1
|
Kremen V, Sladky V, Mivalt F, Gregg NM, Brinkmann BH, Balzekas I, Marks V, Kucewicz M, Lundstrom BN, Cui J, St Louis EK, Croarkin P, Alden EC, Joseph B, Fields J, Crockett K, Adolf J, Bilderbeek J, Hermes D, Messina S, Miller KJ, Van Gompel J, Denison T, Worrell GA. Modulating limbic circuits in temporal lobe epilepsy: impacts on seizures, memory, mood and sleep. Brain Commun 2025; 7:fcaf106. [PMID: 40196395 PMCID: PMC11972686 DOI: 10.1093/braincomms/fcaf106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/11/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures that often originate within limbic networks involving amygdala and hippocampus. The limbic network is involved in crucial physiologic functions involving memory, emotion and sleep. Temporal lobe epilepsy is frequently drug-resistant, and people often experience comorbidities related to memory, mood and sleep. Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is an established therapy for temporal lobe epilepsy. However, the optimal stimulation parameters and their impact on memory, mood and sleep comorbidities remain unclear. We used an investigational brain sensing-stimulation implanted device to accurately track seizures, interictal epileptiform spikes (IES), and memory, mood and sleep comorbidities in five ambulatory subjects. Wireless streaming of limbic network local field potentials (LFPs) and subject behaviour were captured on a mobile device integrated with a cloud environment. Automated algorithms applied to the continuous LFPs were used to accurately cataloged seizures, IES and sleep-wake brain state. Memory and mood assessments were remotely administered to densely sample cognitive and behavioural response during ANT-DBS in ambulatory subjects living in their natural home environment. We evaluated the effect of continuous low-frequency and duty cycle high-frequency ANT-DBS on epileptiform activity and memory, mood and sleep comorbidities. Both low-frequency and high-frequency ANT-DBS paradigms reduced seizures. However, continuous low-frequency ANT-DBS showed greater reductions in IES, electrographic seizures and better sleep and memory outcomes. These results highlight the potential of synchronized brain sensing and dense behavioural tracking during ANT-DBS for optimizing neuromodulation therapy. While studies with larger patient numbers are needed to validate the benefits of low-frequency ANT-DBS, these findings are potentially translatable to individuals currently implanted with ANT-DBS systems.
Collapse
Affiliation(s)
- Vaclav Kremen
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague 16000, Czech Republic
| | - Vladimir Sladky
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno 27201, Czech Republic
| | - Filip Mivalt
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno 61600, Czech Republic
| | - Nicholas M Gregg
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin H Brinkmann
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Irena Balzekas
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Victoria Marks
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michal Kucewicz
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- BioTechMed Center, Brain and Mind Electrophysiology Lab, Multimedia Systems Department, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Brian Nils Lundstrom
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Cui
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik K St Louis
- Divisions of Sleep Neurology and Pulmonary and Critical Care Medicine, Departments of Neurology and Medicine, Center for Sleep Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul Croarkin
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eva C Alden
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Boney Joseph
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie Fields
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Karla Crockett
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Jindrich Adolf
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague 16000, Czech Republic
| | - Jordan Bilderbeek
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven Messina
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kai Joshua Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Jamie Van Gompel
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Denison
- Department of Engineering Science, Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford OX3 7DQ, UK
| | - Gregory A Worrell
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Holmes GL. Timing is everything: The effect of early-life seizures on developing neuronal circuits subserving spatial memory. Epilepsia Open 2025. [PMID: 40110908 DOI: 10.1002/epi4.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025] Open
Abstract
