1
|
Giliberti A, Frisina AM, Giustiniano S, Carbonaro Y, Roccella M, Nardello R. Autism Spectrum Disorder and Epilepsy: Pathogenetic Mechanisms and Therapeutic Implications. J Clin Med 2025; 14:2431. [PMID: 40217881 PMCID: PMC11989834 DOI: 10.3390/jcm14072431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/24/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The co-occurrence of autism spectrum disorder (ASD) and epilepsy is a complex neurological condition that presents significant challenges for both patients and clinicians. ASD is a group of complex developmental disorders characterized by the following: (1) Social communication difficulties: challenges in understanding and responding to social cues, initiating and maintaining conversations, and developing and maintaining relationships. (2) Repetitive behaviors: engaging in repetitive actions, such as hand-flapping, rocking, or lining up objects. (3) Restricted interests: focusing intensely on specific topics or activities, often to the exclusion of other interests. (4) Sensory sensitivities: over- or under-sensitivity to sensory input, such as sounds, touch, tastes, smells, or sights. These challenges can significantly impact individuals' daily lives and require specialized support and interventions. Early diagnosis and intervention can significantly improve the quality of life for individuals with ASD and their families. Epilepsy is a chronic brain disorder characterized by recurrent unprovoked (≥2) seizures that occur >24 h apart. Single seizures are not considered epileptic seizures. Epilepsy is often idiopathic, but various brain disorders, such as malformations, strokes, and tumors, can cause symptomatic epilepsy. While these two conditions were once considered distinct, growing evidence suggests a substantial overlap in their underlying neurobiology. The prevalence of epilepsy in individuals with ASD is significantly higher than in the general population. This review will explore the epidemiology of this comorbidity, delve into the potential mechanisms linking ASD and epilepsy, and discuss the implications for diagnosis, treatment, and management.
Collapse
Affiliation(s)
- Alessandra Giliberti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy (R.N.)
| | - Adele Maria Frisina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy (R.N.)
| | - Stefania Giustiniano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy (R.N.)
| | - Ylenia Carbonaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy (R.N.)
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy (R.N.)
| |
Collapse
|
2
|
Specchio N, Di Micco V, Aronica E, Auvin S, Balestrini S, Brunklaus A, Gardella E, Scheper M, Taglialatela M, Trivisano M, Curatolo P. The epilepsy-autism phenotype associated with developmental and epileptic encephalopathies: New mechanism-based therapeutic options. Epilepsia 2025; 66:970-987. [PMID: 39985505 DOI: 10.1111/epi.18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 02/24/2025]
Abstract
Epilepsy and autism often co-occur in genetic developmental and epileptic encephalopathies (DEEs), but their underlying neurobiological processes remain poorly understood, complicating treatment. Advances in molecular genetics and understanding the neurodevelopmental pathogenesis of the epilepsy-autism phenotype may lead to mechanism-based treatments for children with DEEs and autism. Several genes, including the newly reported PPFIA3, MYCBP2, DHX9, TMEM63B, and RELN, are linked to various neurodevelopmental and epileptic disorders, intellectual disabilities, and autistic features. These findings underscore the clinical heterogeneity of genetic DEEs and suggest diverse neurobiological mechanisms influenced by genetic, epigenetic, and environmental factors. Mechanisms linking epilepsy and autism include γ-aminobutyric acidergic (GABAergic) signaling dysregulation, synaptic plasticity, disrupted functional connectivity, and neuroinflammatory responses. GABA system abnormalities, critical for inhibitory neurotransmission, contribute to both conditions. Dysregulation of the mechanistic target of rapamycin (mTOR) pathway and neuroinflammation are also pivotal, affecting seizure generation, drug resistance, and neuropsychiatric comorbidities. Abnormal synaptic function and connectivity further underscore the epilepsy-autism phenotype. New treatment options targeting specific mechanisms linked to the epilepsy-autism phenotype are emerging. Genetic variants in potassium channel genes like KCNQ2 and KCNT1 are frequent causes of early onset DEEs. Personalized treatments like retigabine and quinidine have been explored with heterogeneous responses. Efforts are ongoing to develop more effective KCNQ activators and KCNT1 blockers. SCN1A genetic variants, particularly in Dravet syndrome, show potential for treatment of autistic symptoms with low-dose clonazepam, fenfluramine, and cannabidiol, although human trials have yet to consistently replicate animal model successes. Early intervention before the age of 3 years, particularly in SCN1A- and tuberous sclerosis complex-related DEEs, is crucial. Additionally, targeting the mTOR pathway shows promise for seizure control and managing epilepsy-associated comorbidities. Understanding the distinct autism spectrum disorder phenotype in DEEs and implementing early behavioral interventions are essential for improving outcomes. Despite genetic advances, significant challenges persist in diagnosing and treating DEE-associated epilepsy-autism phenotypes. Future clinical trials should adopt precision health approaches to improve neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Nicola Specchio
- Neurology Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, full member of EpiCARE, Rome, Italy
- University Hospitals KU Leuven, Belgium
| | - Valentina Di Micco
- Neurology Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, full member of EpiCARE, Rome, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Univeristy Medical Center, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Stéphane Auvin
- Assistance publique - Hôpitaux de Paris, Service de Neurologie Pédiatrique, Centre de Référence Epilepsies Rares, membre EpiCARE, Hôpital Universitaire Robert-Debré, Université Paris-Cité, Institut national de la santé et de la recherche médicale Neuro Diderot, Institut Universitaire de France, Paris, France
