H, Wu T, Zheng M, Chen D. Automatic interictal epileptiform discharge (IED) detection based on convolutional neural network (CNN). Front Mol Biosci 2023; 10:1146606. [PMID: 37091867 PMCID: PMC10119410 DOI: 10.3389/fmolb.2023.1146606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Clinical diagnosis of epilepsy significantly relies on identifying interictal epileptiform discharge (IED) in electroencephalogram (EEG). IED is generally interpreted manually, and the related process is very time-consuming. Meanwhile, the process is expert-biased, which can easily lead to missed diagnosis and misdiagnosis. In recent years, with the development of deep learning, related algorithms have been used in automatic EEG analysis, but there are still few attempts in IED detection. This study uses the currently most popular convolutional neural network (CNN) framework for EEG analysis for automatic IED detection. The research topic is transferred into a 4-labels classification problem. The algorithm is validated on the long-term EEG of 11 pediatric patients with epilepsy. The computational results confirm that the CNN-based model can obtain high classification accuracy, up to 87%. The study may provide a reference for the future application of deep learning in automatic IED detection.
Collapse
Affiliation(s)
- Ling Zhang
- School of Innovation and Entrepreneurship, Hubei University of Science and Technology, Xianning, China
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiaolu Wang
- Department of Clinical Neuroelectrophysiology, Wuhan Children’s Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Jiang
- Department of Clinical Neuroelectrophysiology, Wuhan Children’s Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Duo Chen, ; Jun Jiang, ; Naian Xiao,
| | - Naian Xiao
- Department of Neurology, The Third Hospital of Xiamen, Xiamen, China
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Duo Chen, ; Jun Jiang, ; Naian Xiao,
| | - Jiayang Guo
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Department of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Kailong Zhuang
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Department of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Ling Li
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Houqiang Yu
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Tong Wu
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ming Zheng
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Duo Chen
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Duo Chen, ; Jun Jiang, ; Naian Xiao,
| |
Collapse
|
27
|
Hong J, Quon RJ, Song Y, Xie T, Levy JJ, D'Agostino E, Camp EJ, Roberts DW, Jobst BC. Functional Reorganization of the Mesial Frontal Premotor Cortex in Patients With Supplementary Motor Area Seizures. Neurosurgery 2023; 92:186-194. [PMID: 36255216 DOI: 10.1227/neu.0000000000002172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/29/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Direct cortical stimulation of the mesial frontal premotor cortex, including the supplementary motor area (SMA), is challenging in humans. Limited access to these brain regions impedes understanding of human premotor cortex functional organization and somatotopy. OBJECTIVE To test whether seizure onset within the SMA was associated with functional remapping of mesial frontal premotor areas in a cohort of patients with epilepsy who underwent awake brain mapping after implantation of interhemispheric subdural electrodes. METHODS Stimulation trials from 646 interhemispheric subdural electrodes were analyzed and compared between patients who had seizure onset in the SMA (n = 13) vs patients who had seizure onset outside of the SMA (n = 12). 1:1 matching with replacement between SMA and non-SMA data sets was used to ensure similar spatial distribution of electrodes. Centroids and 95% confidence regions were computed for clustered head, trunk, upper extremity, lower extremity, and vision responses. A generalized linear mixed-effects model was used to test for significant differences in the resulting functional maps. Clinical, radiographic, and histopathologic data were reviewed. RESULTS After analyzing direct cortical stimulation trials from interhemispheric electrodes, we found significant displacement of the head and trunk responses in SMA compared with non-SMA patients ( P < .01 for both). These differences remained significant after accounting for structural lesions, preexisting motor deficits, and seizure outcome. CONCLUSION The somatotopy of the mesial frontal premotor regions is significantly altered in patients who have SMA-onset seizures compared with patients who have seizure onset outside of the SMA, suggesting that functional remapping can occur in these brain regions.
Collapse
Affiliation(s)
- Jennifer Hong
- Department of Surgery, Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Robert J Quon
- Department of Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Yinchen Song
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Tiankang Xie
- Department of Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua J Levy
- Department of Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Erin D'Agostino
- Department of Surgery, Section of Neurosurgery, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Edward J Camp
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - David W Roberts
- Department of Surgery, Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Barbara C Jobst
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
28
|
Okadome T, Yamaguchi T, Mukaino T, Sakata A, Ogata K, Shigeto H, Isobe N, Uehara T. The effect of interictal epileptic discharges and following spindles on motor sequence learning in epilepsy patients. Front Neurol 2022; 13:979333. [PMID: 36438951 PMCID: PMC9686303 DOI: 10.3389/fneur.2022.979333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/25/2022] [Indexed: 09/05/2023] Open
Abstract
PURPOSE Interictal epileptic discharges (IEDs) are known to affect cognitive function in patients with epilepsy, but the mechanism has not been elucidated. Sleep spindles appearing in synchronization with IEDs were recently demonstrated to impair memory consolidation in rat, but this has not been investigated in humans. On the other hand, the increase of sleep spindles at night after learning is positively correlated with amplified learning effects during sleep for motor sequence learning. In this study, we examined the effects of IEDs and IED-coupled spindles on motor sequence learning in patients with epilepsy, and clarified their pathological significance. MATERIALS AND METHODS Patients undergoing long-term video-electroencephalography (LT-VEEG) at our hospital from June 2019 to November 2021 and age-matched healthy subjects were recruited. Motor sequence learning consisting of a finger-tapping task was performed before bedtime and the next morning, and the improvement rate of performance was defined as the sleep-dependent learning effect. We searched for factors associated with the changes in learning effect observed between the periods of when antiseizure medications (ASMs) were withdrawn for LT-VEEG and when they were returned to usual doses after LT-VEEG. RESULTS Excluding six patients who had epileptic seizures at night after learning, nine patients and 11 healthy subjects were included in the study. In the patient group, there was no significant learning effect when ASMs were withdrawn. The changes in learning effect of the patient group during ASM withdrawal were not correlated with changes in sleep duration or IED density; however, they were significantly negatively correlated with changes in IED-coupled spindle density. CONCLUSION We found that the increase of IED-coupled spindles correlated with the decrease of sleep-dependent learning effects of procedural memory. Pathological IED-coupled sleep spindles could hinder memory consolidation, that is dependent on physiological sleep spindles, resulting in cognitive dysfunction in patients with epilepsy.