Spatial memory, the aspect of memory involving encoding and retrieval of information regarding one's environment and spatial orientation, is a complex biological function incorporating multiple neuronal networks. Hippocampus-dependent spatial memory is not innate and emerges during development in both humans and rodents. For spatial memory to occur, the hippocampus forms highly associative networks integrating external inputs conveying multi-sensory, proprioceptive, contextual, and emotional information onto internally generated dynamics. Hippocampal cognitive maps are produced by sequences of transient ordered neuronal activations that represent not only spatial information but also the temporal order of events in a memory episode. This patterned activity fine-tunes synaptic connectivity of the network and drives the emergence of specific firing necessary for spatial memory. In the rodent hippocampus, there is a sequence of spontaneous activities that are precisely timed, starting with early sharp waves progressing to theta and gamma oscillations, place and grid cell firing, and sharp wave-ripples that must occur for spatial memory to develop. Whereas normal activity patterns are required for circuit maturation, aberrant neuronal activity during development can have major adverse consequences, disrupting the development of spatial memory. Seizures during infancy, involving massive bursts of synchronized network activity, result in impaired spatial memory when animals are tested as adolescents or adults. This impaired spatial memory is accompanied by alterations in theta and gamma oscillations and spatial and temporal coding of place cells. Conversely, enhancement of oscillatory activity following early-life seizures can improve cognitive impairment. The plasticity of developing oscillatory activity in the immature brain provides exciting opportunities for therapeutic intervention in childhood epilepsy. PLAIN LANGUAGE SUMMARY: Children with epilepsy often struggle with memory and learning challenges. Research has shown that seizures can interfere with the brain's natural rhythms, which are crucial for these processes. Seizures in children are particularly harmful because they disrupt the development of brain connections, which are still growing and maturing during this critical time. Exciting new studies in both animals and humans suggest that using electrical or magnetic stimulation to adjust these brain rhythms can help restore memory and learning abilities. This breakthrough offers hope for improving the lives of children with epilepsy.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
3
|
Stewart D, Johnson EL. The Bidirectional Relationship Between Epilepsy and Alzheimer's Disease. Curr Neurol Neurosci Rep 2025; 25:18. [PMID: 39921833 DOI: 10.1007/s11910-025-01404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
PURPOSE OF REVIEW Epilepsy has long been considered a late-stage consequence of Alzheimer's Disease (AD), but recent studies highlight its role early in the disease process, even preceding cognitive symptoms. Population studies reveal a two- to fourfold increased epilepsy risk in AD, particularly in early-onset cases, with seizures clustering around diagnosis. Furthermore, individuals with late-onset unexplained epilepsy have an elevated risk of developing mild cognitive impairment and dementia, underscoring a bidirectional relationship between AD and epilepsy. RECENT FINDINGS Experimental models support this connection, demonstrating amyloid and tau pathology-induced hyperexcitability at pre-symptomatic stages, implicating soluble Aβ oligomers and inhibitory interneuron dysfunction in excitatory/inhibitory imbalance. Subclinical or clinical epileptiform activity, detectable in 20-50% of AD patients, is associated with cognitive decline, possibly due to sleep-related memory consolidation disruption. Emerging biomarkers, such as TIRDA and high-frequency oscillations, show promise for early detection and intervention. Anti-seizure medications (ASMs), particularly low-dose levetiracetam, show potential not only for seizure control but also for mitigating amyloid deposition, tau hyperphosphorylation, and cognitive decline. However, treatment complexities remain due to variable ASM efficacy, age-related side effects, and limited clinical trials. The bidirectional nature of AD and epilepsy emphasizes the need for integrated diagnostics, including EEG and biomarker assessments, to guide early intervention and targeted therapies. Future research should focus on the mechanistic interplay between amyloid, tau, and hyperexcitability, alongside trials of ASM regimens, to refine therapeutic strategies and improve outcomes in this population.
Collapse
Affiliation(s)
- David Stewart
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Emily L Johnson
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
- , 600 N. Wolfe St, Meyer 2-147, Baltimore, MD, 21287, USA.
| |
Collapse
|
4
|
Yi JD, Pasdarnavab M, Kueck L, Tarcsay G, Ewell LA. Interictal spikes during spatial working memory carry helpful or distracting representations of space and have opposing impacts on performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623481. [PMID: 39605412 PMCID: PMC11601362 DOI: 10.1101/2024.11.13.623481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In temporal lobe epilepsy, interictal spikes (IS) - hypersynchronous bursts of network activity - occur at high rates in between seizures. We sought to understand the influence of IS on working memory by recording hippocampal local field potentials from epileptic mice while they performed a delayed alternation task. We found that IS disrupted performance when they were spatially non-restricted and occurred during running. In contrast, when IS were clustered at reward locations, animals performed well. A machine learning decoding approach revealed that IS at reward sites were larger than IS elsewhere on the maze, and could be classified as occurring at specific reward locations - suggesting they carry informative content for the memory task. Finally, a spiking model revealed that spatially clustered IS preserved hippocampal replay, while spatially dispersed IS disrupted replay by causing over-generalization. Together, these results show that IS can have opposing outcomes on memory.