| | - Simona Balestrini
- Neuroscience Department, Meyer Children's Hospital Istituti di Ricovero e Cura a Carattere Scientifico, full member of EpiCARE, Florence, Italy
- University of Florence, Florence, Italy
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Andreas Brunklaus
- School of Health and Wellbeing, University of Glasgow, UK and the Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Medicine and Department of Clinical Neurophysiology, Danish Epilepsy Center, member of EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam Univeristy Medical Center, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Naples, Italy
| | - Marina Trivisano
- Neurology Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, full member of EpiCARE, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
3
|
Daida A, Oana S, Nadkarni D, Espiritu BL, Edmonds BD, Stanecki C, Samuel AS, Rao LM, Rajaraman RR, Hussain SA, Matsumoto JH, Sankar R, Hannauer PS, Nariai H. Overnight Electroencephalogram to Forecast Epilepsy Development in Children with Autism Spectrum Disorders. J Pediatr 2024; 274:114217. [PMID: 39074735 DOI: 10.1016/j.jpeds.2024.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/16/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE To establish the utility of long-term electroencephalogram (EEG) in forecasting epilepsy onset in children with autism spectrum disorder (ASD). STUDY DESIGN A single-institution, retrospective analysis of children with ASD, examining long-term overnight EEG recordings collected over a period of 15 years, was conducted. Clinical EEG findings, patient demographics, medical histories, and additional Autism Diagnostic Observation Schedule data were examined. Predictors for the timing of epilepsy onset were evaluated using survival analysis and Cox regression. RESULTS Among 151 patients, 17.2% (n = 26) developed unprovoked seizures (Sz group), while 82.8% (n = 125) did not (non-Sz group). The Sz group displayed a higher percentage of interictal epileptiform discharges (IEDs) in their initial EEGs compared with the non-Sz group (46.2% vs 20.0%, P = .01). The Sz group also exhibited a greater frequency of slowing (42.3% vs 13.6%, P < .01). The presence of IEDs or slowing predicted an earlier seizure onset, based on survival analysis. Multivariate Cox proportional hazards regression revealed that the presence of any IEDs (HR 3.83, 95% CI 1.38-10.65, P = .01) or any slowing (HR 2.78, 95% CI 1.02-7.58, P = .046 significantly increased the risk of developing unprovoked seizures. CONCLUSION Long-term EEGs are valuable for predicting future epilepsy in children with ASD. These findings can guide clinicians in early education and potential interventions for epilepsy prevention.
Collapse
Affiliation(s)
- Atsuro Daida
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA
| | - Shingo Oana
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA
| | - Divya Nadkarni
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA
| | - Beck L Espiritu
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA
| | - Benjamin D Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA
| | - Catherine Stanecki
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA
| | - Ahn S Samuel
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA
| | - Lekha M Rao
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA
| | - Rajsekar R Rajaraman
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA; The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA
| | - Shaun A Hussain
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA; The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA
| | - Joyce H Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA; The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA; The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA
| | | | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA; The UCLA Children's Discovery and Innovation Institute, Los Angeles, CA
| |
Collapse
|
4
|
Kovacs M, Fogarasi A, Hegyi M, Siegler Z, Kelemen A, Mellar M, Orbok A, Simon G, Farkas K, Bessenyei M, Hollody K. Multicenter retrospective study of patients with PCDH19-related epilepsy: The first Hungarian cohort. Epileptic Disord 2024; 26:685-693. [PMID: 39017914 DOI: 10.1002/epd2.20264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE PCDH19-related epilepsy occurs predominantly in girls and is caused by pathogenic variant of the protocadherin-19 gene. The initial seizures usually develop in association with fever, begin on average at 15 months of age, and often occur in clusters. Autistic symptoms, intellectual disability, and sleep disturbance are often associated. METHODS In our retrospective, multicenter study, we reviewed clinical data of nine children with epilepsy genetically confirmed to be associated with PCDH19. RESULTS In the Hungarian patient population aged 0-18 years, the prevalence of PCDH19-related epilepsy was found to be lower (1/100000 live births in females) than the reported international data (4-5/100000 live births in females). Four of our nine patients had positive family history of epilepsy (cousins, sister, and mother). We assessed brain anomalies in three patients (in one patient focal cortical dysplasia and left anterior cingulate dysgenesis, and in two children right or left hippocampal sclerosis) and in another three cases incidentally identified benign alterations on brain MRI were found. The first seizure presented as a cluster in seven out of nine children. In seven out of nine cases occurred status epilepticus. Six out of nine children had autistic symptoms and only one child had normal intellectual development. Seven of our patients were seizure free with combined antiseizure medication (ASM). The most effective ASMs were levetiracetam, valproate, and clobazam. SIGNIFICANCE The prevalence of PCDH19-related epilepsy is presumably underestimated because of the lack of widely performed molecular genetic evaluations. Molecular genetic testing including PCDH19 pathogenic variants is recommended for female patients with an onset of seizures before the age of 3 years.
