1
|
Sysiak M, Babkiewicz E, Zebrowski ML, Rutkowska K, Kunjiappan S, Lee JS, Maszczyk P. Elevated temperature enhances task performance by improving cognitive abilities in common rudd (Scardinius erythrophthalmus). Sci Rep 2025; 15:7662. [PMID: 40038516 PMCID: PMC11880559 DOI: 10.1038/s41598-025-92499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
The thermal sensitivity of task performance in ectothermic organisms may depend on how temperature affects mobility, cognitive ability, or their interaction. Furthermore, these processes may vary with experience or task difficulty. To test these predictions, we performed mesocosm experiments with common rudd (Scardinius erythrophthalmus) foraging for a high-density food reward (Artemia salina nauplii) across consecutive daily sessions under varying task difficulties (short, medium, and long distances to the reward, and presence or absence of experienced individuals) at two temperatures (16-26 °C). Results indicated that the thermal sensitivity of task performance ranged from Q10 = 2 to 9 across all treatments, peaking during the second and third sessions when fish learned the reward location most intensively. Q10 values increased with task difficulty, reaching their highest levels when inexperienced fish navigated long distances to the reward and foraged without guidance. In contrast, the thermal sensitivity of mobility remained stable across sessions, with a maximum Q10 of 2. The significantly higher thermal sensitivity of task performance compared to mobility, along with its positive relationship with task difficulty, suggests that performance improvements at elevated temperatures are driven not only by increased mobility but also by enhanced cognitive processes.
Collapse
Affiliation(s)
- Monika Sysiak
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Ewa Babkiewicz
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
- Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Marcin Lukasz Zebrowski
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Katarzyna Rutkowska
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
2
|
Munson A, DePasquale C. Lessons in cognition: A review of maze designs and procedures used to measure spatial learning in fish. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39267308 DOI: 10.1111/jfb.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
The use of different mazes to assess spatial learning has become more common in fish behavior studies in recent decades. This increase in fish cognition research has opened the door to numerous possibilities for exciting and diverse questions, such as identifying ecological drivers of spatial cognition and understanding the role individual variation plays in navigational abilities. There are many different types of mazes, each with its own specific considerations, making it challenging to determine exactly which spatial test is the most relevant and appropriate for a particular experiment. Many spatial mazes, such as the T-maze and Y-maze, have been successfully adapted from rodent studies, particularly with respect to zebrafish, a widely accepted non-mammalian model in biomedical studies. Standardization across studies is increasing with these easily accessible maze designs, validating them for use in fish; however, variations in design (e.g., length of arms and scale) and procedure still exist, and the impact of these variations on results is largely unknown. The efforts to standardize mazes outside zebrafish work are also more limited. Other mazes have been developed specifically for use on fish, with design modifications varying widely, making it difficult to draw comparisons. In this review, we have highlighted the many design and procedural elements that should be considered for the acquisition of reliable behavioral data, with the goal of drawing readers' attention to aspects of experimentation that are often not given the careful consideration that they deserve. We then argue that additional focused research and reporting is needed to produce more reliable methods in spatial learning research across a broader range of subjects.
Collapse
Affiliation(s)
- Amelia Munson
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Cairsty DePasquale
- Department of Biology, Pennsylvania State University-Altoona, Altoona, Pennsylvania, USA
| |
Collapse
|
3
|
Banousse G, Normandeau E, Semeniuk C, Bernatchez L, Audet C. Parental thermal environment controls the offspring phenotype in Brook charr (Salvelinus fontinalis): insights from a transcriptomic study. G3 (BETHESDA, MD.) 2024; 14:jkae051. [PMID: 38478598 PMCID: PMC11075542 DOI: 10.1093/g3journal/jkae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 05/08/2024]
Abstract
Brook charr is a cold-water species which is highly sensitive to increased water temperatures, such as those associated with climate change. Environmental variation can potentially induce phenotypic changes that are inherited across generations, for instance, via epigenetic mechanisms. Here, we tested whether parental thermal regimes (intergenerational plasticity) and offspring-rearing temperatures (within-generational plasticity) modify the brain transcriptome of Brook charr progeny (fry stage). Parents were exposed to either cold or warm temperatures during final gonad maturation and their progeny were reared at 5 or 8 °C during the first stages of development. Illumina Novaseq6000 was used to sequence the brain transcriptome at the yolk sac resorption stage. The number of differentially expressed genes was very low when comparing fry reared at different temperatures (79 differentially expressed genes). In contrast, 9,050 differentially expressed genes were significantly differentially expressed between fry issued from parents exposed to either cold or warm temperatures. There was a significant downregulation of processes related to neural and synaptic activity in fry originating from the warm parental group vs fry from the cold parental one. We also observed significant upregulation of DNA methylation genes and of the most salient processes associated with compensation to warming, such as metabolism, cellular response to stress, and adaptive immunity.