Collapse
Affiliation(s)
- Toshiki Okadome
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiko Mukaino
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayumi Sakata
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Pharmacy, School of Pharmaceutical Sciences at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Hiroshi Shigeto
- Division of Medical Technology, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taira Uehara
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, School of Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| |
Collapse
|
29
|
Latreille V, Schiller K, Peter-Derex L, Frauscher B. Does epileptic activity impair sleep-related memory consolidation in epilepsy? A critical and systematic review. J Clin Sleep Med 2022; 18:2481-2495. [PMID: 35866226 PMCID: PMC9516593 DOI: 10.5664/jcsm.10166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES People with epilepsy often complain about disturbed sleep and cognitive impairment. Beyond seizures, the occurrence of interictal epileptic activity during sleep is also increasingly recognized to negatively impact cognitive functioning, including memory processes. The aim of this study was to critically review the effect of interictal epileptic activity on sleep-related memory consolidation. METHODS PubMed and PsychINFO databases were systematically searched to identify experimental studies that investigated sleep-related memory consolidation and the relationships between sleep-related epileptic activity and memory in adults and children with epilepsy. This review also highlights hypotheses regarding the potential pathophysiological mechanisms. RESULTS A total of 261 studies were identified; 27 of these met selection criteria. Only 13 studies prospectively assessed the effect of sleep on memory in epilepsy. Most studies reported no alteration of sleep-related memory consolidation in patients, with either similar retention levels following a period containing sleep (n = 5) or improved memory performance postsleep (n = 4). Two studies in children with epilepsy found impaired sleep-related memory consolidation. Ten studies, of which 6 were in childhood epilepsy syndromes, reported a debilitating effect of sleep-related epileptic activity on memory functioning. CONCLUSIONS Conclusions from existing studies were hampered by small sample sizes, heterogeneous patient groups, and variations in memory assessment techniques. Overall, results to date preclude any definitive conclusions on the alteration of sleep-related memory consolidation in epilepsy. We discuss methodological considerations specific to people with epilepsy and provide suggestions on how to best investigate the relationship between epileptic activity, sleep, and memory consolidation in future studies. CITATION Latreille V, Schiller K, Peter-Derex L, Frauscher B. Does epilepticimpair sleep-related memory consolidation in epilepsy? A critical and systematic review. J Clin Sleep Med. 2022;18(10):2481-2495.
Collapse
Affiliation(s)
- Véronique Latreille
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Katharina Schiller
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
- Department of Pediatrics, Hospital Group Ostallgaeu-Kaufbeuren, Kaufbeuren, Germany
| | - Laure Peter-Derex
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
- Center for Sleep Medicine and Respiratory Diseases, Croix-Rousse Hospital, University Hospital of Lyon, Lyon 1 University, France
- Lyon Neuroscience Research Center, INSERM 1028/CNRS 5292, Lyon, France
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
30
|
Sákovics A, Csukly G, Borbély C, Virág M, Kelemen A, Bódizs R, Erőss L, Fabó D. Prolongation of cortical sleep spindles during hippocampal interictal epileptiform discharges in epilepsy patients. Epilepsia 2022; 63:2256-2268. [PMID: 35723195 PMCID: PMC9796153 DOI: 10.1111/epi.17337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Memory deficits are frequent among patients with epilepsies affecting the temporal lobe. Hippocampal interictal epileptic discharges (hIEDs), the presumed epileptic exaggeration of sharp wave-ripples (SWRs), are known to contribute to memory dysfunction, but the potential underlying mechanism is unknown. The precise temporal coordination between hippocampal SWRs and corticothalamic spindles during sleep is critical for memory consolidation. Moreover, previous investigation indicated that hIEDs induce neocortical spindlelike oscillation. In the present study, we aimed to assess the influence of hIEDs on neocortical spindles. METHODS We analyzed the spindle characteristics (duration, amplitude, frequency) of 21 epilepsy patients implanted with foramen ovale (FO) electrodes during a whole night sleep. Scalp sleep spindles were categorized based on their temporal relationship to hIEDs detected on the FO electrodes. Three groups were created: (1) spindles coinciding with hIEDs, (2) spindles "induced" by hIEDs, and (3) spindles without hIED co-occurrence. RESULTS We found that spindles co-occurring with hIEDs had altered characteristics in all measured properties, lasted longer by 126 ± 48 ms (mean ± SD), and had higher amplitude by 3.4 ± 3.2 μV, and their frequency range shifted toward the higher frequencies within the 13-15-Hz range. Also, hIED-induced spindles had identical oscillatory properties to spindles without any temporal relationships with hIEDs. In more than half of our subjects, clear temporal coherence was revealed between hIEDs and spindles, but the direction of the coupling was patient-specific. SIGNIFICANCE We investigated the effect of hippocampal IEDs on neocortical spindle activity and found spindle alterations in cases of spindle-hIED co-occurrence, but not in cases of hIED-initiated spindles. We propose that this is a marker of a pathologic process, where IEDs may have direct effect on spindle generation. It could mark a potential mechanism whereby IEDs disrupt memory processes, and also provide a potential therapeutic target to treat memory disturbances in epilepsy.
Collapse
Affiliation(s)
- Anna Sákovics
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary,School of PhDSemmelweis UniversityBudapestHungary
| | - Gábor Csukly
- Department of Psychiatry and PsychotherapySemmelweis UniversityBudapestHungary
| | - Csaba Borbély
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| | - Márta Virág
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| | - Anna Kelemen
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary,András Pető FacultySemmelweis UniversityBudapestHungary
| | - Róbert Bódizs
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary,Institute of Behavioral SciencesSemmelweis UniversityBudapestHungary
| | - Loránd Erőss
- Department of Functional NeurosurgeryNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| | - Dániel Fabó
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| |
Collapse
|
31
|
Sousa BMD, de Oliveira EF, Beraldo IJDS, Polanczyk RS, Leite JP, Lopes-Aguiar C. An open-source, ready-to-use and validated ripple detector plugin for the Open Ephys GUI. J Neural Eng 2022; 19. [PMID: 35905709 DOI: 10.1088/1741-2552/ac857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Sharp wave-ripples (SWRs, 100-250 Hz) are oscillatory events extracellularly recorded in the CA1 subfield of the hippocampus during sleep and quiet wakefulness. Many studies employed closed-loop strategies to either detect and abolish SWRs within the hippocampus or manipulate other relevant areas upon ripple detection. However, the code and schematics necessary to replicate the detection system are not always available, which hinders the reproducibility of experiments among different research groups. Furthermore, information about performance is not usually reported. Here, we sought to provide an open-source, validated ripple detector for the scientific community. APPROACH We developed and validated a ripple detection plugin integrated into the Open Ephys GUI. It contains a built-in movement detector based on accelerometer or electromyogram data that prevents false ripple events (due to chewing, grooming, or moving, for instance) from triggering the stimulation/manipulation device. MAIN RESULTS To determine the accuracy of the detection algorithm, we first carried out simulations in Matlab with real ripple recordings. Using a specific combination of detection parameters (amplitude threshold of 5 standard deviations above the mean, time threshold of 10 ms, and RMS block size of 7 samples), we obtained a 97% true positive rate and 2.48 false positives per minute. Next, an Open Ephys plugin based on the same detection algorithm was developed, and a closed-loop system was set up to evaluate the round trip (ripple onset-to-stimulation) latency over synthetic data. The lowest latency obtained was 34.5 ± 0.5 ms. The embedded movement monitoring was effective in reducing false positives and the plugin's flexibility to detect pathological events was also verified. SIGNIFICANCE Besides contributing to increased reproducibility, we anticipate that the developed ripple detector plugin will be helpful for many closed-loop applications in the field of systems neuroscience.