Collapse
Affiliation(s)
- Monika Kovacs
- Department of Paediatrics, University of Pecs, Pécs, Hungary
| | - Andras Fogarasi
- Bethesda Children Hospital, Budapest, Hungary
- Andras Peto Faculty, Semmelweis University, Budapest, Hungary
| | - Marta Hegyi
- Bethesda Children Hospital, Budapest, Hungary
| | | | - Anna Kelemen
- Neurology and Neurosurgery, National Institute of Mental Health, Budapest, Hungary
| | - Monika Mellar
- Pal Heim National Paediatric Institute, Budapest, Hungary
| | - Anna Orbok
- Pal Heim National Paediatric Institute, Budapest, Hungary
| | | | - Kristof Farkas
- Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Monika Bessenyei
- Department of Paediatrics, University of Debrecen, Debrecen, Hungary
| | - Katalin Hollody
- Department of Paediatrics, University of Pecs, Pécs, Hungary
| |
Collapse
|
5
|
Ince HY, Neville K, Geller J, Palffy A, Beser C, Ziobro J, Ghaziuddin N. Catatonia and Maintenance Electroconvulsive Therapy in a 15-Year-Old Patient With MED13L Haploinsufficiency Syndrome in the Context of Epilepsy Diathesis. J ECT 2024; 40:201-202. [PMID: 38968441 DOI: 10.1097/yct.0000000000001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
ABSTRACT This is the first report of pediatric catatonia syndrome in MED13L haploinsufficiency syndrome. This report describes unique challenges in diagnosis and management of catatonia in rare genetic conditions. The case also illustrates the use of electroconvulsive therapy in patients with epilepsy, epileptic encephalopathy, or other epileptic diathesis and the clinical conundrum in determining the course of maintenance electroconvulsive therapy.
Collapse
Affiliation(s)
- H Yavuz Ince
- From the Department of Psychiatry, Division of Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI
| | - Kerri Neville
- Department of Pediatrics, Division of Pediatric Neurology, University of Michigan, Ann Arbor, MI
| | - Jamarie Geller
- From the Department of Psychiatry, Division of Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI
| | - Alexander Palffy
- From the Department of Psychiatry, Division of Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI
| | - Can Beser
- From the Department of Psychiatry, Division of Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI
| | - Julie Ziobro
- Department of Pediatrics, Division of Pediatric Neurology, University of Michigan, Ann Arbor, MI
| | - Neera Ghaziuddin
- From the Department of Psychiatry, Division of Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
6
|
Chu H, Wang B, Zhao X, Mu L. Epilepsy and psychiatric comorbidities: A bidirectional mendelian randomization study. J Affect Disord 2024; 350:774-783. [PMID: 38272360 DOI: 10.1016/j.jad.2024.01.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
STUDY OBJECTIVES Psychiatric comorbidities are relatively common among patients with epilepsy; however, the underlying mechanisms of this association remain largely unknown. The objective of this Mendelian randomization (MR) study was to analyze the genetic correlations and causality underlying these reciprocal associations. METHODS Single-nucleotide polymorphisms associated with epilepsy (29,677 controls and 15,212 cases) and seven psychiatric comorbidities (485,436 controls and 269,495 cases) were identified from genome-wide association studies. Causal significance was estimated using inverse variance weighting. Sensitivity analyses included the weighted median, MR-Egger, and MR-PRESSO. The psychiatric comorbidities analyzed in this study included attention deficit hyperactivity disorder (ADHD), autism spectrum disorder, major depressive disorder, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and anorexia nervosa. RESULTS Both forward and reverse genetic associations were observed for the selected psychiatric disorders. Notably, ADHD was significantly associated with an increased risk of generalized epilepsy (odds ratio [OR], 1.09; 95 % confidence interval [CI], 1.01-1.18; p = 0.013). However, MR-PRESSO detected the existence of pleiotropy (p = 0.001). Additionally, focal epilepsy was significantly associated with a higher risk of OCD (OR, 1.44; 95 % CI, 1.08-1.92; p = 0.013), and all sensitivity tests yielded favorably nonsignificant results. There was no significant genetic association between epilepsy and other examined psychiatric disorders. However, due to the detection of pleiotropy by MR-Egger and considerations related to the threshold for genetic instruments, a cautious approach is warranted in interpreting some of the results. CONCLUSIONS This study revealed significant genetic causality between focal epilepsy and OCD, as well as between ADHD and generalized epilepsy. However, no casual significance was observed with other psychiatric comorbidities examined. Considering the inherent limitations of MR studies, further research is warranted to definitively clarify these genetic causal associations.