Collapse
Affiliation(s)
- Justin D. Yi
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- These authors contributed equally
| | | | | | - Gergely Tarcsay
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Laura A. Ewell
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Center for Learning and Memory, University of California, Irvine, Irvine, CA, USA
- Senior author
- Lead contact
| |
Collapse
|
5
|
Song H, Mah B, Sun Y, Aloysius N, Bai Y, Zhang L. Development of spontaneous recurrent seizures accompanied with increased rates of interictal spikes and decreased hippocampal delta and theta activities following extended kindling in mice. Exp Neurol 2024; 379:114860. [PMID: 38876195 DOI: 10.1016/j.expneurol.2024.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Interictal epileptiform discharges refer to aberrant brain electrographic signals between seizures and feature intermittent interictal spikes (ISs), sharp waves, and/or abnormal rhythms. Recognition of these epileptiform activities by electroencephalographic (EEG) examinations greatly aids epilepsy diagnosis and localization of the seizure onset zone. ISs are a major form of interictal epileptiform discharges recognized in animal models of epilepsy. Progressive changes in IS waveforms, IS rates, and/or associated fast ripple oscillations have been shown to precede the development of spontaneous recurrent seizures (SRS) in various animal models. IS expressions in the kindling model of epilepsy have been demonstrated but IS changes during the course of SRS development in extended kindled animals remain to be detailed. We hence addressed this issue using a mouse model of kindling-induced SRS. Adult C57 black mice received twice daily hippocampal stimulations until SRS occurrence, with 24-h EEG monitoring performed following 50, 80, and ≥ 100 stimulations and after observation of SRS. In the stimulated hippocampus, increases in spontaneous ISs rates, but not in IS waveforms nor IS-associated fast ripples, along with decreased frequencies of hippocampal delta and theta rhythms, were observed before SRS onset. Comparable increases in IS rates were further observed in the unstimulated hippocampus, piriform cortex, and entorhinal cortex, but not in the unstimulated parietal cortex and dorsomedial thalamus. These data provide original evidence suggesting that increases in hippocampal IS rates, together with reductions in hippocampal delta and theta rhythms are closely associated with development of SRS in a rodent kindling model.
Collapse
Affiliation(s)
- Hongmei Song
- Department of Neurosurgery, the First Hospital of Jilin University, China; Krembil Research Institute, University Health Network, Canada.
| | - Bryan Mah
- Krembil Research Institute, University Health Network, Canada
| | - Yuqing Sun
- Krembil Research Institute, University Health Network, Canada
| | - Nancy Aloysius
- Krembil Research Institute, University Health Network, Canada
| | - Yang Bai
- Department of Neuro-Oncology, the First Hospital of Jilin University, China.
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Mukaino T. [Memory impairments in temporal lobe epilepsy]. Rinsho Shinkeigaku 2024; 64:453-459. [PMID: 38910118 DOI: 10.5692/clinicalneurol.cn-001886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Temporal lobe epilepsy is known to present with various cognitive impairments, among which memory deficits are frequently reported by patients. Memory deficits can be classified into two types: classical hippocampal amnesia, which is characterized by abnormalities detected in neuropsychological assessments, and atypical memory deficits, such as accelerated long-term amnesia and autobiographical memory impairment, which cannot be identified using standard testing methods. These deficits are believed to arise from a complex interplay among structural brain abnormalities, interictal epileptic discharges, pharmacological factors, and psychological states. While fundamental treatments are limited, there are opportunities for interventions such as environmental adjustments and rehabilitation. This review article aims to provide a comprehensive overview of the types, underlying pathophysiology, and intervention methods for memory disorders observed in patients with temporal lobe epilepsy.