Collapse
Affiliation(s)
- Bruno Monteiro de Sousa
- PG FisFar, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, BRAZIL
| | - Eliezyer Fermino de Oliveira
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461-1900, UNITED STATES
| | - Ikaro Jesus da Silva Beraldo
- PG FisFar, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, BRAZIL
| | - Rafaela Schuttenberg Polanczyk
- PG FisFar, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, BRAZIL
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900, Ribeirao Preto, São Paulo, 14040-900, BRAZIL
| | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, BRAZIL
| |
Collapse
|
32
|
Zhang D, Chen S, Xu S, Wu J, Zhuang Y, Cao W, Chen X, Li X. The clinical correlation between Alzheimer's disease and epilepsy. Front Neurol 2022; 13:922535. [PMID: 35937069 PMCID: PMC9352925 DOI: 10.3389/fneur.2022.922535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease and epilepsy are common nervous system diseases in older adults, and their incidence rates tend to increase with age. Patients with mild cognitive impairment and Alzheimer's disease are more prone to have seizures. In patients older than 65 years, neurodegenerative conditions accounted for ~10% of all late-onset epilepsy cases, most of which are Alzheimer's disease. Epilepsy and seizure can occur in the early and late stages of Alzheimer's disease, leading to functional deterioration and behavioral alterations. Seizures promote amyloid-β and tau deposits, leading to neurodegenerative processes. Thus, there is a bi-directional association between Alzheimer's disease and epilepsy. Epilepsy is a risk factor for Alzheimer's disease and, in turn, Alzheimer's disease is an independent risk factor for developing epilepsy in old age. Many studies have evaluated the shared pathogenesis and clinical relevance of Alzheimer's disease and epilepsy. In this review, we discuss the clinical associations between Alzheimer's disease and epilepsy, including their incidence, clinical features, and electroencephalogram abnormalities. Clinical studies of the two disorders in recent years are summarized, and new antiepileptic drugs used for treating Alzheimer's disease are reviewed.
Collapse
|
33
|
Arski ON, Wong SM, Warsi NM, Pang E, Kerr E, Smith ML, Taylor MJ, Dunkley BT, Ochi A, Otsubo H, Sharma R, Yau I, Jain P, Donner EJ, Snead OC, Ibrahim GM. Epilepsy disrupts hippocampal phase precision and impairs working memory. Epilepsia 2022; 63:2583-2596. [PMID: 35778973 DOI: 10.1111/epi.17357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Working memory deficits are prevalent in childhood epilepsy. Working memory processing is thought to be supported by the phase of hippocampal neural oscillations. Disruptions in working memory have previously been linked to the occurrence of transient epileptic activity. This study aimed to resolve the associations between oscillatory neural activity, transient epileptiform events, and working memory in children with epilepsy. METHODS Intracranial recordings were acquired from stereotactically-implanted electrodes in the hippocampi, epileptogenic zones, and working memory-related networks of children with drug-resistant epilepsy during a 1-back working memory task. Interictal epileptic activity was captured using automated detectors. Hippocampal phase and interregional connectivity within working memory networks were indexed by Rayleigh Z and the phase difference derivative respectively. Trials with and without transient epileptiform events were compared. RESULTS Twelve children (mean age of 14.3 ± 2.8 years) with drug-resistant epilepsy were included in the study. In the absence of transient epileptic activity, significant delta and theta hippocampal phase resetting occurred in response to working memory stimulus presentation (Rz = 9, Rz = 8). Retrieval trials that were in-phase with the preferred phase angle were associated with faster reaction times (p = 0.01, p = 0.03). Concurrently, delta and theta coordinated interactions between the hippocampi and working memory-related networks were enhanced (PDD z-scores = 6-11). During retrieval trials with pre-encoding or pre-retrieval transient epileptic activity, phase resetting was attenuated (Rz = 5, Rz = 1), interregional connectivity was altered (PDD z-scores = 1-3), and reaction times were prolonged (p = 0.01, p = 0.03). SIGNIFICANCE This work highlights the role of hippocampal phase in working memory. We observe post-stimulus hippocampal phase resetting coincident with enhanced interregional connectivity. The precision of hippocampal phase predicts optimal working memory processing, and transient epileptic activity prolongs working memory processing. These findings can help guide future treatments aimed at restoring memory function in this patient population.
Collapse
Affiliation(s)
- Olivia N Arski
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M Wong
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada
| | - Nebras M Warsi
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Elizabeth Pang
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elizabeth Kerr
- Department of Psychology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mary Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Psychology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Margot J Taylor
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Roy Sharma
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Ivanna Yau
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Puneet Jain
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elizabeth J Donner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - O Carter Snead
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
34
|
Camarillo-Rodriguez L, Leenen I, Waldman Z, Serruya M, Wanda PA, Herweg NA, Kahana MJ, Rubinstein D, Orosz I, Lega B, Podkorytova I, Gross RE, Worrell G, Davis KA, Jobst BC, Sheth SA, Weiss SA, Sperling MR. Temporal lobe interictal spikes disrupt encoding and retrieval of verbal memory: A subregion analysis. Epilepsia 2022; 63:2325-2337. [PMID: 35708911 DOI: 10.1111/epi.17334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The medial temporal lobe (MTL) encodes and recalls memories and can be a predominant site for interictal spikes (IS) in patients with focal epilepsy. It is unclear whether memory deficits are due to IS in the MTL producing a transient decline. Here, we investigated whether IS in the MTL subregions and lateral temporal cortex impact episodic memory encoding and recall. METHODS Seventy-eight participants undergoing presurgical evaluation for medically refractory focal epilepsy with depth electrodes placed in the temporal lobe participated in a verbal free recall task. IS were manually annotated during the pre-encoding, encoding, and recall epochs. We examined the effect of IS on word recall using mixed-effects logistic regression. RESULTS IS in the left hippocampus (odds ratio [OR] = .73, 95% confidence interval [CI] = .63-.84, p < .001) and left middle temporal gyrus (OR = .46, 95% CI = .27-.78, p < .05) during word encoding decreased subsequent recall performance. Within the left hippocampus, this effect was specific for area CA1 (OR = .76, 95% CI = .66-.88, p < .01) and dentate gyrus (OR = .74, 95% CI = .62-.89, p < .05). IS in other MTL subregions or inferior and superior temporal gyrus and IS occurring during the prestimulus window did not affect word encoding (p > .05). IS during retrieval in right hippocampal (OR = .22, 95% CI = .08-.63, p = .01) and parahippocampal regions (OR = .24, 95% CI = .07-.8, p < .05) reduced the probability of recalling a word. SIGNIFICANCE IS in medial and lateral temporal cortex contribute to transient memory decline during verbal episodic memory.
