1
|
Kohlhase K, Strzelczyk A, Willems LM, Mandelka L, Reitz SC, Czabanka M, Funke M, Grefkes C, Marzi I, Schindler C, Bohmann FO. Predictive factors and prevalence of acute symptomatic seizures among patients with acute traumatic brain injuries. Epilepsy Behav 2025; 170:110487. [PMID: 40398178 DOI: 10.1016/j.yebeh.2025.110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/16/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
INTRODUCTION Traumatic brain injuries (TBI) significantly contribute to hospital admissions in Europe. Acute symptomatic seizures (ASz), occurring within seven days post-TBI, increase morbidity and mortality. This study analyzes the frequency, risk factors, and short-term outcomes of ASz in patients with acute TBI. MATERIAL AND METHODS This retrospective study included 212 patients with acute TBI admitted to the University Hospital Frankfurt/Germany between 2018 and 2021. Data were collected on demographics, injury characteristics, clinical course, and outcomes. ASz were defined as clinically or electroencephalographically detected seizures within seven days post-TBI. Logistic regression was used to identify predictors of ASz and non-convulsive status epilepticus (NCSE). RESULTS ASz occurred in 17.9 % (n = 38) of patients, with a mean latency of 2.4 ± 1.9 days post-TBI. Status epilepticus developed in 47.4 % (n = 18) of these patients, predominantly as NCSE (n = 15). Predictors of ASz included older age (OR = 1.034, p = 0.012), higher Glasgow Coma Scale (GCS) at 24 h (OR = 1.133, p = 0.021), severe TBI (OR = 5.085, p = 0.018), and pneumonia (OR = 5.828, p = 0.007). For NCSE, significant predictors were older age (OR = 1.059, p = 0.021), pneumonia (OR = 6.766, p = 0.012), and urinary tract infection (OR = 7.38, p = 0.012). Patients with ASz had a significantly worse modified Rankin Scale (mRS) score at discharge (OR = 5.01, CI: 1.93-13.0, p < 0.001)). CONCLUSION ASz are a frequent and serious complication of TBI, particularly in severe cases and older patients. Early identification of high-risk patients using predictive factors such as age, GCS, and pneumonia may result in earlier treatment and improved outcomes. The findings highlight the importance of dedicated epilepsy monitoring in acute TBI care.
Collapse
Affiliation(s)
- Konstantin Kohlhase
- Goethe University Frankfurt, University Hospital, Department of Neurology, Frankfurt, Germany.
| | - Adam Strzelczyk
- Goethe University Frankfurt, University Hospital, Department of Neurology, Frankfurt, Germany; Goethe University Frankfurt, University Hospital, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Frankfurt, Germany
| | - Laurent M Willems
- Goethe University Frankfurt, University Hospital, Department of Neurology, Frankfurt, Germany; Goethe University Frankfurt, University Hospital, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Frankfurt, Germany
| | - Luis Mandelka
- Goethe University Frankfurt, University Hospital, Department of Neurology, Frankfurt, Germany
| | - Sarah C Reitz
- Goethe University Frankfurt, University Hospital, Department of Neurology, Frankfurt, Germany; Goethe University Frankfurt, University Hospital, Department of Neurosurgery, Frankfurt, Germany
| | - Marcus Czabanka
- Goethe University Frankfurt, University Hospital, Department of Neurosurgery, Frankfurt, Germany
| | - Moritz Funke
- Goethe University Frankfurt, University Hospital, Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Frankfurt, Germany
| | - Christian Grefkes
- Goethe University Frankfurt, University Hospital, Department of Neurology, Frankfurt, Germany
| | - Ingo Marzi
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery, Frankfurt, Germany
| | - Cora Schindler
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery, Frankfurt, Germany
| | - Ferdinand O Bohmann
- Goethe University Frankfurt, University Hospital, Department of Neurology, Frankfurt, Germany
| |
Collapse
|
2
|
Baraniuk JN. Cerebrospinal fluid metabolomics, lipidomics and serine pathway dysfunction in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS). Sci Rep 2025; 15:7381. [PMID: 40025157 PMCID: PMC11873053 DOI: 10.1038/s41598-025-91324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025] Open
Abstract
We proposed that cerebrospinal fluid would provide objective evidence for disrupted brain metabolism in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS). The concept of postexertional malaise (PEM) with disabling symptom exacerbation after limited exertion that does not respond to rest is a diagnostic criterion for ME/CFS. We proposed that submaximal exercise provocation would cause additional metabolic perturbations. The metabolomic and lipidomic constituents of cerebrospinal fluid from separate nonexercise and postexercise cohorts of ME/CFS and sedentary control subjects were contrasted using targeted mass spectrometry (Biocrates) and frequentist multivariate general linear regression analysis with diagnosis, exercise, gender, age and body mass index as independent variables. ME/CFS diagnosis was associated with elevated serine but reduced 5-methyltetrahydrofolate (5MTHF). One carbon pathways were disrupted. Methylation of glycine led to elevated sarcosine but further methylation to dimethylglycine