Collapse
|
7
|
Sawczuk N, Rubinstein DY, Sperling MR, Wendel-Mitoraj K, Djuric P, Slezak DF, Kamienkowski J, Weiss SA. High-gamma and beta bursts in the Left Supramarginal Gyrus can accurately differentiate verbal memory states and performance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308117. [PMID: 38853875 PMCID: PMC11160814 DOI: 10.1101/2024.05.29.24308117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The left supramarginal gyrus (LSMG) may mediate attention to memory, and gauge memory state and performance. We performed a secondary analysis of 142 verbal delayed free recall experiments, in patients with medically-refractory epilepsy with electrode contacts implanted in the LSMG. In 14 of 142 experiments (in 14 of 113 patients), the cross-validated convolutional neural networks (CNNs) that used 1-dimensional(1-D) pairs of convolved high-gamma and beta tensors, derived from the LSMG recordings, could label recalled words with an area under the receiver operating curve (AUROC) of greater than 60% [range: 60-90%]. These 14 patients were distinguished by: 1) higher amplitudes of high-gamma bursts; 2) distinct electrode placement within the LSMG; and 3) superior performance compared with a CNN that used a 1-D tensor of the broadband recordings in the LSMG. In a pilot study of 7 of these patients, we also cross-validated CNNs using paired 1-D convolved high-gamma and beta tensors, from the LSMG, to: a) distinguish word encoding epochs from free recall epochs [AUC 0.6-1]; and distinguish better performance from poor performance during delayed free recall [AUC 0.5-0.86]. These experiments show that bursts of high-gamma and beta generated in the LSMG are biomarkers of verbal memory state and performance.
Collapse
Affiliation(s)
- Nicolás Sawczuk
- Department of Computer Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniel Y. Rubinstein
- Department of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael R. Sperling
- Department of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Petar Djuric
- Dept. of Electrical & Computer Engineering, Stony Brook, New York, 11794 USA
| | - Diego F. Slezak
- Department of Computer Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Juan Kamienkowski
- Department of Computer Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Shennan A. Weiss
- Department of Neurology, Stony Brook University, Stony Brook, New York, 11790 USA
| |
Collapse
|
8
|
Kremen V, Sladky V, Mivalt F, Gregg NM, Balzekas I, Marks V, Brinkmann BH, Lundstrom BN, Cui J, St Louis EK, Croarkin P, Alden EC, Fields J, Crockett K, Adolf J, Bilderbeek J, Hermes D, Messina S, Miller KJ, Van Gompel J, Denison T, Worrell GA. A platform for brain network sensing and stimulation with quantitative behavioral tracking: Application to limbic circuit epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.09.24302358. [PMID: 38370724 PMCID: PMC10871449 DOI: 10.1101/2024.02.09.24302358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures. These seizures often originate from limbic networks and people also experience chronic comorbidities related to memory, mood, and sleep (MMS). Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is a proven therapy, but the optimal stimulation parameters remain unclear. We developed a neurotechnology platform for tracking seizures and MMS to enable data streaming between an investigational brain sensing-stimulation implant, mobile devices, and a cloud environment. Artificial Intelligence algorithms provided accurate catalogs of seizures, interictal epileptiform spikes, and wake-sleep brain states. Remotely administered memory and mood assessments were used to densely sample cognitive and behavioral response during ANT-DBS. We evaluated the efficacy of low-frequency versus high-frequency ANT-DBS. They both reduced seizures, but low-frequency ANT-DBS showed greater reductions and better sleep and memory. These results highlight the potential of synchronized brain sensing and behavioral tracking for optimizing neuromodulation therapy.
Collapse
|
9
|
Anderson DN, Charlebois CM, Smith EH, Davis TS, Peters AY, Newman BJ, Arain AM, Wilcox KS, Butson CR, Rolston JD. Closed-loop stimulation in periods with less epileptiform activity drives improved epilepsy outcomes. Brain 2024; 147:521-531. [PMID: 37796038 PMCID: PMC10834245 DOI: 10.1093/brain/awad343] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
In patients with drug-resistant epilepsy, electrical stimulation of the brain in response to epileptiform activity can make seizures less frequent and debilitating. This therapy, known as closed-loop responsive neurostimulation (RNS), aims to directly halt seizure activity via targeted stimulation of a burgeoning seizure. Rather than immediately stopping seizures as they start, many RNS implants produce slower, long-lasting changes in brain dynamics that better predict clinical outcomes. Here we hypothesize that stimulation during brain states with less epileptiform activity drives long-term changes that restore healthy brain networks. To test this, we quantified stimulation episodes during low- and high-risk brain states-that is, stimulation during periods with a lower or higher risk of generating epileptiform activity-in a cohort of 40 patients treated with RNS. More frequent stimulation in tonic low-risk states and out of rhythmic high-risk states predicted seizure reduction. Additionally, stimulation events were more likely to be phase-locked to prolonged episodes of abnormal activity for intermediate and poor responders when compared to super-responders, consistent with the hypothesis that improved outcomes are driven by stimulation during low-risk states. These results support the hypothesis that stimulation during low-risk periods might underlie the mechanisms of RNS, suggesting a relationship between temporal patterns of neuromodulation and plasticity that facilitates long-term seizure reduction.