Collapse
Affiliation(s)
| | - Iwin Leenen
- Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Zachary Waldman
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mijail Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Paul A Wanda
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nora A Herweg
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Rubinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Iren Orosz
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | - Kathryn A Davis
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Barbara C Jobst
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Shennan A Weiss
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, USA.,Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York, USA.,Departments of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, New York, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Feng Y, Quon RJ, Jobst BC, Casey MA. Evoked responses to note onsets and phrase boundaries in Mozart's K448. Sci Rep 2022; 12:9632. [PMID: 35688855 PMCID: PMC9187696 DOI: 10.1038/s41598-022-13710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Understanding the neural correlates of perception of hierarchical structure in music presents a direct window into auditory organization. To examine the hypothesis that high-level and low-level structures—i.e. phrases and notes—elicit different neural responses, we collected intracranial electroencephalography (iEEG) data from eight subjects during exposure to Mozart’s K448 and directly compared Event-related potentials (ERPs) due to note onsets and those elicited by phrase boundaries. Cluster-level permutation tests revealed that note-onset-related ERPs and phrase-boundary-related ERPs were significantly different at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-150$$\end{document}-150, 200, and 450 ms relative to note onset and phrase markers. We also observed increased activity in frontal brain regions when processing phrase boundaries. We relate these observations to (1) a process which syntactically binds notes together hierarchically to form larger phrases; (2) positive emotions induced by successful prediction of forthcoming phrase boundaries and violations of melodic expectations at phrase boundaries.
Collapse
Affiliation(s)
- Yijing Feng
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Robert J Quon
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.,Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Barbara C Jobst
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.,Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Michael A Casey
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA. .,Department of Music, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
36
|
Abstract
SUMMARY Although interictal spikes (IISs) are a well-established EEG biomarker for epilepsy, whether they are also a biomarker of cognitive deficits is unclear. Interictal spikes are dynamic events consisting of a synchronous discharge of neurons producing high frequency oscillations and a succession of action potentials which disrupt the ongoing neural activity. There are robust data showing that IISs result in transitory cognitive impairment with the type of deficit specific to the cognitive task and anatomic location of the IIS. Interictal spike, particularly if frequent and widespread, can impair cognitive abilities, through interference with waking learning and memory and memory consolidation during sleep. Interictal spikes seem to be particularly concerning in the developing brain where animal data suggest that IISs can lead to adverse cognitive effects even after the disappearance of the spikes. Whether a similar phenomenon occurs in human beings is unclear. Thus, although IISs are a clear biomarker of transitory cognitive impairment, currently, they lack sensitivity and specificity as a biomarker for enduring cognitive impairment.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences Larner College of Medicine at the University of Vermont, Burlington, Vermont, U.S.A
| |
Collapse
|
37
|
Cimbalnik J, Dolezal J, Topçu Ç, Lech M, Marks VS, Joseph B, Dobias M, Van Gompel J, Worrell G, Kucewicz M. Intracranial electrophysiological recordings from the human brain during memory tasks with pupillometry. Sci Data 2022; 9:6. [PMID: 35027555 PMCID: PMC8758703 DOI: 10.1038/s41597-021-01099-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Data comprise intracranial EEG (iEEG) brain activity represented by stereo EEG (sEEG) signals, recorded from over 100 electrode channels implanted in any one patient across various brain regions. The iEEG signals were recorded in epilepsy patients (N = 10) undergoing invasive monitoring and localization of seizures when they were performing a battery of four memory tasks lasting approx. 1 hour in total. Gaze tracking on the task computer screen with estimating the pupil size was also recorded together with behavioral performance. Each dataset comes from one patient with anatomical localization of each electrode contact. Metadata contains labels for the recording channels with behavioral events marked from all tasks, including timing of correct and incorrect vocalization of the remembered stimuli. The iEEG and the pupillometric signals are saved in BIDS data structure to facilitate efficient data sharing and analysis.
Collapse
Affiliation(s)
- Jan Cimbalnik
- Brain and Mind Electrophysiology laboratory, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
- Department of Biomedical Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jaromir Dolezal
- Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Çağdaş Topçu
- Brain and Mind Electrophysiology laboratory, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Michal Lech
- Brain and Mind Electrophysiology laboratory, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Victoria S Marks
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Boney Joseph
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Martin Dobias
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | | | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Michal Kucewicz
- Brain and Mind Electrophysiology laboratory, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
38
|
Drane DL, Willie JT, Pedersen NP, Qiu D, Voets NL, Millis SR, Soares BP, Saindane AM, Hu R, Kim MS, Hewitt KC, Hakimian S, Grabowski T, Ojemann JG, Loring DW, Meador KJ, Faught E, Miller JW, Gross RE. Superior Verbal Memory Outcome After Stereotactic Laser Amygdalohippocampotomy. Front Neurol 2021; 12:779495. [PMID: 34956059 PMCID: PMC8695842 DOI: 10.3389/fneur.2021.779495] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: To evaluate declarative memory outcomes in medically refractory epilepsy patients who underwent either a highly selective laser ablation of the amygdalohippocampal complex or a conventional open temporal lobe resection. Methods: Post-operative change scores were examined for verbal memory outcome in epilepsy patients who underwent stereotactic laser amygdalohippocampotomy (SLAH: n = 40) or open resection procedures (n = 40) using both reliable change index (RCI) scores and a 1-SD change metric. Results: Using RCI scores, patients undergoing open resection (12/40, 30.0%) were more likely to decline on verbal memory than those undergoing SLAH (2/40 [5.0%], p = 0.0064, Fisher's exact test). Patients with language dominant procedures were much more likely to experience a significant verbal memory decline following open resection (9/19 [47.4%]) compared to laser ablation (2/19 [10.5%], p = 0.0293, Fisher's exact test). 1 SD verbal memory decline frequently occurred in the open resection sample of language dominant temporal lobe patients with mesial temporal sclerosis (8/10 [80.0%]), although it rarely occurred in such patients after SLAH (2/14, 14.3%) (p = 0.0027, Fisher's exact test). Memory improvement occurred significantly more frequently following SLAH than after open resection. Interpretation: These findings suggest that while verbal memory function can decline after laser ablation of the amygdalohippocampal complex, it is better preserved when compared to open temporal lobe resection. Our findings also highlight that the dominant hippocampus is not uniquely responsible for verbal memory. While this is at odds with our simple and common heuristic of the hippocampus in memory, it supports the findings of non-human primate studies showing that memory depends on broader medial and lateral TL regions.
