1
|
Martinů J, Štefka J, Vránková K, Hypša V. Different life strategies of closely related louse species in sympatry: specialist and "generalist" lineages of Polyplax serrata. Int J Parasitol 2025; 55:27-34. [PMID: 39396723 DOI: 10.1016/j.ijpara.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The origin and significance of host specificity are intriguing questions in parasitology. In the case of single-host versus multiple-host parasites, this topic integrates with the concept of the specialist/generalist trade-off. We use the model of sucking lice Polyplax serrata and rodent hosts Apodemus, to address these concepts. Polyplax serrata was shown to form a complex genetic structure, with a strictly specific S lineage living on Apodemus flavicollis, and a less specific N lineage on A. flavicollis and Apodemus sylvaticus. Moreover, the S lineage formed two mitochondrial clades with geographically exclusive distributions and a narrow hybrid zone, providing an opportunity to test the hypothesis that hybrids suffer a decrease in fitness. We sampled 451 individual lice from two host species at 103 localities. We used prevalences and intensities as proxies of fitness, which the parasites realize on their host. The S lineage, strictly specific to Apodemus flavicollis, reached significantly higher prevalences and intensities on its host compared with the N lineage. Conversely, the N lineage occurred with high prevalence and intensity on A. sylvaticus but tended to use also A. flavicollis when the louse populations became too dense. We discuss possible mechanisms behind this difference (particularly interspecific competition as a typical phenomenon in the specialist/generalist systems). We conclude that a parasite's "choice", not accessibility of the host or interspecific competition, is the main factor affecting the louse prevalences. We suggest that historical differences in geographic distribution of both lice and mice may provide a possible explanation for the observed life strategy differences. In contrast to the convincing picture in S and N lineage prevalences, we did not detect an expected drop in fitness in hybrids. We consider instability of the hybrid zone, or decline in abundance of the respective hosts, as possible explanations for this result.
Collapse
Affiliation(s)
- Jana Martinů
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jan Štefka
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre, CAS, v.v.i., České Budějovice, Czech Republic
| | - Kateřina Vránková
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Václav Hypša
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre, CAS, v.v.i., České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Liu W, Chen X, Wang J, Zhang Y. Does the effect of flowering time on biomass allocation across latitudes differ between invasive and native salt marsh grass Spartina alterniflora? Ecol Evol 2022; 12:e8681. [PMID: 35309742 PMCID: PMC8901870 DOI: 10.1002/ece3.8681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Parallel latitudinal clines in flowering time have been documented in both the invasive and native ranges of plants. Furthermore, flowering time has been found to affect biomass at maturity. Therefore, understanding how these flowering times affect biomass accumulation across latitudes is essential to understanding plant adaptations and distributions.We investigated and compared trends in first flowering day (FFD), aboveground biomass (AGB), belowground biomass (BGB), and BGB:AGB ratio of the salt marsh grass Spartina alterniflora along latitudinal gradients from the invasive (China, 19-40°N) and native range (United States, 27-43°N) in a greenhouse common garden experiment, and tested whether FFD would drive these divergences between invasive and native ranges.The invasive populations produced more (~20%, ~19%) AGB and BGB than native populations, but there were no significant differences in the FFD and BGB:AGB ratio. We found significant parallel latitudinal clines in FFD in both invasive and native ranges. In addition, the BGB:AGB ratio was negatively correlated with the FFD in both the invasive and native ranges but nonsignificant in invasive populations. In contrast, AGB and BGB increased with latitude in the invasive range, but declined with latitude in the native range. Most interestingly, we found AGB and BGB positively correlated with the FFD in the native range, but no significant relationships in the invasive range.Our results indirectly support the evolution of increased competitive ability hypothesis (EICA) that S. alterniflora has evolved to produce greater AGB and BGB in China, but the flowering and allocation pattern of native populations is maintained in the invasive range. Our results also suggest that invasive S. alterniflora in China is not constrained by the trade-off of earlier flowering with smaller size, and that flowering time has played an important role in biomass allocation across latitudes.
