1
|
Jones SP, O'Neill N, Carpenter JC, Muggeo S, Colasante G, Kullmann DM, Lignani G. Early developmental alterations of CA1 pyramidal cells in Dravet syndrome. Neurobiol Dis 2024; 201:106688. [PMID: 39368670 DOI: 10.1016/j.nbd.2024.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024] Open
Abstract
Dravet Syndrome (DS) is most often caused by heterozygous loss-of-function mutations in the voltage-gated sodium channel gene SCN1A (Nav1.1), resulting in severe epilepsy and neurodevelopmental impairment thought to be cause by reduced interneuron excitability. However, recent studies in mouse models suggest that interneuron dysfunction alone does not completely explain all the cellular and network impairments seen in DS. Here, we investigated the development of the intrinsic, synaptic, and network properties of CA1 pyramidal cells in a DS model prior to the appearance of overt seizures. We report that CA1 pyramidal cell development is altered by heterozygous reduction of Scn1a, and propose that this is explained by a period of reduced intrinsic excitability in early postnatal life, during which Scn1a is normally expressed in hippocampal pyramidal cells. We also use a novel ex vivo model of homeostatic plasticity to show an instability in homeostatic response during DS epileptogenesis. This study provides evidence for the early effects of Scn1a haploinsufficiency in pyramidal cells in contributing to the pathophysiology of DS.
Collapse
Affiliation(s)
- Steffan P Jones
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Nathanael O'Neill
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Jenna C Carpenter
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Sharon Muggeo
- San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Gaia Colasante
- San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK.
| |
Collapse
|
2
|
Ots HD, Anderson T, Sherrerd-Smith W, DelBianco J, Rasic G, Chuprin A, Toor Z, Fitch E, Ahuja K, Reid F, Musto AE. Scoping review of disease-modifying effect of drugs in experimental epilepsy. Front Neurol 2023; 14:1097473. [PMID: 36908628 PMCID: PMC9997527 DOI: 10.3389/fneur.2023.1097473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Epilepsy affects ~50 million people worldwide causing significant medical, financial, and sociologic concerns for affected patients and their families. To date, treatment of epilepsy is primarily symptomatic management because few effective preventative or disease-modifying interventions exist. However, recent research has identified neurobiological mechanisms of epileptogenesis, providing new pharmacologic targets to investigate. The current scientific evidence remains scattered across multiple studies using different model and experimental designs. The review compiles different models of anti-epileptogenic investigation and highlights specific compounds with potential epileptogenesis-modifying experimental drugs. It provides a platform for standardization of future epilepsy research to allow a more robust compound analysis of compounds with potential for epilepsy prevention. Methods PubMed, Ovid MEDLINE, and Web of Science were searched from 2007 to 2021. Studies with murine models of epileptogenesis and explicitly detailed experimental procedures were included in the scoping review. In total, 51 articles were selected from 14,983 and then grouped by five core variables: (1) seizure frequency, (2) seizure severity, (3) spontaneous recurrent seizures (SRS), (4) seizure duration, and (5) mossy fiber sprouting (MFS). The variables were differentiated based on experimental models including methods of seizure induction, treatment schedule and timeline of data collection. Data was categorized by the five core variables and analyzed by converting original treatment values to units of percent of its respective control. Results Discrepancies in current epileptogenesis models significantly complicate inter-study comparison of potential anti-epileptogenic interventions. With our analysis, many compounds showed a potential to reduce epileptogenic characteristics defined by the five core variables. WIN55,212-2, aspirin, rapamycin, 1400W, and LEV + BQ788 were identified compounds with the potential of effective anti-epileptic properties. Significance Our review highlights the need for consistent methodology in epilepsy research and provides a novel approach for future research. Inconsistent experimental designs hinder study comparison, slowing the progression of treatments for epilepsy. If the research community can optimize and standardize parameters such as methods of seizure induction, administration schedule, sampling time, and aniMal models, more robust meta-analysis and collaborative research would follow. Additionally, some compounds such as rapamycin, WIN 55,212-2, aspirin, 1400W, and LEV + BQ788 showed anti-epileptogenic modulation across multiple variables. We believe they warrant further study both individually and synergistically.