Collapse
Affiliation(s)
- Hongyuan Chu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Bing Wang
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, China
| | - Xinyu Zhao
- Department of Neurology, The People's Hospital of Shuangyashan, Shuangyashan, China
| | - Li Mu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, China.
| |
Collapse
|
7
|
Curatolo P, Scheper M, Emberti Gialloreti L, Specchio N, Aronica E. Is tuberous sclerosis complex-associated autism a preventable and treatable disorder? World J Pediatr 2024; 20:40-53. [PMID: 37878130 DOI: 10.1007/s12519-023-00762-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a genetic disorder caused by inactivating mutations in the TSC1 and TSC2 genes, causing overactivation of the mechanistic (previously referred to as mammalian) target of rapamycin (mTOR) signaling pathway in fetal life. The mTOR pathway plays a crucial role in several brain processes leading to TSC-related epilepsy, intellectual disability, and autism spectrum disorder (ASD). Pre-natal or early post-natal diagnosis of TSC is now possible in a growing number of pre-symptomatic infants. DATA SOURCES We searched PubMed for peer-reviewed publications published between January 2010 and April 2023 with the terms "tuberous sclerosis", "autism", or "autism spectrum disorder"," animal models", "preclinical studies", "neurobiology", and "treatment". RESULTS Prospective studies have highlighted that developmental trajectories in TSC infants who were later diagnosed with ASD already show motor, visual and social communication skills in the first year of life delays. Reliable genetic, cellular, electroencephalography and magnetic resonance imaging biomarkers can identify pre-symptomatic TSC infants at high risk for having autism and epilepsy. CONCLUSIONS Preventing epilepsy or improving therapy for seizures associated with prompt and tailored treatment strategies for autism in a sensitive developmental time window could have the potential to mitigate autistic symptoms in infants with TSC.
Collapse
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Mirte Scheper
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonardo Emberti Gialloreti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Geng G, Hu W, Meng Y, Zhang H, Zhang H, Chen C, Zhang Y, Gao Z, Liu Y, Shi J. Vagus nerve stimulation for treating developmental and epileptic encephalopathy in young children. Front Neurol 2023; 14:1191831. [PMID: 37928141 PMCID: PMC10624125 DOI: 10.3389/fneur.2023.1191831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Objective To investigate the clinical variables that might predict the outcome of developmental and epileptic encephalopathy (DEE) after vagus nerve stimulation (VNS) therapy and identify the risk factors for poor long-term outcome. Patients and methods We retrospectively studied 32 consecutive children with drug-resistant DEE who had undergone VNS surgery from April 2019 to July 2021, which were not suitable for corpus callosotomy. In spite of combining valproic acid, levetiracetam, lamotrigine, topiramate, etc. (standard anti-seizure medicine available in China) it has not been possible to effectively reduce seizures in the population we investigate (Cannabidiol and brivaracetam were not available in China). A responder was defined as a frequency reduction decrease > 50%. Seizure freedom was defined as freedom from seizures for at least 6 months. Sex, electroencephalograph (EEG) group, neurodevelopment, time lag, gene mutation, magnetic resonance imaging (MRI), and epilepsy syndrome were analyzed with Fisher's exact test, The age at onset and age at VNS therapy were analyzed with Kruskal-Wallis test, statistical significance was defined as p < 0.05. And used the effect size to correction. Results Among the 32 patients, the median age at VNS implantation was 4.7 years (range: 1-12 years). At the most recent follow-up, five children (15.6%) were seizure-free and 22 (68.8%) were responders. Univariate analysis demonstrated that the responders were significantly associated with mild development delay/intellectual disability (p = 0.044; phi coefficient = 0.357) and a multifocal EEG pattern (p = 0.022; phi coefficient = -0.405). Kaplan-Meier survival analyses demonstrated that a multifocal EEG pattern (p = 0.049) and DEE without epileptic spasm (ES) (p = 0.012) were statistically significant (p = 0.030). Multivariate analysis demonstrated that DEE with ES had significant predictive value for poor long-term outcome (p = 0.014, hazard ratio = 5.433, confidence interval = 1.402-21.058). Conclusions Our study suggested that VNS was a generally effective adjunct treatment for DEE. Although the predictive factors for VNS efficacy remain unclear, it should be emphasized that patients with ES are not suitable candidates for epilepsy surgery. Further investigations are needed to validate the present results.
Collapse
Affiliation(s)
- Guifu Geng
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
- Department of Functional Neurosurgery, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Wandong Hu
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yao Meng
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
- Department of Functional Neurosurgery, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Huan Zhang
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Hongwei Zhang
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Chuanmei Chen
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yanqing Zhang
- Pediatric Health Care Institute, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Zaifen Gao
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yong Liu
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Jianguo Shi
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
- Department of Functional Neurosurgery, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| |
Collapse
|
9
|
Goodson R, Wagner J, Sandritter T, Staggs VS, Soden S, Nadler C. Pharmacogenetic Testing in Patients with Autism Spectrum Disorder Evaluated in a Precision Medicine Clinic. J Dev Behav Pediatr 2023; 44:e505-e510. [PMID: 37807195 PMCID: PMC10564071 DOI: 10.1097/dbp.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/17/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study investigated outcomes of pharmacogenetic testing of youth with autism spectrum disorder (ASD) referred to a precision medicine clinic and explored associations between patient characteristics and pharmacogenomic testing results. METHODS Records for patients diagnosed with ASD and subsequently referred to a pediatric hospital's precision medicine clinic between July 1, 2010, and June 30, 2020, were reviewed. Pharmacogenetic testing results were abstracted focusing on CYP2D6 and CYP2C19. In addition, we compiled counts of patients' co-occurring diagnoses, histories of adverse drug reactions (ADRs), previously trialed ineffective medications, and previous psychiatric medication changes. Logistic regression models were fit to examine CYP2C19 and CYP2D6 metabolizer status as functions of patient demographics and prereferral medication histories. RESULTS Of 202 patients (mean age = 12.18 yrs), 66% were referred to precision medicine because of poor medication response. Among patients with pharmacogenomic testing results for CYP2D6, 9% were classified as poor metabolizers; among patients with results for CYP2C19, 10% were classified as rapid/ultrarapid metabolizers. Patient demographics and medication response history did not predict pharmacogenomic results. However, the number of co-occurring diagnoses positively predicted the number of nonpsychiatric ADRs and a higher probability of CYP2D6 poor metabolizer status; moreover, nonpsychiatric ADRs positively predicted CYP2C19 rapid/ultrarapid metabolizer status. CONCLUSION In one of the largest reported samples of youth with ASD clinically referred for pharmacogenetic testing, we observed high variability in medication response and yield for actionable results. Our findings suggest potential clinical utility for pharmacogenetic testing and introduce possible clinical profiles associated with metabolizer status.