Collapse
Affiliation(s)
- Daniel L. Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Jon T. Willie
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Nigel P. Pedersen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Natalie L. Voets
- Nuffield Department of Clinical Neurosciences, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Scott R. Millis
- Department of Physical Medicine and Rehabilitation, Wayne State University School of Medicine, Detroit, MI, United States
| | - Bruno P. Soares
- Department of Radiology, University of Vermont Medical Center, Burlington, VT, United States
| | - Amit M. Saindane
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Michelle S. Kim
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kelsey C. Hewitt
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Shahin Hakimian
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Thomas Grabowski
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Jeffrey G. Ojemann
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - David W. Loring
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Kimford J. Meador
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, United States
| | - Edward Faught
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - John W. Miller
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Robert E. Gross
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
39
|
Quon RJ, Meisenhelter S, Camp EJ, Testorf ME, Song Y, Song Q, Culler GW, Moein P, Jobst BC. AiED: Artificial intelligence for the detection of intracranial interictal epileptiform discharges. Clin Neurophysiol 2021; 133:1-8. [PMID: 34773796 DOI: 10.1016/j.clinph.2021.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Deep learning provides an appealing solution for the ongoing challenge of automatically classifying intracranial interictal epileptiform discharges (IEDs). We report results from an automated method consisting of a template-matching algorithm and convolutional neural network (CNN) for the detection of intracranial IEDs ("AiED"). METHODS 1000 intracranial electroencephalogram (EEG) epochs extracted randomly from 307 subjects with refractory epilepsy were annotated independently by two expert neurophysiologists. These annotated epochs were divided into 1062 two-second epochs with IEDs and 1428 two-second epochs without IEDs, which were transformed into spectrograms prior to training the neural network. The highest performing network was validated on an annotated external test set. RESULTS The final network had an F1-score of 0.95 (95% CI: 0.91-0.98) and an average Area Under the Receiver Operating Characteristic of 0.98 (95% CI: 0.96-1.00). For the external test set, it showed an overall F1-score of 0.71, correctly identifying 100% of all high-amplitude IED complexes, 96.23% of all high-amplitude isolated IEDs, and 66.15% of all IEDs of atypical morphology. CONCLUSIONS Template-matching combined with a CNN offers a fast, robust method for detecting intracranial IEDs. SIGNIFICANCE "AiED" is generalizable and achieves comparable performance to human reviewers; it may support clinical and research EEG analyses.
Collapse
Affiliation(s)
- Robert J Quon
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | | | - Edward J Camp
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Markus E Testorf
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Thayer School of Engineering at Dartmouth College, Hanover, NH, USA.
| | - Yinchen Song
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Qingyuan Song
- Department of Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - George W Culler
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Payam Moein
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Barbara C Jobst
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
40
|
Marks VS, Saboo KV, Topçu Ç, Lech M, Thayib TP, Nejedly P, Kremen V, Worrell GA, Kucewicz MT. Independent dynamics of low, intermediate, and high frequency spectral intracranial EEG activities during human memory formation. Neuroimage 2021; 245:118637. [PMID: 34644594 DOI: 10.1016/j.neuroimage.2021.118637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/23/2023] Open
Abstract
A wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various frequency ranges are coordinated across the space of the human cortex and time of memory processing is inconclusive. They can either be coordinated together across the frequency spectrum at the same cortical site and time or induced independently in particular bands. We used a large dataset of human intracranial electroencephalography (iEEG) to parse the spatiotemporal dynamics of spectral activities induced during formation of verbal memories. Encoding of words for subsequent free recall activated low frequency theta, intermediate frequency alpha and beta, and high frequency gamma power in a mosaic pattern of discrete cortical sites. A majority of the cortical sites recorded activity in only one of these frequencies, except for the visual cortex where spectral power was induced across multiple bands. Each frequency band showed characteristic dynamics of the induced power specific to cortical area and hemisphere. The power of the low, intermediate, and high frequency activities propagated in independent sequences across the visual, temporal and prefrontal cortical areas throughout subsequent phases of memory encoding. Our results provide a holistic, simplified model of the spectral activities engaged in the formation of human memory, suggesting an anatomically and temporally distributed mosaic of coordinated brain rhythms.
Collapse
Affiliation(s)
| | - Krishnakant V Saboo
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, IL, USA
| | - Çağdaş Topçu
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Michal Lech
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Theodore P Thayib
- Department of Computer Engineering, Iowa State University, Ames, Iowa, USA
| | - Petr Nejedly
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Robotics, and Cybernetics, Czech Institute of Informatics, Czech Technical University in Prague, Prague, Czech Republic
| | - Gregory A Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, USA
| | - Michal T Kucewicz
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, USA.
| |
Collapse
|
41
|
Das A, Menon V. Asymmetric Frequency-Specific Feedforward and Feedback Information Flow between Hippocampus and Prefrontal Cortex during Verbal Memory Encoding and Recall. J Neurosci 2021; 41:8427-8440. [PMID: 34433632 PMCID: PMC8496199 DOI: 10.1523/jneurosci.0802-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampus and prefrontal cortex (PFC) circuits are thought to play a prominent role in human episodic memory, but the precise nature, and electrophysiological basis, of directed information flow between these regions and their role in verbal memory formation has remained elusive. Here we investigate nonlinear causal interactions between hippocampus and lateral PFC using intracranial EEG recordings (26 participants, 16 females) during verbal memory encoding and recall tasks. Direction-specific information theoretic analysis revealed higher causal information flow from the hippocampus to PFC than in the reverse direction. Crucially, this pattern was observed during both memory encoding and recall, and the strength of causal interactions was significantly greater during memory task performance than resting baseline. Further analyses revealed frequency specificity of interactions with greater causal information flow from hippocampus to the PFC in the delta-theta frequency band (0.5-8 Hz); in contrast, PFC to hippocampus causal information flow were stronger in the beta band (12-30 Hz). Across all hippocampus-PFC electrode pairs, propagation delay between the source and target signals was estimated to be 17.7 ms, which is physiologically meaningful and corresponds to directional signal interactions on a timescale consistent with monosynaptic influence. Our findings identify distinct asymmetric feedforward and feedback signaling mechanisms between the hippocampus and PFC and their dissociable roles in memory recall, demonstrate that these regions preferentially use different frequency channels, and provide novel insights into the electrophysiological basis of directed information flow during episodic memory formation in the human brain.SIGNIFICANCE STATEMENT Hippocampal-PFC circuits play a critical role in episodic memory in rodents, nonhuman primates, and humans. Investigations using noninvasive fMRI techniques have provided insights into coactivation of the hippocampus and PFC during memory formation; however, the electrophysiological basis of dynamic causal hippocampal-PFC interactions in the human brain is poorly understood. Here, we use data from a large cohort of intracranial EEG recordings to investigate the neurophysiological underpinnings of asymmetric feedforward and feedback hippocampal-PFC interactions and their nonlinear causal dynamics during both episodic memory encoding and recall. Our findings provide novel insights into the electrophysiological basis of directed bottom-up and top-down information flow during episodic memory formation in the human brain.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences
- Department of Neurology & Neurological Sciences
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
42
|
Leeman-Markowski B, Hardstone R, Lohnas L, Cowen B, Davachi L, Doyle W, Dugan P, Friedman D, Liu A, Melloni L, Selesnick I, Wang B, Meador K, Devinsky O. Effects of hippocampal interictal discharge timing, duration, and spatial extent on list learning. Epilepsy Behav 2021; 123:108209. [PMID: 34416521 PMCID: PMC9169111 DOI: 10.1016/j.yebeh.2021.108209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/11/2021] [Accepted: 06/30/2021] [Indexed: 11/15/2022]
Abstract
Interictal epileptiform discharges (IEDs) can impair memory. The properties of IEDs most detrimental to memory, however, are undefined. We studied the impact of temporal and spatial characteristics of IEDs on list learning. Subjects completed a memory task during intracranial EEG recordings including hippocampal depth and temporal neocortical subdural electrodes. Subjects viewed a series of objects, and after a distracting task, recalled the objects from the list. The impacts of IED presence, duration, and propagation to neocortex during encoding of individual stimuli were assessed. The effects of IED total number and duration during maintenance and recall periods on delayed recall performance were also determined. The influence of IEDs during recall was further investigated by comparing the likelihood of IEDs preceding correctly recalled items vs. periods of no verbal response. Across 6 subjects, we analyzed 28 hippocampal and 139 lateral temporal contacts. Recall performance was poor, with a median of 17.2% correct responses (range 10.4-21.9%). Interictal epileptiform discharges during encoding, maintenance, and recall did not significantly impact task performance, and there was no significant difference between the likelihood of IEDs during correct recall vs. periods of no response. No significant effects of discharge duration during encoding, maintenance, or recall were observed. Interictal epileptiform discharges with spread to lateral temporal cortex during encoding did not adversely impact recall. A post hoc analysis refining model assumptions indicated a negative impact of IED count during the maintenance period, but otherwise confirmed the above results. Our findings suggest no major effect of hippocampal IEDs on list learning, but study limitations, such as baseline hippocampal dysfunction, should be considered. The impact of IEDs during the maintenance period may be a focus of future research.