Collapse
Affiliation(s)
- Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityFujianChina
| | - Xincong Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityFujianChina
| | - Jiayu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityFujianChina
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityFujianChina
| |
Collapse
|
3
|
Yang QQ, He C, Liu GF, Yin CL, Xu YP, Liu SW, Qiu JW, Yu XP. Introgressive hybridization between two non-native apple snails in China: widespread hybridization and homogenization in egg morphology. PEST MANAGEMENT SCIENCE 2020; 76:4231-4239. [PMID: 32594654 DOI: 10.1002/ps.5980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/26/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Apple snails from the genus Pomacea have spread widely in paddy fields and other wetlands of southern China since their introduction in the 1980s. Pomacea spp. are commonly identified using mitochondrial COI sequences. However, sequencing the nuclear elongation factor 1-alpha (EF1α) gene revealed genetic introgression between field populations of P. canaliculata and P. maculata, which produce surviving hybrids in laboratory crossbreeding experiments. RESULTS In this study, we sequenced 1054 EF1α clones to design specific primers and established a fast and accurate multiplex polymerase chain reaction (PCR) method for genotyping EF1α. Combined with genotyping P. canaliculata and P. maculata based on mitochondrial COI and nuclear EF1α, we revealed the genetic introgression patterns of 30 apple snail populations in China. Purebred and hybrid individuals of P. canaliculata were widely distributed, while pure maculata-EF1α type was detected only in a few individuals identified as P. canaliculata based on COI sequences. Each egg clutch had one to three genetic patterns, indicating multiple paternity or segregation in the progeny of hybrids. The higher percentages of hybrids in both wild populations and progeny than the homozygotes indicated a potential heterosis in the apple snail populations. Additionally, egg size and clutch size of the apple snails became homogeneous among the non-native populations exhibiting introgression hybridization. CONCLUSION Our findings emphasize the value of apple snails as a model to study the mechanisms and impacts of introgressive hybridization on fitness traits. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian-Qian Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chao He
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Guang-Fu Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chuan-Lin Yin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yi-Peng Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Su-Wen Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
4
|
Liu W, Zhang Y, Chen X, Maung-Douglass K, Strong DR, Pennings SC. Contrasting plant adaptation strategies to latitude in the native and invasive range of Spartina alterniflora. THE NEW PHYTOLOGIST 2020; 226:623-634. [PMID: 31834631 DOI: 10.1111/nph.16371] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Biological invasions offer model systems of contemporary evolution. We examined trait differences and evolution across geographic clines among continents of the intertidal grass Spartina alterniflora within its invasive and native ranges. We sampled vegetative and reproductive traits in the field at 20 sites over 20° latitude in China (invasive range) and 28 sites over 17° in the US (native range). We grew both Chinese and US plants in a glasshouse common garden for 3 yr. Chinese plants were c. 15% taller, c. 10% denser, and set up to four times more seed than US plants in both the field and common garden. The common garden experiments showed a striking genetic cline of seven-fold greater seed set at higher latitudes in the introduced but not the native range. By contrast, there was a slight genetic cline in some vegetative traits in the native but not the introduced range. Our results are consistent with others showing that introduced plants can evolve rapidly in the new range. S. alterniflora has evolved different trait clines in the native and introduced ranges, showing the importance of phenotypic plasticity and genetic control of change during the invasion process.