Collapse
Affiliation(s)
- Daria Nesterovich Anderson
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Chantel M Charlebois
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Tyler S Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Angela Y Peters
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Blake J Newman
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Amir M Arain
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Karen S Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher R Butson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32608, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - John D Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Silva AB, Leonard MK, Oganian Y, D’Esopo E, Krish D, Kopald B, Tran EB, Chang EF, Kleen JK. Interictal epileptiform discharges contribute to word-finding difficulty in epilepsy through multiple cognitive mechanisms. Epilepsia 2023; 64:3266-3278. [PMID: 37753856 PMCID: PMC10841419 DOI: 10.1111/epi.17781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Cognitive impairment often impacts quality of life in epilepsy even if seizures are controlled. Word-finding difficulty is particularly prevalent and often attributed to etiological (static, baseline) circuit alterations. We sought to determine whether interictal discharges convey significant superimposed contributions to word-finding difficulty in patients, and if so, through which cognitive mechanism(s). METHODS Twenty-three patients undergoing intracranial monitoring for drug-resistant epilepsy participated in multiple tasks involving word production (auditory naming, short-term verbal free recall, repetition) to probe word-finding difficulty across different cognitive domains. We compared behavioral performance between trials with versus without interictal discharges across six major brain areas and adjusted for intersubject differences using mixed-effects models. We also evaluated for subjective word-finding difficulties through retrospective chart review. RESULTS Subjective word-finding difficulty was reported by the majority (79%) of studied patients preoperatively. During intracranial recordings, interictal epileptiform discharges (IEDs) in the medial temporal lobe were associated with long-term lexicosemantic memory impairments as indexed by auditory naming (p = .009), in addition to their established impact on short-term verbal memory as indexed by free recall (p = .004). Interictal discharges involving the lateral temporal cortex and lateral frontal cortex were associated with delayed reaction time in the auditory naming task (p = .016 and p = .018), as well as phonological working memory impairments as indexed by repetition reaction time (p = .002). Effects of IEDs across anatomical regions were strongly dependent on their precise timing within the task. SIGNIFICANCE IEDs appear to act through multiple cognitive mechanisms to form a convergent basis for the debilitating clinical word-finding difficulty reported by patients with epilepsy. This was particularly notable for medial temporal spikes, which are quite common in adult focal epilepsy. In parallel with the treatment of seizures, the modulation of interictal discharges through emerging pharmacological means and neurostimulation approaches may be an opportunity to help address devastating memory and language impairments in epilepsy.