Collapse
Affiliation(s)
- Heather D. Ots
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Taylor Anderson
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - John DelBianco
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Gordana Rasic
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anthony Chuprin
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Zeeshan Toor
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Elizabeth Fitch
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Kripa Ahuja
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Faith Reid
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Alberto E. Musto
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
3
|
Xue B, Alipio JB, Kao JPY, Kanold PO. Perinatal Opioid Exposure Results in Persistent Hypoconnectivity of Excitatory Circuits and Reduced Activity Correlations in Mouse Primary Auditory Cortex. J Neurosci 2022; 42:3676-3687. [PMID: 35332087 PMCID: PMC9053845 DOI: 10.1523/jneurosci.2542-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Opioid use by pregnant women results in neonatal opioid withdrawal syndrome (NOWS) and lifelong neurobehavioral deficits including language impairments. Animal models of NOWS show impaired performance in a two-tone auditory discrimination task, suggesting abnormalities in sensory processing in the auditory cortex. To investigate the consequences of perinatal opioid exposure on auditory cortex circuits, we administered fentanyl to mouse dams in their drinking water throughout gestation and until litters were weaned at postnatal day (P)21. We then used in vivo two-photon Ca2+ imaging in adult animals of both sexes to investigate how primary auditory cortex (A1) function was altered. Perinatally exposed animals showed fewer sound-responsive neurons in A1, and the remaining sound-responsive cells exhibited lower response amplitudes but normal frequency selectivity and stimulus-specific adaptation (SSA). Populations of nearby layer 2/3 (L2/3) cells in exposed animals showed reduced correlated activity, suggesting a reduction of shared inputs. We then investigated A1 microcircuits to L2/3 cells by performing laser-scanning photostimulation (LSPS) combined with whole-cell patch-clamp recordings from A1 L2/3 cells. L2/3 cells in exposed animals showed functional hypoconnectivity of excitatory circuits of ascending inputs from L4 and L5/6 to L2/3, while inhibitory connections were unchanged, leading to an altered excitatory/inhibitory balance. These results suggest a specific reduction in excitatory ascending interlaminar cortical circuits resulting in decreased activity correlations after fentanyl exposure. We speculate that these changes in cortical circuits contribute to the impaired auditory discrimination ability after perinatal opioid exposure.SIGNIFICANCE STATEMENT This is the first study to investigate the functional effects of perinatal fentanyl exposure on the auditory cortex. Experiments show that perinatal fentanyl exposure results in decreased excitatory functional circuits and altered population activity in primary sensory areas in adult mice. These circuit changes might underlie the observed language and cognitive deficits in infants exposed to opioids.
Collapse
Affiliation(s)
- Binghan Xue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Jason B Alipio
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
- Department of Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
4
|
Mueller JS, Tescarollo FC, Sun H. DREADDs in Epilepsy Research: Network-Based Review. Front Mol Neurosci 2022; 15:863003. [PMID: 35465094 PMCID: PMC9021489 DOI: 10.3389/fnmol.2022.863003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy can be interpreted as altered brain rhythms from overexcitation or insufficient inhibition. Chemogenetic tools have revolutionized neuroscience research because they allow "on demand" excitation or inhibition of neurons with high cellular specificity. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are the most frequently used chemogenetic techniques in epilepsy research. These engineered muscarinic receptors allow researchers to excite or inhibit targeted neurons with exogenous ligands. As a result, DREADDs have been applied to investigate the underlying cellular and network mechanisms of epilepsy. Here, we review the existing literature that has applied DREADDs to understand the pathophysiology of epilepsy. The aim of this review is to provide a general introduction to DREADDs with a focus on summarizing the current main findings in experimental epilepsy research using these techniques. Furthermore, we explore how DREADDs may be applied therapeutically as highly innovative treatments for epilepsy.