Collapse
Affiliation(s)
- Rachel Goodson
- Division of Developmental and Behavioral Health, Department of Pediatrics, Atrium Health Navicent, Macon, GA
| | - Jennifer Wagner
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
- Department of Pediatrics, University of Missouri—Kansas City School of Medicine, Kansas City, MO
| | - Tracy Sandritter
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Vincent S. Staggs
- Department of Pediatrics, University of Missouri—Kansas City School of Medicine, Kansas City, MO
- Biostatistics and Epidemiology Core, Division of Health Services and Outcomes Research, Children’s Mercy Kansas City, Kansas City, MO
| | - Sarah Soden
- Department of Pediatrics, University of Missouri—Kansas City School of Medicine, Kansas City, MO
- Division of Developmental and Behavioral Health, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Cy Nadler
- Department of Pediatrics, University of Missouri—Kansas City School of Medicine, Kansas City, MO
- Division of Developmental and Behavioral Health, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| |
Collapse
|
10
|
Curatolo P, Trivisano M, Specchio N. Updated Genotype-Phenotype Correlations in TSC. Semin Pediatr Neurol 2023; 47:101086. [PMID: 37919037 DOI: 10.1016/j.spen.2023.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
GENOTYPE/PHENOTYPE CORRELATIONS IN TUBEROUS SCLEROSIS COMPLEX Paolo Curatolo MD, Romina Moavero MD, Denis Roberto, Federica Graziola Seminars in Pediatric Neurology Volume 22, Issue 4, December 2015, Pages 259-273 Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the development of widespread hamartomatous lesions in various organs, including brain, skin, kidneys, heart, and eyes. Central nervous system is almost invariably involved, with up to 85% of patients presenting with epilepsy, and at least half of patients having intellectual disability or other neuropsychiatric disorders including autism spectrum disorder. TSC is caused by the mutation in one of the 2 genes TSC1, at 9q34, and TSC2, at 16p13.3. They respectively encode for hamartin and tuberin, which form an intracellular complex inhibiting the mammalian target of rapamycin. Mammalian target of rapamycin overactivation following the genetic defect determines the cell growth and proliferation responsible for TSC-related lesions, as well as the alterations in neuronal excitability and synaptogenesis leading to epilepsy and neuropsychiatric disorders. A causative mutation for the disorder is identified in about 85% of patients with a clinical diagnosis of TSC. Mosaicism and technology limits likely explain most of the no mutation identified cases. This review confirms that patients with TSC2 mutations considered as a group usually present a more severe phenotype, characterized by higher number of tubers, earlier age at seizure onset and higher prevalence of intellectual disability. However, the clinical phenotype of the disease presents a high variability, thus making the prediction of the phenotype on an individual basis still challenging. The increasing application of new molecular techniques to subjects with TSC has the potential to significantly reduce the rate of patients with no mutation demonstrated and to identify an increasing higher number of mutations. This would hopefully allow a better characterization of higher risk mutations, which might help clinicians to plan individualized surveillance plans. Furthermore, the increasing availability of disease registries to collect clinical and genetics data of patients help to define more valid and clinically oriented genotype or phenotype correlations.
Collapse
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Marina Trivisano
- Child Neurology, Epilepsy and Movement Disorders, Bambino Gesù, IRCCS Children's Hospital, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Child Neurology, Epilepsy and Movement Disorders, Bambino Gesù, IRCCS Children's Hospital, Full Member of European Reference Network EpiCARE, Rome, Italy.
| |
Collapse
|
11
|
Xie G, Chen H, He C, Hu S, Xiao X, Luo Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct Integr Genomics 2023; 23:287. [PMID: 37653173 PMCID: PMC10471759 DOI: 10.1007/s10142-023-01220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a neurological disorder that impacts millions of people worldwide, and it is characterized by the occurrence of recurrent seizures. The pathogenesis of epilepsy is complex, involving dysregulation of various genes and signaling pathways. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a vital role in the regulation of gene expression. They have been found to be involved in the pathogenesis of epilepsy, acting as key regulators of neuronal excitability and synaptic plasticity. In recent years, there has been a growing interest in exploring the miRNA regulatory network in epilepsy. This review summarizes the current knowledge of the regulatory miRNAs involved in inflammation and apoptosis in epilepsy and discusses its potential as a new avenue for developing targeted therapies for the treatment of epilepsy.