Collapse
Affiliation(s)
- Alexander B. Silva
- Department of Neurosurgery, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Matthew K. Leonard
- Department of Neurosurgery, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Emma D’Esopo
- Department of Neurology, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Devon Krish
- Department of Neurology, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Brandon Kopald
- Department of Neurology, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Edwina B. Tran
- Department of Neurology, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Edward F. Chang
- Department of Neurosurgery, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Jonathan K. Kleen
- Department of Neurology, Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Ciliento R, Gjini K, Dabbs K, Hermann B, Riedner B, Jones S, Fatima S, Johnson S, Bendlin B, Lam AD, Boly M, Struck AF. Prevalence and localization of nocturnal epileptiform discharges in mild cognitive impairment. Brain Commun 2023; 5:fcad302. [PMID: 37965047 PMCID: PMC10642616 DOI: 10.1093/braincomms/fcad302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Recent evidence shows that identifying and treating epileptiform abnormalities in patients with Alzheimer's disease could represent a potential avenue to improve clinical outcome. Specifically, animal and human studies have revealed that in the early phase of Alzheimer's disease, there is an increased risk of seizures. It has also been demonstrated that the administration of anti-seizure medications can slow the functional progression of the disease only in patients with EEG signs of cortical hyperexcitability. In addition, although it is not known at what disease stage hyperexcitability emerges, there remains no consensus regarding the imaging and diagnostic methods best able to detect interictal events to further distinguish different phenotypes of Alzheimer's disease. In this exploratory work, we studied 13 subjects with amnestic mild cognitive impairment and 20 healthy controls using overnight high-density EEG with 256 channels. All participants also underwent MRI and neuropsychological assessment. Electronic source reconstruction was also used to better select and localize spikes. We found spikes in six of 13 (46%) amnestic mild cognitive impairment compared with two of 20 (10%) healthy control participants (P = 0.035), representing a spike prevalence similar to that detected in previous studies of patients with early-stage Alzheimer's disease. The interictal events were low-amplitude temporal spikes more prevalent during non-rapid eye movement sleep. No statistically significant differences were found in cognitive performance between amnestic mild cognitive impairment patients with and without spikes, but a trend in immediate and delayed memory was observed. Moreover, no imaging findings of cortical and subcortical atrophy were found between amnestic mild cognitive impairment participants with and without epileptiform spikes. In summary, our exploratory study shows that patients with amnestic mild cognitive impairment reveal EEG signs of hyperexcitability early in the disease course, while no other significant differences in neuropsychological or imaging features were observed among the subgroups. If confirmed with longitudinal data, these exploratory findings could represent one of the first signatures of a preclinical epileptiform phenotype of amnestic mild cognitive impairment and its progression.
Collapse
Affiliation(s)
- Rosario Ciliento
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Klevest Gjini
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Kevin Dabbs
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Bruce Hermann
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Brady Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Stephanie Jones
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Safoora Fatima
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Sterling Johnson
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Barbara Bendlin
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Alice D Lam
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Melanie Boly
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Aaron F Struck
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Neurology, William S. Middleton Veterans Administration Hospital, Madison, WI 53705, USA
| |
Collapse
|
12
|
Weiss SA, Fried I, Engel J, Sperling MR, Wong RKS, Nir Y, Staba RJ. Fast ripples reflect increased excitability that primes epileptiform spikes. Brain Commun 2023; 5:fcad242. [PMID: 37869578 PMCID: PMC10587774 DOI: 10.1093/braincomms/fcad242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023] Open
Abstract
The neuronal circuit disturbances that drive inter-ictal and ictal epileptiform discharges remain elusive. Using a combination of extra-operative macro-electrode and micro-electrode inter-ictal recordings in six pre-surgical patients during non-rapid eye movement sleep, we found that, exclusively in the seizure onset zone, fast ripples (200-600 Hz), but not ripples (80-200 Hz), frequently occur <300 ms before an inter-ictal intra-cranial EEG spike with a probability exceeding chance (bootstrapping, P < 1e-5). Such fast ripple events are associated with higher spectral power (P < 1e-10) and correlated with more vigorous neuronal firing than solitary fast ripple (generalized linear mixed-effects model, P < 1e-9). During the intra-cranial EEG spike that follows a fast ripple, action potential firing is lower than during an intra-cranial EEG spike alone (generalized linear mixed-effects model, P < 0.05), reflecting an inhibitory restraint of intra-cranial EEG spike initiation. In contrast, ripples do not appear to prime epileptiform spikes. We next investigated the clinical significance of pre-spike fast ripple in a separate cohort of 23 patients implanted with stereo EEG electrodes, who underwent resections. In non-rapid eye movement sleep recordings, sites containing a high proportion of fast ripple preceding intra-cranial EEG spikes correlate with brain areas where seizures begin more than solitary fast ripple (P < 1e-5). Despite this correlation, removal of these sites does not guarantee seizure freedom. These results are consistent with the hypothesis that fast ripple preceding EEG spikes reflect an increase in local excitability that primes EEG spike discharges preferentially in the seizure onset zone and that epileptogenic brain regions are necessary, but not sufficient, for initiating inter-ictal epileptiform discharges.