Collapse
Affiliation(s)
| | | | - Hai Sun
- Department of Neurosurgery, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
5
|
Cao J, Gan H, Xiao H, Chen H, Jian D, Jian D, Zhai X. Key protein-coding genes related to microglia in immune regulation and inflammatory response induced by epilepsy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9563-9578. [PMID: 34814358 DOI: 10.3934/mbe.2021469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Several studies have shown a link between immunity, inflammatory processes, and epilepsy. Active neuroinflammation and marked immune cell infiltration occur in epilepsy of diverse etiologies. Microglia, as the first line of defense in the central nervous system, are the main effectors of neuroinflammatory processes. Discovery of new biomarkers associated with microglia activation after epileptogenesis indicates that targeting specific molecules may help control seizures. In this research, we used a combination of several bioinformatics approaches, including RNA sequencing, to explore differentially expressed genes (DEGs) in epileptic lesions and control samples, and to construct a protein-protein interaction (PPI) network for DEGs, which was examined utilizing plug-ins in Cytoscape software. Finally, we aimed to identify 10 hub genes in immune and inflammation-related sub-networks, which were subsequently validated in real-time quantitative polymerase chain reaction analysis in a mouse model of kainic acid-induced epilepsy. The expression patterns of nine genes were consistent with sequencing outcomes. Meanwhile, several genes, including CX3CR1, CX3CL1, GPR183, FPR1, P2RY13, P2RY12 and LPAR5, were associated with microglial activation and migration, providing novel candidate targets for immunotherapy in epilepsy and laying the foundation for further research.
Collapse
Affiliation(s)
- Jing Cao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
| | - Hui Gan
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
| | - Han Xiao
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Hui Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Dan Jian
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Dan Jian
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
- Department of Pathology, Chongqing Medical University, Chongqing 400010, China
| | - Xuan Zhai
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| |
Collapse
|
6
|
Bando SY, Bertonha FB, Pimentel-Silva LR, de Oliveira JGM, Carneiro MAD, Oku MHM, Wen HT, Castro LHM, Moreira-Filho CA. Hippocampal CA3 transcriptional modules associated with granule cell alterations and cognitive impairment in refractory mesial temporal lobe epilepsy patients. Sci Rep 2021; 11:10257. [PMID: 33986407 PMCID: PMC8119682 DOI: 10.1038/s41598-021-89802-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/30/2021] [Indexed: 01/03/2023] Open
Abstract
In about a third of the patients with epilepsy the seizures are not drug-controlled. The current limitation of the antiepileptic drug therapy derives from an insufficient understanding of epilepsy pathophysiology. In order to overcome this situation, it is necessary to consider epilepsy as a disturbed network of interactions, instead of just looking for changes in single molecular components. Here, we studied CA3 transcriptional signatures and dentate gyrus histopathologic alterations in hippocampal explants surgically obtained from 57 RMTLE patients submitted to corticoamygdalohippocampectomy. By adopting a systems biology approach, integrating clinical, histopathological, and transcriptomic data (weighted gene co-expression network analysis), we were able to identify transcriptional modules highly correlated with age of disease onset, cognitive dysfunctions, and granule cell alterations. The enrichment analysis of transcriptional modules and the functional characterization of the highly connected genes in each trait-correlated module allowed us to unveil the modules’ main biological functions, paving the way for further investigations on their roles in RMTLE pathophysiology. Moreover, we found 15 genes with high gene significance values which have the potential to become novel biomarkers and/or therapeutic targets in RMTLE.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Fernanda Bernardi Bertonha
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Luciana Ramalho Pimentel-Silva
- Department of Neurology, Faculdade de Ciências Médicas da Universidade Estadual de Campinas, UNICAMP, Campinas, SP, 13083-887, Brazil
| | | | | | - Mariana Hiromi Manoel Oku
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Hung-Tzu Wen
- Epilepsy Surgery Group, Hospital das Clínicas da FMUSP, São Paulo, SP, 05403-900, Brazil
| | | | | |
Collapse
|
7
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
8
|