Collapse
Affiliation(s)
- Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, Hubei, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Chan He
- Department of Clinical Laboratory, Maternal and Child Health Hospital in Wuchang District, Wuhan, Hubei, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Qingshan District, Wuhan, Hubei, China
| | - Xue Xiao
- Department of Clinical Laboratory, Gongrencun Street Community Health Service Center, Wuhan, China
| | - Qunying Luo
- Department of Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Gundogdu BS, Gaitanis J, Adams JB, Rossignol DA, Frye RE. Age-Related Changes in Epilepsy Characteristics and Response to Antiepileptic Treatment in Autism Spectrum Disorders. J Pers Med 2023; 13:1167. [PMID: 37511780 PMCID: PMC10381477 DOI: 10.3390/jpm13071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the high prevalence of epilepsy in individuals with autism spectrum disorder (ASD), there is little information regarding whether seizure characteristics and treatment effectiveness change across age. Using an online survey, seizure characteristics, effectiveness of antiepileptic treatments, comorbidities, potential etiologies, and ASD diagnosis were collected from individuals with ASD and seizures. We previously reported overall general patterns of treatment effectiveness but did not examine the effect of seizure characteristics or age on antiepileptic treatment effectiveness. Such information would improve the personalized medicine approach to the treatment of seizures in ASD. Survey data from 570 individuals with ASD and clinical seizures were analyzed. Seizure severity (seizure/week) decreased with age of onset of seizures, plateauing in adolescence, with a greater reduction in generalized tonic-clonic (GTC) seizures with age. Seizure severity was worse in those with genetic disorders, neurodevelopmental regression (NDR) and poor sleep maintenance. Carbamazepine and oxcarbazepine were reported to be more effective when seizures started in later childhood, while surgery and the Atkins/modified Atkins Diet (A/MAD) were reported to be more effective when seizures started early in life. A/MAD and the ketogenic diet were reported to be more effective in those with NDR. Interestingly, atypical Landau-Kleffner syndrome was associated with mitochondrial dysfunction and NDR, suggesting a novel syndrome. These interesting findings need to be verified in independent, prospectively collected cohorts, but nonetheless, these data provide insights into novel relationships that may assist in a better understanding of epilepsy in ASD and provide insight into personalizing epilepsy care in ASD.
Collapse
Affiliation(s)
| | - John Gaitanis
- Department of Neurology and Pediatrics, Hasbro Children's Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - James B Adams
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Daniel A Rossignol
- Rossignol Medical Center, Aliso Viejo, CA 92656, USA
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA
| | - Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Phoenix, AZ 85050, USA
| |
Collapse
|
13
|
Wirrell EC, Riney K, Specchio N, Zuberi SM. How have the recent updated epilepsy classifications impacted on diagnosis and treatment? Expert Rev Neurother 2023; 23:969-980. [PMID: 37676056 DOI: 10.1080/14737175.2023.2254937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Epilepsies are a diverse group of disorders which differ regarding prognosis for seizure control and associated comorbidities. Accurate classification is critical to choose the highest yield investigations and best therapeutic options and to provide the most accurate prognoses regarding the expected degree of seizure control, possible remission, and risk of associated comorbidities to patients and their families. This article reviews the recent updates in epilepsy classification to illustrate how accurate classification impacts care for persons with epilepsy. AREAS COVERED The authors discuss the ILAE 2017 Classification of the Epilepsies along with the modification of the classification for neonatal seizures and epilepsies. They also discuss the ILAE position papers on Epilepsy syndromes in neonates and infants and children of variable age and the Idiopathic Generalized Epilepsies. EXPERT OPINION Accurate epilepsy classification allows selection of the highest yield investigations, choice of optimal therapies, and accurate prognostication of seizures (likelihood of response to antiseizure treatments and likelihood of remission with age), as well as comorbidities (likelihood, type, and severity). As we move into the era of disease modifying therapy, early accurate identification of underlying causes with timely introduction of specific treatments will be crucial to lessen the severity of epilepsy, with improved seizure control and attenuation of associated comorbidities.