Collapse
Affiliation(s)
- Shennan A Weiss
- Department of Neurology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY 11203, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jerome Engel
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michael R Sperling
- Departments of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert K S Wong
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY 11203, USA
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Richard J Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Weiss SA, Fried I, Engel J, Sperling MR, Wong RK, Nir Y, Staba RJ. Fast ripples reflect increased excitability that primes epileptiform spikes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.26.23287702. [PMID: 37034609 PMCID: PMC10081394 DOI: 10.1101/2023.03.26.23287702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The neuronal circuit disturbances that drive interictal and ictal epileptiform discharges remains elusive. Using a combination of extraoperative macro- and micro-electrode interictal recordings in six presurgical patients during non-rapid eye movement (REM) sleep we found that, exclusively in the seizure onset zone, fast ripples (FR; 200-600Hz), but not ripples (80-200 Hz), frequently occur <300 msec before an interictal intracranial EEG (iEEG) spike with a probability exceeding chance (bootstrapping, p<1e-5). Such FR events are associated with higher spectral power (p<1e-10) and correlated with more vigorous neuronal firing than solitary FR (generalized linear mixed-effects model, GLMM, p<1e-3) irrespective of FR power. During the iEEG spike that follows a FR, action potential firing is lower than during a iEEG spike alone (GLMM, p<1e-10), reflecting an inhibitory restraint of iEEG spike initiation. In contrast, ripples do not appear to prime epileptiform spikes. We next investigated the clinical significance of pre-spike FR in a separate cohort of 23 patients implanted with stereo EEG electrodes who underwent resections. In non-REM sleep recordings, sites containing a high proportion of FR preceding iEEG spikes correlate with brain areas where seizures begin more than solitary FR (p<1e-5). Despite this correlation, removal of these sites does not guarantee seizure freedom. These results are consistent with the hypothesis that FR preceding EEG spikes reflect an increase in local excitability that primes EEG spike discharges preferentially in the seizure onset zone and that epileptogenic brain regions are necessary, but not sufficient, for initiating interictal epileptiform discharges.
Collapse
Affiliation(s)
- Shennan A Weiss
- Dept. of Neurology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, USA
| | - Itzhak Fried
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Jerome Engel
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Michael R. Sperling
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Robert K.S. Wong
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Richard J Staba
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| |
Collapse
|
14
|
Hippocampal Theta and Episodic Memory. J Neurosci 2023; 43:613-620. [PMID: 36639900 PMCID: PMC9888505 DOI: 10.1523/jneurosci.1045-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Computational models of rodent physiology implicate hippocampal theta as a key modulator of learning and memory (Buzsáki and Moser, 2013; Lisman and Jensen, 2013), yet human hippocampal recordings have shown divergent theta correlates of memory formation. Herweg et al. (2020) suggest that decreases in memory-related broadband power mask narrowband theta increases. Their survey also notes that the theta oscillations appear most prominently in contrasts that isolate memory retrieval processes and when aggregating signals across large brain regions. We evaluate these hypotheses by analyzing human hippocampal recordings captured as 162 neurosurgical patients (n = 86 female) performed a free recall task. Using the Irregular-Resampling Auto-Spectral Analysis (IRASA) to separate broad and narrowband components of the field potential, we show that (1) broadband and narrowband components of theta exhibit opposite effects, with broadband signals decreasing and narrowband theta increasing during successful encoding; (2) whereas low-frequency theta oscillations increase before successful recall, higher-frequency theta and alpha oscillations decrease, masking the positive effect of theta when aggregating across the full band; and (3) the effects of theta on memory encoding and retrieval do not differ between reference schemes that accentuate local signals (bipolar) and those that aggregate signals globally (whole-brain average). In line with computational models that ascribe a fundamental role for hippocampal theta in memory, our large-scale study of human hippocampal recordings shows that 3-4 Hz theta oscillations reliably increase during successful memory encoding and before spontaneous recall of previously studied items.SIGNIFICANCE STATEMENT Analyzing recordings from 162 participants, we resolve a long-standing question regarding the role of hippocampal theta oscillations in the formation and retrieval of episodic memories. We show that broadband spectral changes confound estimates of narrowband theta activity, thereby accounting for inconsistent results in the literature. After accounting for broadband effects, we find that increased theta activity marks successful encoding and retrieval of episodic memories, supporting rodent models that ascribe a key role for hippocampal theta in memory function.
Collapse
|