1
|
Pappert FA, Wüst VA, Fontanes Eguiguren C, Roth O. Surviving on Limited Resources: Effects of Caloric Restriction on Growth, Gene Expression and Gut Microbiota in a Species With Male Pregnancy (Hippocampus erectus). Mol Ecol 2025; 34:e17754. [PMID: 40192444 PMCID: PMC12010458 DOI: 10.1111/mec.17754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
Caloric restriction (CR) studies have traditionally focused on species with conventional reproductive roles, emphasising female's greater investment in costly gametes and parental care. While the divergent impact of CR on males and females is evident across species, the factors driving this variation, that is, resource allocation to reproductive elements as part of distinct life history strategies, remain unclear. To address this, we investigated the effects of CR on development, gene expression and intestinal microbiota in the lined seahorse Hippocampus erectus, a species with male pregnancy, where fathers invest in offspring through gestation. Juvenile seahorses were subjected to ad libitum (AL) or CR feeding for 5 months. CR stunted male growth and brood pouch development, reflecting the energy demands of this crucial parental care trait. However, condition index declined in CR females but not males, while ovarian weight remained unchanged. Transcriptome analysis demonstrated organ- and sex-specific responses to CR with distinct lipid and energy-related pathways activated in male and female livers, indicative of survival enhancement strategies. CR had minimal impact on genes associated with spermatogenesis, but downregulated lipid metabolic and inflammatory genes in ovaries, emphasising the importance of pre-copulatory resource allocation in female gametes. CR strongly shaped gut microbial composition, creating distinct communities from AL seahorses while also driving sex-specific taxonomic differences. Our research indicates that nutrient limitation's impact on males and females is influenced by their allocation of resources to reproduction and parental investment. We underscore the significance of studying species with diverse reproductive strategies, sex roles and life-history strategies.
Collapse
Affiliation(s)
- Freya Adele Pappert
- Marine Evolutionary Biology, Zoological InstituteChristian‐Albrechts‐Universität KielKielGermany
- Evolutionary Ecology of Marine FishesHelmholtz‐Centre for Ocean Research Kiel (GEOMAR)KielGermany
| | - Vincent Alexander Wüst
- Marine Evolutionary Biology, Zoological InstituteChristian‐Albrechts‐Universität KielKielGermany
| | | | - Olivia Roth
- Marine Evolutionary Biology, Zoological InstituteChristian‐Albrechts‐Universität KielKielGermany
- Evolutionary Ecology of Marine FishesHelmholtz‐Centre for Ocean Research Kiel (GEOMAR)KielGermany
| |
Collapse
|
2
|
Schneider RF, Dubin A, Marten S, Roth O. Parent-Specific Transgenerational Immune Priming Enhances Offspring Defense-Unless Heat Stress Negates It All. Ecol Evol 2024; 14:e70552. [PMID: 39588349 PMCID: PMC11586686 DOI: 10.1002/ece3.70552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/27/2024] Open
Abstract
Transgenerational immune priming (TGIP) adjusts offspring's immune responses based on parental immunological experiences. It is predicted to be adaptive when parent-offspring environmental conditions match, while mismatches negate those advantages, rendering TGIP potentially costly. We tested these cost-benefit dynamics in the pipefish Syngnathus typhle (Syngnathidae). Because of their unique male pregnancy, egg production and rearing occur in different sexes, providing both parents multiple avenues for TGIP. Parental bacteria exposure in our pipefish was simulated through vaccinations with heat-killed Vibrio aestuarianus before mating the fish to each other or to controls. The resulting offspring were exposed to V. aestuarianus in control or heat stress environments, after which transcriptome and microbiome compositions were investigated. Transcriptomic TGIP effects were only observed in Vibrio-exposed offspring at control temperatures, arguing for low costs of TGIP in non-matching microbiota environments. Transcriptomic phenotypes elicited by maternal and paternal TGIP had limited overlap and were not additive. Parentally induced transcriptomic responses were associated with immune functions, and specifically, the paternal response to the innate immune branch, possibly hinting at trained immunity. TGIP of both parents reduced the relative abundance of the experimental Vibrio in exposed offspring, showcasing its ecological benefits. Despite TGIP's significance in matching biotic environments, no TGIP-associated phenotypes were observed for heat-treated offspring, illustrating its limitations. Heat spikes caused by climate change thus threaten TGIP benefits, potentially increasing susceptibility to emerging marine diseases. We demonstrate the urgent need to understand how animals cope with climate-induced changes in microbial assemblages to assess their vulnerability in light of climate change.