Collapse
Affiliation(s)
- Beth Leeman-Markowski
- Research Service, VA New York Harbor Healthcare System, 423 E. 23rd St., New York, NY 10010, United States; Comprehensive Epilepsy Center, Department of Neurology, New York University Langone Health, 223 E. 34th St., New York, NY 10016, United States.
| | - Richard Hardstone
- Neuroscience Institute, New York University Langone Health, 550 1st Ave., New York, NY, US 10016
| | - Lynn Lohnas
- Department of Psychology, New York University, 6 Washington Pl., New York, NY, US 10003
| | - Benjamin Cowen
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, US 11201
| | - Lila Davachi
- Department of Psychology, New York University, 6 Washington Pl., New York, NY, US 10003
| | - Werner Doyle
- Department of Neurosurgery, New York University Langone Health, 530 1st Ave., New York, NY, US 10016
| | - Patricia Dugan
- Comprehensive Epilepsy Center, Department of Neurology, New York University Langone Health, 223 E. 34th St., New York, NY, US 10016
| | - Daniel Friedman
- Comprehensive Epilepsy Center, Department of Neurology, New York University Langone Health, 223 E. 34th St., New York, NY, US 10016
| | - Anli Liu
- Comprehensive Epilepsy Center, Department of Neurology, New York University Langone Health, 223 E. 34th St., New York, NY, US 10016,Neuroscience Institute, New York University Langone Health, 550 1st Ave., New York, NY, US 10016
| | - Lucia Melloni
- Comprehensive Epilepsy Center, Department of Neurology, New York University Langone Health, 223 E. 34th St., New York, NY, US 10016,Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt am Main, Germany
| | - Ivan Selesnick
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, US 11201
| | - Binhuan Wang
- Department of Population Health, New York University Langone Health, 180 Madison Ave., New York, NY, US 10016
| | - Kimford Meador
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Palo Alto, CA, US 94304
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, New York University Langone Health, 223 E. 34th St., New York, NY, US 10016,Neuroscience Institute, New York University Langone Health, 550 1st Ave., New York, NY, US 10016,Department of Neurosurgery, New York University Langone Health, 530 1st Ave., New York, NY, US 10016,Department of Psychiatry, New York University Langone Health, 550 1st Ave., New York, NY, US 10016
| |
Collapse
|
43
|
Saboo KV, Balzekas I, Kremen V, Varatharajah Y, Kucewicz M, Iyer RK, Worrell GA. Leveraging electrophysiologic correlates of word encoding to map seizure onset zone in focal epilepsy: Task-dependent changes in epileptiform activity, spectral features, and functional connectivity. Epilepsia 2021; 62:2627-2639. [PMID: 34536230 DOI: 10.1111/epi.17067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Verbal memory dysfunction is common in focal, drug-resistant epilepsy (DRE). Unfortunately, surgical removal of seizure-generating brain tissue can be associated with further memory decline. Therefore, localization of both the circuits generating seizures and those underlying cognitive functions is critical in presurgical evaluations for patients who may be candidates for resective surgery. We used intracranial electroencephalographic (iEEG) recordings during a verbal memory task to investigate word encoding in focal epilepsy. We hypothesized that engagement in a memory task would exaggerate local iEEG feature differences between the seizure onset zone (SOZ) and neighboring tissue as compared to wakeful rest ("nontask"). METHODS Ten participants undergoing presurgical iEEG evaluation for DRE performed a free recall verbal memory task. We evaluated three iEEG features in SOZ and non-SOZ electrodes during successful word encoding and compared them with nontask recordings: interictal epileptiform spike (IES) rates, power in band (PIB), and relative entropy (REN; a functional connectivity measure). RESULTS We found a complex pattern of PIB and REN changes in SOZ and non-SOZ electrodes during successful word encoding compared to nontask. Successful word encoding was associated with a reduction in local electrographic functional connectivity (increased REN), which was most exaggerated in temporal lobe SOZ. The IES rates were reduced during task, but only in the non-SOZ electrodes. Compared with nontask, REN features during task yielded marginal improvements in SOZ classification. SIGNIFICANCE Previous studies have supported REN as a biomarker for epileptic brain. We show that REN differences between SOZ and non-SOZ are enhanced during a verbal memory task. We also show that IESs are reduced during task in non-SOZ, but not in SOZ. These findings support the hypothesis that SOZ and non-SOZ respond differently to task and warrant further exploration into the use of cognitive tasks to identify functioning memory circuits and localize SOZ.