Lignani G, Baldelli P, Marra V. Homeostatic Plasticity in Epilepsy. Front Cell Neurosci 2020; 14:197. [PMID: 32676011 PMCID: PMC7333442 DOI: 10.3389/fncel.2020.00197] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 11/26/2022] Open
Abstract
In the healthy brain, neuronal excitability and synaptic strength are homeostatically regulated to keep neuronal network activity within physiological boundaries. Epilepsy is characterized by episodes of highly synchronized firing across in widespread neuronal populations, due to a failure in regulation of network activity. Here we consider epilepsy as a failure of homeostatic plasticity or as a maladaptive response to perturbations in the activity. How homeostatic compensation is involved in epileptogenic processes or in the chronic phase of epilepsy, is still debated. Although several theories have been proposed, there is relatively little experimental evidence to evaluate them. In this perspective, we will discuss recent results that shed light on the potential role of homeostatic plasticity in epilepsy. First, we will present some recent insights on how homeostatic compensations are probably active before and during epileptogenesis and how their actions are temporally regulated and closely dependent on the progression of pathology. Then, we will consider the dual role of transcriptional regulation during epileptogenesis, and finally, we will underline the importance of homeostatic plasticity in the context of therapeutic interventions for epilepsy. While classic pharmacological interventions may be counteracted by the epileptic brain to maintain its potentially dysfunctional set point, novel therapeutic approaches may provide the neuronal network with the tools necessary to restore its physiological balance.
Collapse
Affiliation(s)
- Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
9
|
Socała K, Doboszewska U, Wlaź P. Salvinorin A Does Not Affect Seizure Threshold in Mice. Molecules 2020; 25:molecules25051204. [PMID: 32155979 PMCID: PMC7179429 DOI: 10.3390/molecules25051204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/16/2022] Open
Abstract
The κ-opioid receptor has recently gained attention as a new molecular target in the treatment of many psychiatric and neurological disorders including epilepsy. Salvinorin A is a potent plant-derived hallucinogen that acts as a highly selective κ-opioid receptor agonist. It has unique structure and pharmacological properties, but its influence on seizure susceptibility has not been studied so far. Therefore, the aim of the present study was to investigate the effect of salvinorin A on seizure thresholds in three acute seizure tests in mice. We also examined its effect on muscular strength and motor coordination. The obtained results showed that salvinorin A (0.1-10 mg/kg, i.p.) did not significantly affect the thresholds for the first myoclonic twitch, generalized clonic seizure, or forelimb tonus in the intravenous pentylenetetrazole seizure threshold test in mice. Likewise, it failed to affect the thresholds for tonic hindlimb extension and psychomotor seizures in the maximal electroshock- and 6 Hz-induced seizure threshold tests, respectively. Moreover, no changes in motor coordination (assessed in the chimney test) or muscular strength (assessed in the grip-strength test) were observed. This is a preliminary report only, and further studies are warranted to better characterize the effects of salvinorin A on seizure and epilepsy.
Collapse
|
10
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
11
|
André EA, Forcelli PA, Pak DT. What goes up must come down: homeostatic synaptic plasticity strategies in neurological disease. FUTURE NEUROLOGY 2018; 13:13-21. [PMID: 29379396 DOI: 10.2217/fnl-2017-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/07/2017] [Indexed: 11/21/2022]
Abstract
Brain activity levels are tightly regulated to minimize imbalances in activity state. Deviations from the normal range of activity are deleterious and often associated with neurological disorders. To maintain optimal levels of activity, regulatory mechanisms termed homeostatic synaptic plasticity establish desired 'set points' for neural activity, monitor the network for deviations from the set point and initiate compensatory responses to return activity to the appropriate level that permits physiological function [1,2]. We speculate that impaired homeostatic control may contribute to the etiology of various neurological disorders including epilepsy and Alzheimer's disease, two disorders that exhibit hyperexcitability as a key feature during pathogenesis. Here, we will focus on recent progress in developing homeostatic regulation of neural activity as a therapeutic tool.
Collapse
Affiliation(s)
- Emily A André
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Daniel Ts Pak
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington DC 20057, USA
| |
Collapse
|