and choline was decreased. Creatine and purine intermediates were elevated. Transaconitate from the tricarboxylic acid cycle was elevated in ME/CFS along with essential aromatic amino acids, lysine, purine, pyrimidine and microbiome metabolites. Serine is a precursor of phospholipids and sphingomyelins that were also elevated in ME/CFS. Exercise led to consumption of lipids in ME/CFS and controls while metabolites were consumed in ME/CFS but generated in controls. The findings differ from prior hypometabolic findings in ME/CFS plasma. The novel findings generate new hypotheses regarding serine-folate-glycine one carbon and serine-phospholipid metabolism, elevation of end products of catabolic pathways, shifts in folate, thiamine and other vitamins with exercise, and changes in sphingomyelins that may indicate myelin and white matter dysfunction in ME/CFS.
Collapse
Affiliation(s)
- James N Baraniuk
- Department of Medicine and Interdisciplinary Program in Neuroscience, Georgetown University, 3900 Reservoir Road, Washington, DC, 20007, USA.
| |
Collapse
|
3
|
Lin S, Gade AR, Wang HG, Niemeyer JE, Galante A, DiStefano I, Towers P, Nunez J, Matsui M, Schwartz TH, Rajadhyaksha A, Pitt GS. Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism. eLife 2025; 13:RP98661. [PMID: 39773461 PMCID: PMC11709433 DOI: 10.7554/elife.98661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell-type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.
Collapse
Affiliation(s)
- Susan Lin
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Aravind R Gade
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - James E Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian HospitalNew YorkUnited States
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Isabella DiStefano
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Jorge Nunez
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Theodore H Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian HospitalNew YorkUnited States
| | - Anjali Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell MedicineNew York CityUnited States
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| |
Collapse
|
4
|
Zhao Z, Xing N, Sun G. Identification of 7-HOCA as a Potential Biomarker in Glioblastoma: Evidence from Genome-Wide Association Study and Clinical Validation. Int J Gen Med 2024; 17:6185-6197. [PMID: 39691836 PMCID: PMC11651077 DOI: 10.2147/ijgm.s493488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Purpose Glioblastoma (GBM) is associated with metabolic disturbances, yet the relationships between metabolites with GBM have not been comprehensively explored. This study aims to fill this gap by integrating Mendelian randomization (MR) analysis with clinical validation. Patients and Methods Summary data from genome-wide association study (GWAS) of cerebrospinal fluid (CSF) metabolites, plasma metabolites, and GBM were obtained separately. A total of 338 CSF metabolites and 1400 plasma metabolites were utilized as exposures. Concurrently, GBM was designated as the outcome. A two-sample bidirectional MR study was conducted to investigate the potential association. The inverse variance weighted (IVW) analyses were conducted as causal estimates, accompanied by a series of sensitivity analyses to evaluate the robustness of the results. Additionally, metabolite levels in clinical plasma and CSF samples were quantified using liquid chromatography-mass spectrometry to validate the findings. Results MR analysis identified eight CSF metabolites and six plasma metabolites that were closely associated with GBM. Among these, elevated levels of 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-HOCA) in both CSF and plasma were found to promote GBM. In terms of clinical validation, compared to the control group, 7-HOCA levels were significantly higher in both the CSF and plasma of GBM group. Conclusion This study provides a comprehensive analysis of the metabolic factors contributing to GBM. The identification of specific metabolites, particularly 7-HOCA, that have vital roles in GBM pathogenesis suggests new biomarkers and therapeutic targets, offering potential pathways for improved diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Na Xing
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
5
|
Küper K, Poschet G, Rossmann J, Garbade SF, Spiegelhalter A, Wen D, Hoffmann GF, Schmitt CP, Opladen T, Peters V. Dipeptides in CSF and plasma: diagnostic and therapeutic potential in neurological diseases. Amino Acids 2024; 57:2. [PMID: 39673003 PMCID: PMC11645304 DOI: 10.1007/s00726-024-03434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Dipeptides (DPs), composed of two amino acids (AAs), hold significant therapeutic potential but remain underexplored. Given the crucial role of AAs in central nervous system (CNS) function, this study investigated the presence of DPs in cerebrospinal fluid (CSF) and their correlation with corresponding AAs, potentially indicating their role as AA donors. Plasma and CSF samples were collected from 43 children with neurological or metabolic conditions of unknown origin, including 23 with epilepsy. A panel of 33 DPs was quantified using UPLC-MS/MS. Out of 33 DPs, 18 were detectable in CSF and 20 in plasma, displaying