Collapse
Affiliation(s)
- Krishnakant V Saboo
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois, USA.,Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic School of Medicine and Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Irena Balzekas
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic School of Medicine and Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Vaclav Kremen
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Yogatheesan Varatharajah
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois, USA.,Department of Bioengineering, University of Illinois, Urbana, Illinois, USA
| | - Michal Kucewicz
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Faculty of Electronics, Telecommunications, and Informatics, Multimedia Systems Department, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravishankar K Iyer
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois, USA
| | - Gregory A Worrell
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
44
|
Musical components important for the Mozart K448 effect in epilepsy. Sci Rep 2021; 11:16490. [PMID: 34531410 PMCID: PMC8446029 DOI: 10.1038/s41598-021-95922-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/28/2021] [Indexed: 11/08/2022] Open
Abstract
There is growing evidence for the efficacy of music, specifically Mozart’s Sonata for Two Pianos in D Major (K448), at reducing ictal and interictal epileptiform activity. Nonetheless, little is known about the mechanism underlying this beneficial “Mozart K448 effect” for persons with epilepsy. Here, we measured the influence that K448 had on intracranial interictal epileptiform discharges (IEDs) in sixteen subjects undergoing intracranial monitoring for refractory focal epilepsy. We found reduced IEDs during the original version of K448 after at least 30-s of exposure. Nonsignificant IED rate reductions were witnessed in all brain regions apart from the bilateral frontal cortices, where we observed increased frontal theta power during transitions from prolonged musical segments. All other presented musical stimuli were associated with nonsignificant IED alterations. These results suggest that the “Mozart K448 effect” is dependent on the duration of exposure and may preferentially modulate activity in frontal emotional networks, providing insight into the mechanism underlying this response. Our findings encourage the continued evaluation of Mozart’s K448 as a noninvasive, non-pharmacological intervention for refractory epilepsy.
Collapse
|
45
|
Quon RJ, Camp EJ, Meisenhelter S, Song Y, Steimel SA, Testorf ME, Andrew AS, Gross RE, Lega BC, Sperling MR, Kahana MJ, Jobst BC. Features of intracranial interictal epileptiform discharges associated with memory encoding. Epilepsia 2021; 62:2615-2626. [PMID: 34486107 DOI: 10.1111/epi.17060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Interictal epileptiform discharges (IEDs) were shown to be associated with cognitive impairment in persons with epilepsy. Previous studies indicated that IED rate, location, timing, and spatial relation to the seizure onset zone could predict an IED's impact on memory encoding and retrieval if they occurred in lateral temporal, mesial temporal, or parietal regions. In this study, we explore the influence that other IED properties (e.g., amplitude, duration, white matter classification) have on memory performance. We were specifically interested in investigating the influence that lateral temporal IEDs have on memory encoding. METHODS Two hundred sixty-one subjects with medication-refractory epilepsy undergoing intracranial electroencephalographic monitoring performed multiple sessions of a delayed free-recall task (n = 671). Generalized linear mixed models were utilized to examine the relationship between IED properties and memory performance. RESULTS We found that increased IED rate, IEDs propagating in white matter, and IEDs localized to the left middle temporal region were associated with poorer memory performance. For lateral temporal IEDs, we observed a significant interaction between IED white matter categorization and amplitude, where IEDs with an increased amplitude and white matter propagation were associated with reduced memory performance. Additionally, changes in alpha power after an IED showed a significant positive correlation with memory performance. SIGNIFICANCE Our results suggest that IED properties may be useful for predicting the impact an IED has on memory encoding. We provide an essential step toward understanding pathological versus potentially beneficial interictal epileptiform activity.
Collapse
Affiliation(s)
- Robert J Quon
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Edward J Camp
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Stephen Meisenhelter
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Yinchen Song
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Sarah A Steimel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Markus E Testorf
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA
| | - Angeline S Andrew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, Texas, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Barbara C Jobst
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
46
|
Quon RJ, Leslie GA, Camp EJ, Meisenhelter S, Steimel SA, Song Y, Ettinger AB, Bujarski KA, Casey MA, Jobst BC. 40-Hz auditory stimulation for intracranial interictal activity: A pilot study. Acta Neurol Scand 2021; 144:192-201. [PMID: 33893999 DOI: 10.1111/ane.13437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To study the effects of auditory stimuli on interictal epileptiform discharge (IED) rates evident with intracranial monitoring. MATERIALS AND METHODS Eight subjects undergoing intracranial EEG monitoring for refractory epilepsy participated in this study. Auditory stimuli consisted of a 40-Hz tone, a 440-Hz tone modulated by a 40-Hz sinusoid, Mozart's Sonata for Two Pianos in D Major (K448), and K448 modulated by a 40-Hz sinusoid (modK448). Subjects were stratified into high- and low-IED rate groups defined by baseline IED rates. Subject-level analyses identified individual responses to auditory stimuli, discerned specific brain regions with significant reductions in IED rates, and examined the influence auditory stimuli had on whole-brain sigma power (12-16 Hz). RESULTS All subjects in the high baseline IED group had a significant 35.25% average reduction in IEDs during the 40-Hz tone; subject-level reductions localized to mesial and lateral temporal regions. Exposure to Mozart K448 showed significant yet less homogeneous responses. A post hoc analysis demonstrated two of the four subjects with positive IED responses had increased whole-brain power at the sigma frequency band during 40-Hz stimulation. CONCLUSIONS Our study is the first to evaluate the relationship between 40-Hz auditory stimulation and IED rates in refractory epilepsy. We reveal that 40-Hz auditory stimuli may be a noninvasive adjunctive intervention to reduce IED burden. Our pilot study supports the future examination of 40-Hz auditory stimuli in a larger population of subjects with high baseline IED rates.
Collapse
Affiliation(s)
- Robert J. Quon
- Department of Neurology Geisel School of Medicine at Dartmouth Hanover NH USA
| | - Grace A. Leslie
- Department of Music Georgia Institute of Technology Atlanta GA USA
| | - Edward J. Camp
- Department of Neurology Dartmouth‐Hitchcock Medical Center Lebanon NH USA
| | | | - Sarah A. Steimel
- Department of Neurology Geisel School of Medicine at Dartmouth Hanover NH USA
| | - Yinchen Song
- Department of Neurology Geisel School of Medicine at Dartmouth Hanover NH USA
- Department of Neurology Dartmouth‐Hitchcock Medical Center Lebanon NH USA
| | | | - Krzysztof A. Bujarski
- Department of Neurology Geisel School of Medicine at Dartmouth Hanover NH USA
- Department of Neurology Dartmouth‐Hitchcock Medical Center Lebanon NH USA
| | - Michael A. Casey
- Department of Music at Dartmouth College Hanover NH USA
- Department of Computer Science at Dartmouth College Hanover NH USA
| | - Barbara C. Jobst
- Department of Neurology Geisel School of Medicine at Dartmouth Hanover NH USA
- Department of Neurology Dartmouth‐Hitchcock Medical Center Lebanon NH USA
| |
Collapse
|
47
|
Lee SJ, Beam DE, Schjetnan AGP, Paul LK, Chandravadia N, Reed CM, Chung JM, Ross IB, Valiante TA, Mamelak AN, Rutishauser U. Single-neuron correlate of epilepsy-related cognitive deficits in visual recognition memory in right mesial temporal lobe. Epilepsia 2021; 62:2082-2093. [PMID: 34289113 PMCID: PMC8403636 DOI: 10.1111/epi.17010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Impaired memory is a common comorbidity of refractory temporal lobe epilepsy (TLE) and often perceived by patients as more problematic than the seizures themselves. The objective of this study is to understand what the relationship of these behavioral impairments is to the underlying pathophysiology, as there are currently no treatments for these deficits, and it remains unknown what circuits are affected. METHODS We recorded single neurons in the medial temporal lobes (MTLs) of 62 patients (37 with refractory TLE) who performed a visual recognition memory task to characterize the relationship between behavior, tuning, and anatomical location of memory selective and visually selective neurons. RESULTS Subjects with a seizure onset zone (SOZ) in the right but not left MTL demonstrated impaired ability to recollect as indicated by the degree of asymmetry of the receiver operating characteristic curve. Of the 1973 recorded neurons, 159 were memory selective (MS) and 366 were visually selective (VS) category cells. The responses of MS neurons located within right but not left MTL SOZs were impaired during high-confidence retrieval trials, mirroring the behavioral deficit seen both in our task and in standardized neuropsychological tests. In contrast, responses of VS neurons were unimpaired in both left and right MTL SOZs. Our findings show that neuronal dysfunction within SOZs in the MTL was specific to a functional cell type and behavior, whereas other cell types respond normally even within the SOZ. We show behavioral metrics that detect right MTL SOZ-related deficits and identify a neuronal correlate of this impairment. SIGNIFICANCE Together, these findings show that single-cell responses can be used to assess the causal effects of local circuit disruption by an SOZ in the MTL, and establish a neural correlate of cognitive impairment due to epilepsy that can be used as a biomarker to assess the efficacy of novel treatments.