Collapse
Affiliation(s)
- Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Xincong Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Keith Maung-Douglass
- Coastal Sustainability Studio, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Donald R Strong
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
5
|
Popovic I, Matias AMA, Bierne N, Riginos C. Twin introductions by independent invader mussel lineages are both associated with recent admixture with a native congener in Australia. Evol Appl 2020; 13:515-532. [PMID: 32431733 PMCID: PMC7045716 DOI: 10.1111/eva.12857] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
Abstract
Introduced species can impose profound impacts on the evolution of receiving communities with which they interact. If native and introduced taxa remain reproductively semi-isolated, human-mediated secondary contact may promote genetic exchange across newly created hybrid zones, potentially impacting native genetic diversity and invasive species spread. Here, we investigate the contributions of recent divergence histories and ongoing (post-introduction) gene flow between the invasive marine mussel, Mytilus galloprovincialis, and a morphologically indistinguishable and taxonomically contentious native Australian taxon, Mytilus planulatus. Using transcriptome-wide markers, we demonstrate that two contemporary M. galloprovincialis introductions into south-eastern Australia originate from genetically divergent lineages from its native range in the Mediterranean Sea and Atlantic Europe, where both introductions have led to repeated instances of admixture between introduced and endemic populations. Through increased genome-wide resolution of species relationships, combined with demographic modelling, we validate that mussels sampled in Tasmania are representative of the endemic Australian taxon (M. planulatus), but share strong genetic affinities to M. galloprovincialis. Demographic inferences indicate late-Pleistocene divergence times and historical gene flow between the Tasmanian endemic lineage and northern M. galloprovincialis, suggesting that native and introduced taxa have experienced a period of historical isolation of at least 100,000 years. Our results demonstrate that many genomic loci and sufficient sampling of closely related lineages in both sympatric (e.g. Australian populations) and allopatric (e.g. northern hemisphere Mytilus taxa) ranges are necessary to accurately (a) interpret patterns of intraspecific differentiation and to (b) distinguish contemporary invasive introgression from signatures left by recent divergence histories in high dispersal marine species. More broadly, our study fills a significant gap in systematic knowledge of native Australian biodiversity and sheds light on the intrinsic challenges for invasive species research when native and introduced species boundaries are not well defined.
Collapse
Affiliation(s)
- Iva Popovic
- School of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
| | | | - Nicolas Bierne
- Institut des Sciences de l’EvolutionUMR 5554CNRS‐IRD‐EPHE‐UMUniversité de MontpellierMontpellierFrance
| | - Cynthia Riginos
- School of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
| |
Collapse
|
6
|
Qiao H, Liu W, Zhang Y, Zhang YY, Li QQ. Genetic admixture accelerates invasion via provisioning rapid adaptive evolution. Mol Ecol 2019; 28:4012-4027. [PMID: 31339595 DOI: 10.1111/mec.15192] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
Abstract
Genetic admixture, the intraspecific hybridization among divergent introduced sources, can immediately facilitate colonization via hybrid vigor and profoundly enhance invasion via contributing novel genetic variation to adaption. As hybrid vigor is short-lived, provisioning adaptation is anticipated to be the dominant and long-term profit of genetic admixture, but the evidence for this is rare. We employed the 30 years' geographic-scale invasion of the salt marsh grass, Spartina alterniflora, as an evolutionary experiment and evaluated the consequences of genetic admixture by combining the reciprocal transplant experiment with quantitative and population genetic surveys. Consistent with the documentation, we found that the invasive populations in China had multiple origins from the southern Atlantic coast and the Gulf of Mexico in the US. Interbreeding among these multiple sources generated a "hybrid swarm" that spread throughout the coast of China. In the northern and mid-latitude China, natural selection greatly enhanced fecundity, plant height and shoot regeneration compared to the native populations. Furthermore, genetic admixture appeared to have broken the negative correlation between plant height and shoot regeneration, which was genetically-based in the native range, and have facilitated the evolution of super competitive genotypes in the invasive range. In contrast to the evolved northern and mid-latitude populations, the southern invasive populations showed slight increase of plant height and shoot regeneration compared to the native populations, possibly reflecting the heterotic effect of the intraspecific hybridization. Therefore, our study suggests a critical role of genetic admixture in accelerating the geographic invasion via provisioning rapid adaptive evolution.