high inter-individual variance. Gly-Asp, Gly-Pro, and Ala-Glu were consistently found in all CSF samples, while only Gly-Asp was universally detectable in plasma. Anserine and carnosine were prominent in CSF and plasma, respectively, with no other histidine-containing DPs observed. Generally, DP concentrations were higher in plasma than in CSF; however, anserine and Gly-Pro had similar concentrations in both fluids. Significant correlations were observed between specific DPs and their corresponding AAs in CSF (Gly-Glu, Gly-Pro and Ser-Gln) and plasma (Glu-Glu and Glu-Ser). Notably, patients with epilepsy had elevated medium anserine concentrations in CSF. This study is the first to demonstrate the presence of numerous DPs in CSF and plasma. Further research is needed to determine if DP patterns can support the diagnosis of neurological diseases and whether DP administration can modulate amino acid availability in the brain, potentially offering new therapeutic options, such as for defects in the amino acid transporter.
Collapse
Affiliation(s)
- Katharina Küper
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, Heidelberg, Germany
| | - Julia Rossmann
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Sven F Garbade
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Alexander Spiegelhalter
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, Heidelberg, Germany
| | - Dan Wen
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Claus P Schmitt
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Thomas Opladen
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Verena Peters
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Pocivavsek A, Schwarcz R, Erhardt S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol Rev 2024; 76:978-1008. [PMID: 39304346 PMCID: PMC11549936 DOI: 10.1124/pharmrev.124.000239] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. SIGNIFICANCE STATEMENT: Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Robert Schwarcz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Sophie Erhardt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| |
Collapse
|
7
|
Lin S, Gade AR, Wang HG, Niemeyer JE, Galante A, DiStefano I, Towers P, Nunez J, Matsui M, Schwartz TH, Rajadhyaksha AM, Pitt GS. Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590019. [PMID: 38659789 PMCID: PMC11042350 DOI: 10.1101/2024.04.18.590019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Developmental and Epileptic Encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.
Collapse
Affiliation(s)
- Susan Lin
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Aravind R. Gade
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - James E. Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | | | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Jorge Nunez
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Theodore H. Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Anjali M. Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
8
|
Xiong W, Yeo T, May JTM, Demmers T, Ceronie B, Ramesh A, McGinty RN, Michael S, Torzillo E, Sen A, Anthony DC, Irani SR, Probert F. Distinct plasma metabolomic signatures differentiate autoimmune encephalitis from drug-resistant epilepsy. Ann Clin Transl Neurol 2024; 11:1897-1908. [PMID: 39012808 PMCID: PMC11251473 DOI: 10.1002/acn3.52112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 05/17/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE Differentiating forms of autoimmune encephalitis (AE) from other causes of seizures helps expedite immunotherapies in AE patients and informs studies regarding their contrasting pathophysiology. We aimed to investigate whether and how Nuclear Magnetic Resonance (NMR)-based metabolomics could differentiate AE from drug-resistant epilepsy (DRE), and stratify AE subtypes. METHODS This study recruited 238 patients: 162 with DRE and 76 AE, including 27 with contactin-associated protein-like 2 (CASPR2), 29 with leucine-rich glioma inactivated 1 (LGI1) and 20 with N-methyl-d-aspartate receptor (NMDAR) antibodies. Plasma samples across the groups were analyzed using NMR spectroscopy and compared with multivariate statistical techniques, such as orthogonal partial least squares discriminant analysis (OPLS-DA). RESULTS The OPLS-DA model successfully distinguished AE from DRE patients with a high predictive accuracy of 87.0 ± 3.1% (87.9 ± 3.4% sensitivity and 86.3 ± 3.6% specificity). Further, pairwise OPLS-DA models were able to stratify the three AE subtypes. Plasma metabolomic signatures of AE included decreased high-density lipoprotein (HDL, -(CH2)n-, -CH3), phosphatidylcholine and albumin (lysyl moiety). AE subtype-specific metabolomic signatures were also observed, with increased lactate in CASPR2, increased lactate, glucose, and decreased unsaturated fatty acids (UFA, -CH2CH=) in LGI1, and increased glycoprotein A (GlycA) in NMDAR-antibody patients. INTERPRETATION This study presents the first non-antibody-based biomarker for differentiating DRE, AE and AE subtypes. These metabolomics signatures underscore the potential relevance of lipid metabolism and glucose regulation in these neurological disorders, offering a promising adjunct to facilitate the diagnosis and therapeutics.