Collapse
Affiliation(s)
- Ralf F. Schneider
- Department of Zoology, Marine Evolutionary BiologyUniversity of KielKielGermany
- Department of Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| | - Arseny Dubin
- Department of Zoology, Marine Evolutionary BiologyUniversity of KielKielGermany
- Department of Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| | - Silke‐Mareike Marten
- Department of Zoology, Marine Evolutionary BiologyUniversity of KielKielGermany
- Department of Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| | - Olivia Roth
- Department of Zoology, Marine Evolutionary BiologyUniversity of KielKielGermany
- Department of Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| |
Collapse
|
3
|
Gilbert AL, Wayne SM, Norris MC, Rodgers JM, Warner DA. Stressful Body Temperatures as a Maternal Effect on Lizard Reproduction. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:292-301. [PMID: 39680905 DOI: 10.1086/733349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
AbstractUnderstanding the relationship between the environment parents experience during reproduction and the environment embryos experience in the nest is essential for determining the intergenerational responses of populations to novel environmental conditions. Thermal stress has become commonplace for organisms inhabiting areas affected by rising temperatures. Exposure to body temperatures that approach, but do not exceed, upper thermal limits often induces adverse effects in organisms, but the propensity for these temperatures to have intergenerational consequences has not been explored in depth. Here, we quantified the effects of thermal stress on the reproductive physiology and development of brown anoles (Anolis sagrei) when thermal stress is experienced by mothers and by eggs during incubation. Mothers exposed to thermal stress produced smaller eggs and smaller offspring with reduced growth rates, while egg stress reduced developmental time and offspring mass. Hatchling survival and growth were negatively affected by thermal stress experienced by mothers but not by thermal stress experienced as eggs. We found mixed evidence for an additive effect of thermal stress on offspring; rather, thermal stress had specific (and most often negative) effects on different components of offspring phenotypes and fitness proxies when experienced either by mothers or by eggs. Stressful body temperatures therefore can function in a similar manner to other types of maternal effects in reptiles; however, this maternal effect has predominantly negative consequences on offspring.
Collapse
|
4
|
Franke A, Beemelmanns A, Miest JJ. Are fish immunocompetent enough to face climate change? Biol Lett 2024; 20:20230346. [PMID: 38378140 PMCID: PMC10878809 DOI: 10.1098/rsbl.2023.0346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Ongoing climate change has already been associated with increased disease outbreaks in wild and farmed fish. Here, we evaluate the current knowledge of climate change-related ecoimmunology in teleosts with a focus on temperature, hypoxia, salinity and acidification before exploring interactive effects of multiple stressors. Our literature review reveals that acute and chronic changes in temperature and dissolved oxygen can compromise fish immunity which can lead to increased disease susceptibility. Moreover, temperature and hypoxia have already been shown to enhance the infectivity of certain pathogens/parasites and to accelerate disease progression. Too few studies exist that have focussed on acidification, but direct immune effects seem to be limited while salinity studies have led to contrasting results. Likewise, multi-stressor experiments essential for unravelling the interactions of simultaneously changing environmental factors are still scarce. This ultimately impedes our ability to estimate to what extent climate change will hamper fish immunity. Our review about epigenetic regulation mechanisms highlights the acclimation potential of the fish immune response to changing environments. However, due to the limited number of epigenetic studies, overarching conclusions cannot be drawn. Finally, we provide an outlook on how to better estimate the effects of realistic climate change scenarios in future immune studies in fish.
Collapse
Affiliation(s)
- Andrea Franke
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129 Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research (AWI), 27570 Bremerhaven, Germany
| | - Anne Beemelmanns
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V0A6 Québec, Canada
| | - Joanna J. Miest
- School of Psychology and Life Sciences, Canterbury, Kent CT1 1QU, UK
- School of Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
5
|
Sun S, Dziuba MK, Jaye RN, Duffy MA. Transgenerational plasticity in a zooplankton in response to elevated temperature and parasitism. Ecol Evol 2023; 13:e9767. [PMID: 36760704 PMCID: PMC9897957 DOI: 10.1002/ece3.9767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Organisms are increasingly facing multiple stressors, which can simultaneously interact to cause unpredictable impacts compared with a single stressor alone. Recent evidence suggests that phenotypic plasticity can allow for rapid responses to altered environments, including biotic and abiotic stressors, both within a generation and across generations (transgenerational plasticity). Parents can potentially "prime" their offspring to better cope with similar stressors or, alternatively, might produce offspring that are less fit because of energetic constraints. At present, it remains unclear exactly how biotic and abiotic stressors jointly mediate the responses of transgenerational plasticity and whether this plasticity is adaptive. Here, we test the effects of biotic and abiotic environmental changes on within- and transgenerational plasticity using a Daphnia-Metschnikowia zooplankton-fungal parasite system. By exposing parents and their offspring consecutively to the single and combined effects of elevated temperature and parasite infection, we showed that transgenerational plasticity induced by temperature and parasite stress influenced host fecundity and lifespan; offsprings of mothers who were exposed to one of the stressors were better able to tolerate elevated temperature, compared with the offspring of mothers who were exposed to neither or both stressors. Yet, the negative effects caused by parasite infection were much stronger, and this greater reduction in host fitness was not mitigated by transgenerational plasticity. We also showed that elevated temperature led to a lower average immune response, and that the relationship between immune response and lifetime fecundity reversed under elevated temperature: the daughters of exposed mothers showed decreased fecundity with increased hemocyte production at ambient temperature but the opposite relationship at elevated temperature. Together, our results highlight the need to address questions at the interface of multiple stressors and transgenerational plasticity and the importance of considering multiple fitness-associated traits when evaluating the adaptive value of transgenerational plasticity under changing environments.