Collapse
Affiliation(s)
- Ghizlane Banousse
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), Rimouski, QC, Canada G5L 2Z9
| | - Eric Normandeau
- Plateforme de bio-informatique de l’IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, QC, Canada G1V 0A6
| | - Christina Semeniuk
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ont, Canada N9C 1A2
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Céline Audet
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), Rimouski, QC, Canada G5L 2Z9
| |
Collapse
|
4
|
Gatto E, Lucon-Xiccato T, Bertolucci C. Environmental conditions shape learning in larval zebrafish. Behav Processes 2024; 218:105045. [PMID: 38692461 DOI: 10.1016/j.beproc.2024.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Growing evidence reveals notable phenotypic plasticity in cognition among teleost fishes. One compelling example is the positive impact of enriched environments on learning performance. Most studies on this effect have focused on juvenile or later life stages, potentially overlooking the importance of early life plasticity. To address this gap, we investigated whether cognitive plasticity in response to environmental factors emerges during the larval stage in zebrafish. Our findings indicate that larvae exposed to an enriched environment after hatching exhibited enhanced habituation learning performance compared to their counterparts raised in a barren environment. This work underscores the presence of developmental phenotypic plasticity in cognition among teleost fish, extending its influence to the very earliest stages of an individual's life.
Collapse
Affiliation(s)
- Elia Gatto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Liu ST, Chang CY, Lee KY, Tong SK, Huang HL, Chen H, Horng JL, Chou MY. Alternation of social behaviors for zebrafish (Danio rerio) in response to acute cold stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:653-666. [PMID: 38214794 DOI: 10.1007/s10695-024-01296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
Low temperature is one of the most common abiotic stresses for aquatic ectotherms. Ambient low temperatures reduce the metabolic rate of teleosts, therefore, teleosts have developed strategies to modulate their physiological status for energy saving in response to cold stress, including behaviors, circulatory system, respiratory function, and metabolic adjustments. Many teleosts are social animals and they can live in large schools to serve a variety of functions, including predator avoidance, foraging efficiency, and reproduction. However, the impacts of acute cold stress on social behaviors of fish remain unclear. In the present study, we test the hypothesis that zebrafish alter their social behaviors for energy saving as a strategy in response to acute cold stress. We found that acute cold stress increased shoaling behavior that reflected a save-energy strategy for fish to forage and escape from the predators under cold stress. The aggressive levels measured by fighting behavior tests and mirror fighting tests were reduced by cold treatment. In addition, we also found that acute cold stress impaired the learning ability but did not affect memory. Our findings provided evidence that acute cold stress alters the social behaviors of aquatic ectotherms for energy saving; knowledge of their responses to cold is essential for their conservation and management.
Collapse
Affiliation(s)
- Sian-Tai Liu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chun-Yung Chang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Sok-Keng Tong
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Han-Liang Huang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsi Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Buatois A, Siddiqi Z, Naim S, Marawi T, Gerlai R. A simple semi-automated home-tank method and procedure to explore classical associative learning in adult zebrafish. Behav Res Methods 2024; 56:736-749. [PMID: 36814006 PMCID: PMC10830691 DOI: 10.3758/s13428-023-02076-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/24/2023]
Abstract
The zebrafish is a laboratory species that gained increasing popularity the last decade in a variety of subfields of biology, including toxicology, ecology, medicine, and the neurosciences. An important phenotype often measured in these fields is behaviour. Consequently, numerous new behavioural apparati and paradigms have been developed for the zebrafish, including methods for the analysis of learning and memory in adult zebrafish. Perhaps the biggest obstacle in these methods is that zebrafish is particularly sensitive to human handling. To overcome this confound, automated learning paradigms have been developed with varying success. In this manuscript, we present a semi-automated home tank-based learning/memory test paradigm utilizing visual cues, and show that it is capable of quantifying classical associative learning performance in zebrafish. We demonstrate that in this task, zebrafish successfully acquire the association between coloured-light and food reward. The hardware and software components of the task are easy and cheap to obtain and simple to assemble and set up. The procedures of the paradigm allow the test fish to remain completely undisturbed by the experimenter for several days in their home (test) tank, eliminating human handling or human interference induced stress. We demonstrate that the development of cheap and simple automated home-tank-based learning paradigms for the zebrafish is feasible. We argue that such tasks will allow us to better characterize numerous cognitive and mnemonic features of the zebrafish, including elemental as well as configural learning and memory, which will, in turn, also enhance our ability to study neurobiological mechanisms underlying learning and memory using this model organism.
Collapse
Affiliation(s)
- Alexis Buatois
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada.
- Institute of Neuroscience and Physiology, Department of Neurochemistry and Psychiatry, University of Gothenburg, Su Sahlgrenska, 41345, Göteborg, Sweden.
| | - Zahra Siddiqi
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Sadia Naim
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Tulip Marawi
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario, M5S 3G5, Canada.
| |
Collapse
|