Collapse
Affiliation(s)
- Wenzheng Xiong
- Department of ChemistryUniversity of OxfordOxfordUK
- Department of Pharmacology, Medical Sciences DivisionUniversity of OxfordOxfordUK
| | - Tianrong Yeo
- Department of Pharmacology, Medical Sciences DivisionUniversity of OxfordOxfordUK
- Department of NeurologyNational Neuroscience InstituteSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Jeanne Tan May May
- Department of NeurologyNational Neuroscience InstituteSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Tor Demmers
- Department of Pharmacology, Medical Sciences DivisionUniversity of OxfordOxfordUK
| | - Bryan Ceronie
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Archana Ramesh
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Ronan N. McGinty
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Sophia Michael
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Emma Torzillo
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Arjune Sen
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Daniel C. Anthony
- Department of Pharmacology, Medical Sciences DivisionUniversity of OxfordOxfordUK
| | - Sarosh R. Irani
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of NeurologyJohn Radcliffe Hospital, Oxford University HospitalsOxfordUK
- Departments of Neurology and NeurosciencesMayo ClinicJacksonvilleFloridaUSA
| | - Fay Probert
- Department of ChemistryUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Wang X, Xiong W, Li M, Wu L, Zhang Y, Zhu C, Lin W, Chen S, Huang H. Role of inflammatory cytokine in mediating the effect of plasma lipidome on epilepsy: a mediation Mendelian randomization study. Front Neurol 2024; 15:1388920. [PMID: 38872823 PMCID: PMC11169836 DOI: 10.3389/fneur.2024.1388920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Background Epilepsy is one of the most prevalent serious brain disorders globally, impacting over 70 million individuals. Observational studies have increasingly recognized the impact of plasma lipidome on epilepsy. However, establishing a direct causal link between plasma lipidome and epilepsy remains elusive due to inherent confounders and the complexities of reverse causality. This study aims to investigate the causal relationship between specific plasma lipidome and epilepsy, along with their intermediary mediators. Methods We conducted a two-sample Mendelian randomization (MR) and mediation MR analysis to evaluate the causal effects of 179 plasma lipidomes and epilepsy, with a focus on the inflammatory cytokine as a potential mediator based on the genome-wide association study. The primary methodological approach utilized inverse variance weighting, complemented by a range of other estimators. A set of sensitivity analyses, including Cochran's Q test, I 2 statistics, MR-Egger intercept test, MR-PRESSO global test and leave-one-out sensitivity analyses was performed to assess the robustness, heterogeneity and horizontal pleiotropy of results. Results Our findings revealed a positive correlation between Phosphatidylcholine (18:1_18:1) levels with epilepsy risk (OR = 1.105, 95% CI: 1.036-1.178, p = 0.002). Notably, our mediation MR results propose Tumor necrosis factor ligand superfamily member 12 levels (TNFSF12) as a mediator of the relationship between Phosphatidylcholine (18,1_18:1) levels and epilepsy risk, explaining a mediation proportion of 4.58% [mediation effect: (b = 0.00455, 95% CI: -0.00120-0.01030), Z = 1.552]. Conclusion Our research confirms a genetic causal relationship between Phosphatidylcholine (18:1_18:1) levels and epilepsy, emphasizing the potential mediating role of TNFSF12 and provide valuable insights for future clinical investigations into epilepsy.
Collapse
Affiliation(s)
- Xiangyi Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenting Xiong
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Man Li
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Luyan Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuying Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaofeng Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wanhui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shenggen Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
10
|
Fyfe I. Metabolic changes in status epilepticus. Nat Rev Neurol 2024; 20:203. [PMID: 38443476 DOI: 10.1038/s41582-024-00946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
|