Collapse
Affiliation(s)
- Seung J Lee
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FLA, USA
| | - Danielle E Beam
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Lynn K Paul
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nand Chandravadia
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ian B Ross
- Department of Neurosurgery, Huntington Memorial Hospital, Pasadena, CA, USA
| | - Taufik A Valiante
- Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
48
|
Henin S, Shankar A, Borges H, Flinker A, Doyle W, Friedman D, Devinsky O, Buzsáki G, Liu A. Spatiotemporal dynamics between interictal epileptiform discharges and ripples during associative memory processing. Brain 2021; 144:1590-1602. [PMID: 33889945 DOI: 10.1093/brain/awab044] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
We describe the spatiotemporal course of cortical high-gamma activity, hippocampal ripple activity and interictal epileptiform discharges during an associative memory task in 15 epilepsy patients undergoing invasive EEG. Successful encoding trials manifested significantly greater high-gamma activity in hippocampus and frontal regions. Successful cued recall trials manifested sustained high-gamma activity in hippocampus compared to failed responses. Hippocampal ripple rates were greater during successful encoding and retrieval trials. Interictal epileptiform discharges during encoding were associated with 15% decreased odds of remembering in hippocampus (95% confidence interval 6-23%). Hippocampal interictal epileptiform discharges during retrieval predicted 25% decreased odds of remembering (15-33%). Odds of remembering were reduced by 25-52% if interictal epileptiform discharges occurred during the 500-2000 ms window of encoding or by 41% during retrieval. During encoding and retrieval, hippocampal interictal epileptiform discharges were followed by a transient decrease in ripple rate. We hypothesize that interictal epileptiform discharges impair associative memory in a regionally and temporally specific manner by decreasing physiological hippocampal ripples necessary for effective encoding and recall. Because dynamic memory impairment arises from pathological interictal epileptiform discharge events competing with physiological ripples, interictal epileptiform discharges represent a promising therapeutic target for memory remediation in patients with epilepsy.
Collapse
Affiliation(s)
- Simon Henin
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Anita Shankar
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Helen Borges
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Adeen Flinker
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Werner Doyle
- NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA.,NYU Langone Health, Department of Neurosurgery, New York, NY 10016, USA
| | - Daniel Friedman
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Orrin Devinsky
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - György Buzsáki
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,New York University, Neuroscience Institute, New York, NY 10016, USA
| | - Anli Liu
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA.,New York University, Neuroscience Institute, New York, NY 10016, USA
| |
Collapse
|
49
|
Kubska ZR, Kamiński J. How Human Single-Neuron Recordings Can Help Us Understand Cognition: Insights from Memory Studies. Brain Sci 2021; 11:brainsci11040443. [PMID: 33808391 PMCID: PMC8067009 DOI: 10.3390/brainsci11040443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/29/2022] Open
Abstract
Understanding human cognition is a key goal of contemporary neuroscience. Due to the complexity of the human brain, animal studies and noninvasive techniques, however valuable, are incapable of providing us with a full understanding of human cognition. In the light of existing cognitive theories, we describe findings obtained thanks to human single-neuron recordings, including the discovery of concept cells and novelty-dependent cells, or activity patterns behind working memory, such as persistent activity. We propose future directions for studies using human single-neuron recordings and we discuss possible opportunities of investigating pathological brain.
Collapse
|
50
|
Meisenhelter S, Quon RJ, Steimel SA, Testorf ME, Camp EJ, Moein P, Culler GW, Gross RE, Lega BC, Sperling MR, Kahana MJ, Jobst BC. Interictal Epileptiform Discharges are Task Dependent and are Associated with Lasting Electrocorticographic Changes. Cereb Cortex Commun 2021; 2:tgab019. [PMID: 34296164 PMCID: PMC8152941 DOI: 10.1093/texcom/tgab019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
The factors that control the occurrence of interictal epileptiform discharges (IEDs) are not well understood. We suspected that this phenomenon reflects an attention-dependent suppression of interictal epileptiform activity. We hypothesized that IEDs would occur less frequently when a subject viewed a task-relevant stimulus compared with viewing a blank screen. Furthermore, IEDs have been shown to impair memory when they occur in certain regions during the encoding or recall phases of a memory task. Although these discharges have a short duration, their impact on memory suggests that they have longer lasting electrophysiological effects. We found that IEDs were associated with an increase in low-frequency power and a change in the balance between low- and high-frequency oscillations for several seconds. We found that the occurrence of IEDs is modified by whether a subject is attending to a word displayed on screen or is observing a blank screen. In addition, we found that discharges in brain regions in every lobe impair memory. These findings elucidate the relationship between IEDs and memory impairment and reveal the task dependence of the occurrence of IEDs.
Collapse
Affiliation(s)
- Stephen Meisenhelter
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
- Department of Neurology, Geisel School of Medicine at Dartmouth College Hanover, NH 03755, United States
| | - Robert J Quon
- Department of Neurology, Geisel School of Medicine at Dartmouth College Hanover, NH 03755, United States
| | - Sarah A Steimel
- Department of Neurology, Geisel School of Medicine at Dartmouth College Hanover, NH 03755, United States
| | - Markus E Testorf
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, United States
| | - Edward J Camp
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Payam Moein
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - George W Culler
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, United States
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas-Southwestern, Dallas, TX 75390, United States
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19144, United States
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Barbara C Jobst
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
- Department of Neurology, Geisel School of Medicine at Dartmouth College Hanover, NH 03755, United States
| |
Collapse
|