1
|
Beauchamp G, Barve S. Gazing Strategies among Sentinels of a Cooperative Breeder Are Repeatable but Unrelated to Survival. BIOLOGY 2024; 13:458. [PMID: 38927338 PMCID: PMC11200772 DOI: 10.3390/biology13060458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Vigilance is a common behavioural adaptation to increase the chances of detecting predators before it is too late to escape. Behavioural traits are often repeatable among individuals over the long term, suggesting differences in personality. Earlier studies have documented individual consistency in the time allocated to vigilance. However, little is known about individual consistency in the ways vigilance is achieved from one moment to another and whether different patterns of vigilance among individuals are associated with survival. We aimed to determine whether sentinels of a cooperative breeder showed individual consistency in their vigilance and if individual variation was related to annual survival. During sentinel bouts from vantage points, Florida scrub-jays (Aphelocoma coerulescens) turn their heads from side to side to monitor their surroundings. Over three field seasons, we found that the head-turning frequency was repeatable in breeders but not in juveniles or non-breeding helpers. The moderate repeatability in breeders was not related to survival. Our results suggest that the head-turning frequency in sentinels of the Florida scrub-jay is repeatable in breeders but not in less experienced juveniles or helpers and, therefore, likely becomes more repeatable as individuals age. The assumption that individual variation in vigilance is related to survival was unsupported in our study and requires further study.
Collapse
Affiliation(s)
| | - Sahas Barve
- Archbold Research Station, 123 Main Dr., Venus, FL 33960, USA;
| |
Collapse
|
2
|
Gavriilidi I, De Meester G, Van Damme R, Baeckens S. How to behave when marooned: the behavioural component of the island syndrome remains underexplored. Biol Lett 2022; 18:20220030. [PMID: 35440235 PMCID: PMC9039784 DOI: 10.1098/rsbl.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Animals on islands typically depart from their mainland relatives in assorted aspects of their biology. Because they seem to occur in concert, and to some extent evolve convergently in disparate taxa, these changes are referred to as the 'island syndrome'. While morphological, physiological and life-history components of the island syndrome have received considerable attention, much less is known about how insularity affects behaviour. In this paper, we argue why changes in personality traits and cognitive abilities can be expected to form part of the island syndrome. We provide an overview of studies that have compared personality traits and cognitive abilities between island and mainland populations, or among islands. Overall, the pickings are remarkably slim. There is evidence that animals on islands tend to be bolder than on the mainland, but effects on other personality traits go either way. The evidence for effects of insularity on cognitive abilities or style is highly circumstantial and very mixed. Finally, we consider the ecological drivers that may induce such changes, and the mechanisms through which they might occur. We conclude that our knowledge of the behavioural and cognitive responses to island environments remains limited, and we encourage behavioural biologists to make more use of these 'natural laboratories for evolution'.
Collapse
Affiliation(s)
- Ioanna Gavriilidi
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Greece
| | - Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Simon Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Ratnayake CP, Zhou Y, Dawson Pell FSE, Potvin DA, Radford AN, Magrath RD. Visual obstruction, but not moderate traffic noise, increases reliance on heterospecific alarm calls. Behav Ecol 2021. [DOI: 10.1093/beheco/arab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Animals rely on both personal and social information about danger to minimize risk, yet environmental conditions constrain information. Both visual obstructions and background noise can reduce detectability of predators, which may increase reliance on social information, such as from alarm calls. Furthermore, a combination of visual and auditory constraints might greatly increase reliance on social information, because the loss of information from one source cannot be compensated by the other. Testing these possibilities requires manipulating personal information while broadcasting alarm calls. We therefore experimentally tested the effects of a visual barrier, traffic noise, and their combination on the response of Australian magpies, Cracticus tibicen, to heterospecific alarm calls. The barrier blocked only visual cues, while playback of moderate traffic noise could mask subtle acoustic cues of danger, such as of a predator’s movement, but not the alarm-call playback. We predicted that response to alarm calls would increase with either visual or acoustic constraint, and that there would be a disproportionate response when both were present. As predicted, individuals responded more strongly to alarm calls when there was a visual barrier. However, moderate traffic noise did not affect responses, and the effect of the visual barrier was not greater during traffic-noise playback. We conclude that a reduction of personal, visual information led to a greater reliance on social information from alarm calls, confirming indirect evidence from other species. The absence of a traffic-noise effect could be because in Australian magpies hearing subtle cues is less important than vision in detecting predators.
Collapse
Affiliation(s)
- Chaminda P Ratnayake
- Division of Ecology and Evolution, Research School of Biology, 46 Sullivan’s Creek Road, Australian National University, Canberra 2600, Australia
| | - You Zhou
- Division of Ecology and Evolution, Research School of Biology, 46 Sullivan’s Creek Road, Australian National University, Canberra 2600, Australia
| | - Francesca S E Dawson Pell
- Division of Ecology and Evolution, Research School of Biology, 46 Sullivan’s Creek Road, Australian National University, Canberra 2600, Australia
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Dominique A Potvin
- Division of Ecology and Evolution, Research School of Biology, 46 Sullivan’s Creek Road, Australian National University, Canberra 2600, Australia
| | - Andrew N Radford
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Robert D Magrath
- Division of Ecology and Evolution, Research School of Biology, 46 Sullivan’s Creek Road, Australian National University, Canberra 2600, Australia
| |
Collapse
|