Collapse
Affiliation(s)
- Hongmei Qiao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
7
|
Cowles SA, Uy JAC. Rapid, complete reproductive isolation in two closely related
Zosterops
White‐eye bird species despite broadly overlapping ranges*. Evolution 2019; 73:1647-1662. [DOI: 10.1111/evo.13797] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/06/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Sarah A. Cowles
- Department of BiologyUniversity of Miami Coral Gables Florida 33146
| | - J. Albert C. Uy
- Department of BiologyUniversity of Miami Coral Gables Florida 33146
| |
Collapse
|
8
|
Wegener JE, Pita‐Aquino JN, Atutubo J, Moreno A, Kolbe JJ. Hybridization and rapid differentiation after secondary contact between the native green anole ( Anolis carolinensis) and the introduced green anole ( Anolis porcatus). Ecol Evol 2019; 9:4138-4148. [PMID: 31015994 PMCID: PMC6468060 DOI: 10.1002/ece3.5042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 11/24/2022] Open
Abstract
In allopatric species, reproductive isolation evolves through the accumulation of genetic incompatibilities. The degree of divergence required for complete reproductive isolation is highly variable across taxa, which makes the outcome of secondary contact between allopatric species unpredictable. Since before the Pliocene, two species of Anolis lizards, Anolis carolinensis and Anolis porcatus, have been allopatric, yet this period of independent evolution has not led to substantial species-specific morphological differentiation, and therefore, they might not be reproductively isolated. In this study, we determined the genetic consequences of localized, secondary contact between the native green anole, A. carolinensis, and the introduced Cuban green anole, A. porcatus, in South Miami. Using 18 microsatellite markers, we found that the South Miami population formed a genetic cluster distinct from both parental species. Mitochondrial DNA revealed maternal A. porcatus ancestry for 35% of the individuals sampled from this population, indicating a high degree of cytonuclear discordance. Thus, hybridization with A. porcatus, not just population structure within A. carolinensis, may be responsible for the genetic distinctiveness of this population. Using tree-based maximum-likelihood analysis, we found support for a more recent, secondary introduction of A. porcatus to Florida. Evidence that ~33% of the nuclear DNA resulted from a secondary introduction supports the hybrid origin of the green anole population in South Miami. We used multiple lines of evidence and multiple genetic markers to reconstruct otherwise cryptic patterns of species introduction and hybridization. Genetic evidence for a lack of reproductive isolation, as well as morphological similarities between the two species, supports revising the taxonomy of A. carolinensis to include A. porcatus from western Cuba. Future studies should target the current geographic extent of introgression originating from the past injection of genetic material from Cuban green anoles and determine the consequences for the evolutionary trajectory of green anole populations in southern Florida.
Collapse
Affiliation(s)
- Johanna E. Wegener
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode Island
| | | | - Jessica Atutubo
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode Island
| | - Adam Moreno
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceRhode Island
- Present address:
College of Veterinary MedicineOhio State UniversityColumbusOhio
| | - Jason J. Kolbe
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode Island
| |
Collapse
|
9
|
Campbell DR, Faidiga A, Trujillo G. Clines in traits compared over two decades in a plant hybrid zone. ANNALS OF BOTANY 2018; 122:315-324. [PMID: 29800076 PMCID: PMC6070099 DOI: 10.1093/aob/mcy072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/17/2018] [Indexed: 05/30/2023]
Abstract
Background and Aims Clines in traits across hybrid zones reflect a balance between natural selection and gene flow. Changes over time in average values for traits, and especially the shapes of their clines, are rarely investigated in plants, but could result from evolution in an unstable hybrid zone. Differences in clines between floral and vegetative traits could indicate different strengths of divergent selection. Methods Five floral and two vegetative traits were measured in 12 populations along an elevational gradient spanning a natural hybrid zone between Ipomopsis aggregata and Ipomopsis tenuituba. We compared clines in the floral traits with those measured 25 years ago. Observed changes in mean trait values were compared with predictions based on prior estimates of natural selection. We also compared the steepness and position of clines between the floral and vegetative traits. Key Results Corolla length has increased over five generations to an extent that matches predictions from measurements of phenotypic selection and heritability. The shape of its cline, and that of other traits, has not changed detectably. Clines varied across traits, but not all floral traits showed steeper clines than did vegetative traits. Both suites of morphological traits had steeper clines than did neutral molecular markers. Conclusions The increase in corolla length provides a rare example of a match between predicted and observed evolution of a plant trait in natural populations. The clinal properties are consistent with the hypothesis that habitat-mediated divergent selection on vegetative traits and pollinator-mediated selection on floral traits both maintain species differences across the hybrid zone.