Collapse
Affiliation(s)
- Syuan‐Jyun Sun
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- International Degree Program in Climate Change and Sustainable DevelopmentNational Taiwan UniversityTaipeiTaiwan
| | - Marcin K. Dziuba
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Riley N. Jaye
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Meghan A. Duffy
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
6
|
Transgenerational plasticity alters parasite fitness in changing environments. Parasitology 2022; 149:1515-1520. [PMID: 36043359 PMCID: PMC10090760 DOI: 10.1017/s0031182022001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transgenerational plasticity can help organisms respond rapidly to changing environments. Most prior studies of transgenerational plasticity in host–parasite interactions have focused on the host, leaving us with a limited understanding of transgenerational plasticity of parasites. We tested whether exposure to elevated temperatures while spores are developing can modify the ability of those spores to infect new hosts, as well as the growth and virulence of the next generation of parasites in the new host. We exposed Daphnia dentifera to its naturally co-occurring fungal parasite Metschnikowia bicuspidata, rearing the parasite at cooler (20°C) or warmer (24°C) temperatures and then, factorially, using those spores to infect at 20 and 24°C. Infections by parasites reared at warmer past temperatures produced more mature spores, but only when the current infections were at cooler temperatures. Moreover, the percentage of mature spores was impacted by both rearing and current temperatures, and was highest for infections with spores reared in a warmer environment that infected hosts in a cooler environment. In contrast, virulence was influenced only by current temperatures. These results demonstrate transgenerational plasticity of parasites in response to temperature changes, with fitness impacts that are dependent on both past and current environments.
Collapse
|
7
|
McGuigan K, Hoffmann AA, Sgrò CM. How is epigenetics predicted to contribute to climate change adaptation? What evidence do we need? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200119. [PMID: 33866811 PMCID: PMC8059617 DOI: 10.1098/rstb.2020.0119] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Transgenerational effects that are interpreted in terms of epigenetics have become an important research focus at a time when rapid environmental changes are occurring. These effects are usually interpreted as enhancing fitness extremely rapidly, without depending on the slower process of natural selection changing DNA-encoded (fixed) genetic variants in populations. Supporting evidence comes from a variety of sources, including environmental associations with epialleles, cross-generation responses of clonal material exposed to different environmental conditions, and altered patterns of methylation or frequency changes in epialleles across time. Transgenerational environmental effects have been postulated to be larger than those associated with DNA-encoded genetic changes, based on (for instance) stronger associations between epialleles and environmental conditions. Yet environmental associations for fixed genetic differences may always be weak under polygenic models where multiple combinations of alleles can lead to the same evolutionary outcome. The ultimate currency of adaptation is fitness, and few transgenerational studies have robustly determined fitness effects, particularly when compared to fixed genetic variants. Not all transgenerational modifications triggered by climate change will increase fitness: stressful conditions often trigger negative fitness effects across generations that can eliminate benefits. Epigenetic responses and other transgenerational effects will undoubtedly play a role in climate change adaptation, but further, well-designed, studies are required to test their importance relative to DNA-encoded changes. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Katrina McGuigan
- School of Biological Science, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Ary A. Hoffmann
- School of Biosciences and Bio21 Institute, The University of Melbourne, Melbourne 3010, Australia
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
8
|
Goehlich H, Sartoris L, Wagner KS, Wendling CC, Roth O. Pipefish Locally Adapted to Low Salinity in the Baltic Sea Retain Phenotypic Plasticity to Cope With Ancestral Salinity Levels. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic adaptation and phenotypic plasticity facilitate the migration into new habitats and enable organisms to cope with a rapidly changing environment. In contrast to genetic adaptation that spans multiple generations as an evolutionary process, phenotypic plasticity allows acclimation within the life-time of an organism. Genetic adaptation and phenotypic plasticity are usually studied in isolation, however, only by including their interactive impact, we can understand acclimation and adaptation in nature. We aimed to explore the contribution of adaptation and plasticity in coping with an abiotic (salinity) and a biotic (Vibriobacteria) stressor using six different populations of the broad-nosed pipefishSyngnathus typhlethat originated from either high [14–17 Practical Salinity Unit (PSU)] or low (7–11 PSU) saline environments along the German coastline of the Baltic Sea. We exposed wild caught animals, to either high (15 PSU) or low (7 PSU) salinity, representing native and novel salinity conditions and allowed animals to mate. After male pregnancy, offspring was split and each half was exposed to one of the two salinities and infected withVibrio alginolyticusbacteria that were evolved at either of the two salinities in a fully reciprocal design. We investigated life-history traits of fathers and expression of 47 target genes in mothers and offspring. Pregnant males originating from high salinity exposed to low salinity were highly susceptible to opportunistic fungi infections resulting in decreased offspring size and number. In contrast, no signs of fungal infection were identified in fathers originating from low saline conditions suggesting that genetic adaptation has the potential to overcome the challenges encountered at low salinity. Offspring from parents with low saline origin survived better at low salinity suggesting genetic adaptation to low salinity. In addition, gene expression analyses of juveniles indicated patterns of local adaptation,trans-generational plasticity and developmental plasticity. In conclusion, our study suggests that pipefish are locally adapted to the low salinity in their environment, however, they are retaining phenotypic plasticity, which allows them to also cope with ancestral salinity levels and prevailing pathogens.