Collapse
Affiliation(s)
- Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, Australia and Faculty of Medicine, University of St Lucia, Brisbane, Queensland, Australia
| | - Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesu Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies (EpiCARE), Rome, Italy
| | - Sameer M Zuberi
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Royal Hospital for Children, Glasgow, UK
| |
Collapse
|
14
|
Lob K, Hou T, Chu TC, Ibrahim N, Bartolini L, Nie DA. Clinical features and drug-resistance in pediatric epilepsy with co-occurring autism: A retrospective comparative cohort study. Epilepsy Behav 2023; 143:109228. [PMID: 37182499 DOI: 10.1016/j.yebeh.2023.109228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE We conducted a retrospective comparative cohort study to determine the phenotypic and real-world management differences in children with epilepsy and co-occurring autism as compared to those without autism. METHODS Clinical variables, EEG, brain MRI, genetic results, medical and non-medical treatment were compared between 156 children with both epilepsy and autism, 156 randomly selected and 156 demographically matched children with epilepsy only. Logistic regression analyses were conducted to determine predictors of drug-resistant epilepsy (DRE). RESULTS As compared to the'matched' cohort, more patients with autism had generalized motor seizures although not statistically significant after Benjamini-Hochberg correction (54.5%, vs 42.3%, p = .0314); they had a lower rate of electroclinical syndromes (12.8%, vs 30.1%, p = .0002). There were more incidental MRI findings but less positive MRI findings to explain their epilepsy in children with autism (26.3%, vs 13.8% and 14.3%, vs 34.2%, respectively; p = .0003). In addition, LEV, LTG, and VPA were the most common ASMs prescribed to children with autism, as opposed to LEV, OXC, and LTG in children without autism. No difference in the major EEG abnormalities was observed. Although the rates of DRE were similar (24.8%, vs 26.6%, p = .7203), we identified two clinical and five electrographic correlates with DRE in children with both epilepsy and autism and a final prediction modeling of DRE that included EEG ictal findings, focal onset seizures, generalized motor seizures, abnormal EEG background, age of epilepsy onset, and history of SE, which were distinct from those in children without autism. SIGNIFICANCE Our study indicates that detailed seizure history and EEG findings are the most important evaluation and prediction tools for the development of DRE in children with epilepsy and co-occurring autism. Further studies of epilepsy in specific autism subgroups based on their etiology and clinical severity are warranted.
Collapse
Affiliation(s)
- Karen Lob
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Tao Hou
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tzu-Chun Chu
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Nouran Ibrahim
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Luca Bartolini
- Division of Pediatric Neurology, Hasbro Children's Hospital, Providence, RI, USA; Department of Pediatrics, the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Duyu A Nie
- Division of Pediatric Neurology, Hasbro Children's Hospital, Providence, RI, USA; Department of Pediatrics, the Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
15
|
O'Hara K, Dewar S, Bougher G, Dean P, Misra SN, Desai J. Overcoming barriers to the management of seizure clusters: ease of use and time to administration of rescue medications. Expert Rev Neurother 2023; 23:425-432. [PMID: 37126472 DOI: 10.1080/14737175.2023.2206568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Patients with epilepsy can experience seizure clusters (acute repetitive seizures), defined as intermittent, stereotypic episodes of frequent seizure activity that are distinct from typical seizure patterns. There are three FDA-approved rescue medications, diazepam rectal gel, midazolam nasal spray, and diazepam nasal spray, that can be administered to abort a seizure cluster in a nonmedical, community setting. Despite their effectiveness and safety, rescue medications are underutilized, and patient/caregiver experiences and perceptions of ease of use may constitute a substantial barrier to greater utilization. AREAS COVERED The literature on rescue medications for seizure clusters is reviewed, including the effectiveness and safety, with an emphasis on ease and timing of treatment and associated outcomes. Barriers to greater utilization of rescue medication and the role of seizure action plans are discussed. EXPERT OPINION Intranasal rescue medications are easier to use and can be administered more rapidly than other routes (rectal, intravenous). Importantly, rapid administration of intranasal rescue medications has been associated with shorter durations of seizure activity as compared with rectal/intravenous routes. Intranasal rescue medications are also easy to use and socially acceptable. These factors potentially remove or reduce barriers to use and optimize the management of seizure clusters.
Collapse
Affiliation(s)
- Kathryn O'Hara
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sandra Dewar
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Genei Bougher
- Northwest Florida Clinical Research Group, LLC, Gulf Breeze, FL, USA
- Child Neurology Center of Northwest Florida, Gulf Breeze, FL, USA
| | - Patricia Dean
- Comprehensive Epilepsy Center, Nicklaus Children's Hospital, Miami, FL, USA
| | - Sunita N Misra
- Clinical Development & Medical Affairs, Neurelis, Inc, San Diego, CA, USA
| | - Jay Desai
- Division of Neurology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Subependymal Giant Cell Astrocytomas in Tuberous Sclerosis Complex-Current Views on Their Pathogenesis and Management. J Clin Med 2023; 12:jcm12030956. [PMID: 36769603 PMCID: PMC9917805 DOI: 10.3390/jcm12030956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction, Tuberous sclerosis complex (TSC) is an autosomal-dominant disorder caused by mutations inactivating TSC1 or TSC2 genes and characterized by the presence of tumors involving many organs, including the brain, heart, kidneys, and skin. Subependymal giant cell astrocytoma (SEGA) is a slow-growing brain tumor almost exclusively associated with TSC. STATE OF THE ART Despite the fact that SEGAs are benign, they require well-considered decisions regarding the timing and modality of pharmacological or surgical treatment. In TSC children and adolescents, SEGA is the major cause of mortality and morbidity. CLINICAL IMPLICATIONS Until recently, surgical resection has been the standard therapy for SEGAs but the discovery of the role of the mTOR pathway and the introduction of mTOR inhibitors to clinical practice changed the therapeutic landscape of these tumors. In the current paper, we discuss the pros and cons of mTOR inhibitors and surgical approaches in SEGA treatment. FUTURE DIRECTIONS In 2021, the International Tuberous Sclerosis Complex Consensus Group proposed a new integrative strategy for SEGA management. In the following review, we discuss the proposed recommendations and report the results of the literature search for the latest treatment directions.