Collapse
Affiliation(s)
- Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | | | - Gabriel Trujillo
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
10
|
Wellenreuther M, Muñoz J, Chávez‐Ríos JR, Hansson B, Cordero‐Rivera A, Sánchez‐Guillén RA. Molecular and ecological signatures of an expanding hybrid zone. Ecol Evol 2018; 8:4793-4806. [PMID: 29876058 PMCID: PMC5980427 DOI: 10.1002/ece3.4024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/17/2023] Open
Abstract
Many species are currently changing their distributions and subsequently form sympatric zones with hybridization between formerly allopatric species as one possible consequence. The damselfly Ischnura elegans has recently expanded south into the range of its ecologically and morphologically similar sister species Ischnura graellsii. Molecular work shows ongoing introgression between these species, but the extent to which this species mixing is modulated by ecological niche use is not known. Here, we (1) conduct a detailed population genetic analysis based on molecular markers and (2) model the ecological niche use of both species in allopatric and sympatric regions. Population genetic analyses showed chronic introgression between I. elegans and I. graellsii across a wide part of Spain, and admixture analysis corroborated this, showing that the majority of I. elegans from the sympatric zone could not be assigned to either the I. elegans or I. graellsii species cluster. Niche modeling demonstrated that I. elegans has modified its environmental niche following hybridization and genetic introgression with I. graellsii, making niche space of introgressed I. elegans populations more similar to I. graellsii. Taken together, this corroborates the view that adaptive introgression has moved genes from I. graellsii into I. elegans and that this process is enabling Spanish I. elegans to occupy a novel niche, further facilitating its expansion. Our results add to the growing evidence that hybridization can play an important and creative role in the adaptive evolution of animals.
Collapse
Affiliation(s)
- Maren Wellenreuther
- Department of BiologyLund UniversityLundSweden
- The New Zealand Institute for Plant & Food Research LtdNelsonNew Zealand
| | | | - Jesús R. Chávez‐Ríos
- Departamento de Biología Celular y FisiologíaUnidad Periférica TlaxcalaInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoTlaxcalaMéxico
| | | | | | | |
Collapse
|
11
|
Grabenstein KC, Taylor SA. Breaking Barriers: Causes, Consequences, and Experimental Utility of Human-Mediated Hybridization. Trends Ecol Evol 2018; 33:198-212. [DOI: 10.1016/j.tree.2017.12.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 11/08/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
|
12
|
Tihon E, Imamura H, Dujardin JC, Van Den Abbeele J, Van den Broeck F. Discovery and genomic analyses of hybridization between divergent lineages of Trypanosoma congolense, causative agent of Animal African Trypanosomiasis. Mol Ecol 2017; 26:6524-6538. [PMID: 28752916 DOI: 10.1111/mec.14271] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 05/24/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Hybrid populations and introgressive hybridization remain poorly documented in pathogenic micro-organisms, as such that genetic exchange has been argued to play a minor role in their evolution. Recent work demonstrated the existence of hybrid microsatellite profiles in Trypanosoma congolense, a parasitic protozoan with detrimental effects on livestock productivity in sub-Saharan Africa. Here, we present the first population genomic study of T. congolense, revealing a remarkable number of single nucleotide polymorphisms (SNPs), small insertions/deletions (indels) and gene deletions among 56 parasite genomes from ten African countries. One group of parasites from Zambia was particularly diverse, displaying a substantial number of heterozygous SNP and indel sites compared to T. congolense parasites from the nine other sub-Saharan countries. Genomewide 5-kb phylogenetic analyses based on phased SNP data revealed that these parasites were the product of hybridization between phylogenetically distinct T. congolense lineages. Other parasites within the same region in Zambia presented a mosaic of haplotypic ancestry and genetic variability, indicating that hybrid parasites persisted and recombined beyond the initial hybridization event. Our observations challenge traditional views of trypanosome population biology and encourage future research on the role of hybridization in spreading genes for drug resistance, pathogenicity and virulence.
Collapse
Affiliation(s)
- Eliane Tihon
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | |
Collapse
|