Collapse
|
17
|
Shuman T. Et tu, CA2: CA2 Is Hyperexcitable and Controls Seizures in a Mouse Model of Temporal Lobe Epilepsy. Epilepsy Curr 2023; 23:121-123. [PMID: 37122405 PMCID: PMC10131565 DOI: 10.1177/15357597221150068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
[Box: see text]
Collapse
Affiliation(s)
- Tristan Shuman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
18
|
Tallarico M, Leo A, Russo E, Citraro R, Palma E, De Sarro G. Seizure susceptibility to various convulsant stimuli in the BTBR mouse model of autism spectrum disorders. Front Pharmacol 2023; 14:1155729. [PMID: 37153775 PMCID: PMC10157402 DOI: 10.3389/fphar.2023.1155729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Autism spectrum disorders (ASDs) are one of the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact on society. Interestingly, several systematic reviews and meta-analyses documented a bidirectional link between epilepsy and ASD, supporting the hypothesis that both disorders may have common neurobiological pathways. According to this hypothesis, an imbalance of the excitatory/inhibitory (E/I) ratio in several brain regions may represent a causal mechanism underpinning the co-occurrence of these neurological diseases. Methods: To investigate this bidirectional link, we first tested the seizure susceptibility to chemoconvulsants acting on GABAergic and glutamatergic systems in the BTBR mice, in which an imbalance between E/I has been previously demonstrated. Subsequently, we performed the PTZ kindling protocol to study the impact of seizures on autistic-like behavior and other neurological deficits in BTBR mice. Results: We found that BTBR mice have an increased susceptibility to seizures induced by chemoconvulsants impairing GABAA neurotransmission in comparison to C57BL/6J control mice, whereas no significant difference in seizure susceptibility was observed after administration of AMPA, NMDA, and Kainate. This data suggests that deficits in GABAergic neurotransmission can increase seizure susceptibility in this strain of mice. Interestingly, BTBR mice showed a longer latency in the development of kindling compared to control mice. Furthermore, PTZ-kindling did not influence autistic-like behavior in BTBR mice, whereas it was able to significantly increase anxiety and worsen cognitive performance in this strain of mice. Interestingly, C57BL/6J displayed reduced sociability after PTZ injections, supporting the hypothesis that a tight connection exists between ASD and epilepsy. Conclusion: BTBR mice can be considered a good model to study epilepsy and ASD contemporarily. However, future studies should shed light on the mechanisms underpinning the co-occurrence of these neurological disorders in the BTBR model.
Collapse
Affiliation(s)
- Martina Tallarico
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Leo,
| | - Emilio Russo
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
19
|
Tiwari R, Chakrabarty B. Autism Spectrum Disorder and Epilepsy: Exploring the Missing Links. Indian J Pediatr 2022; 89:962-963. [PMID: 35819702 DOI: 10.1007/s12098-022-04294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Richa Tiwari
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Biswaroop Chakrabarty
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
20
|
Hwang K, Vaknalli RN, Addo-Osafo K, Vicente M, Vossel K. Tauopathy and Epilepsy Comorbidities and Underlying Mechanisms. Front Aging Neurosci 2022; 14:903973. [PMID: 35923547 PMCID: PMC9340804 DOI: 10.3389/fnagi.2022.903973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Tau is a microtubule-associated protein known to bind and promote assembly of microtubules in neurons under physiological conditions. However, under pathological conditions, aggregation of hyperphosphorylated tau causes neuronal toxicity, neurodegeneration, and resulting tauopathies like Alzheimer's disease (AD). Clinically, patients with tauopathies present with either dementia, movement disorders, or a combination of both. The deposition of hyperphosphorylated tau in the brain is also associated with epilepsy and network hyperexcitability in a variety of neurological diseases. Furthermore, pharmacological and genetic targeting of tau-based mechanisms can have anti-seizure effects. Suppressing tau phosphorylation decreases seizure activity in acquired epilepsy models while reducing or ablating tau attenuates network hyperexcitability in both Alzheimer's and epilepsy models. However, it remains unclear whether tauopathy and epilepsy comorbidities are mediated by convergent mechanisms occurring upstream of epileptogenesis and tau aggregation, by feedforward mechanisms between the two, or simply by coincident processes. In this review, we investigate the relationship between tauopathies and seizure disorders, including temporal lobe epilepsy (TLE), post-traumatic epilepsy (PTE), autism spectrum disorder (ASD), Dravet syndrome, Nodding syndrome, Niemann-Pick type C disease (NPC), Lafora disease, focal cortical dysplasia, and tuberous sclerosis complex. We also explore potential mechanisms implicating the role of tau kinases and phosphatases as well as the mammalian target of rapamycin (mTOR) in the promotion of co-pathology. Understanding the role of these co-pathologies could lead to new insights and therapies targeting both epileptogenic mechanisms and cognitive decline.
Collapse
|