Collapse
|
9
|
Roy S, Kumar V, Bossier P, Norouzitallab P, Vanrompay D. Phloroglucinol Treatment Induces Transgenerational Epigenetic Inherited Resistance Against Vibrio Infections and Thermal Stress in a Brine Shrimp ( Artemia franciscana) Model. Front Immunol 2019; 10:2745. [PMID: 31827471 PMCID: PMC6890837 DOI: 10.3389/fimmu.2019.02745] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/08/2019] [Indexed: 01/05/2023] Open
Abstract
Emerging, infectious diseases in shrimp like acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus and mortality caused by other Vibrio species such as Vibrio harveyi are worldwide related to huge economic losses in industrial shrimp production. As a strategy to prevent disease outbreaks, a plant-based phenolic compound could be used as a biocontrol agent. Here, using the brine shrimp (Artemia franciscana) as a model system, we showed that phloroglucinol treatment of the parental animals at early life stages resulted in transgenerational inherited increased resistance in their progeny against biotic stress, i.e., bacteria (V. parahaemolyticus AHPND strain and V. harveyi) and abiotic stress, i.e., lethal heat shock. Increased resistance was recorded in three subsequent generations. Innate immune-related gene expression profiles and potential epigenetic mechanisms were studied to discover the underlying protective mechanisms. Our results showed that phloroglucinol treatment of the brine shrimp parents significantly (P < 0.05) enhanced the expression of a core set of innate immune genes (DSCAM, proPO, PXN, HSP90, HSP70, and LGBP) in subsequent generations. We also demonstrated that epigenetic mechanisms such as DNA methylation, m6A RNA methylation, and histone acetylation and methylation (active chromatin marker i.e., H3K4Me3, H3K4me1, H3K27me1, H3 hyperacetylation, H3K14ac and repression marker, i.e., H3K27me3, H4 hypoacetylation) might play a role in regulation of gene expression leading toward the observed transgenerational inheritance of the resistant brine shrimp progenies. To our knowledge, this is the first report on transgenerational inheritance of a compound-induced robust protected phenotype in brine shrimp, particularly protected against AHPND caused by V. parahaemolyticus and vibriosis caused by V. harveyi. Results showed that epigenetic reprogramming is likely to play a role in the underlying mechanism.
Collapse
Affiliation(s)
- Suvra Roy
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Vikash Kumar
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Bernal MA, Donelson JM, Veilleux HD, Ryu T, Munday PL, Ravasi T. Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish. Mol Ecol 2018; 27:4516-4528. [PMID: 30267545 DOI: 10.1111/mec.14884] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Global warming will have far-reaching consequences for marine species over coming decades, yet the magnitude of these effects may depend on the rate of warming across generations. Recent experiments show coral reef fishes can compensate the metabolic challenges of elevated temperature when warm conditions are maintained across generations. However, the effects of a gradual temperature increase across generations remain unknown. In the present study, we analysed metabolic and molecular traits in the damselfish Acanthochromis polyacanthus that were exposed to +1.5°C in the first generation and +3.0°C in the second (Step +3.0°C). This treatment of stepwise warming was compared to fish reared at current-day temperatures (Control), second-generation fish of control parents reared at +3.0°C (Developmental +3.0°C) and fish exposed to elevated temperatures for two generations (Transgenerational +1.5°C and Transgenerational +3.0°C). Hepatosomatic index, oxygen consumption and liver gene expression were compared in second-generation fish of the multiple treatments. Hepatosomatic index increased in fish that developed at +3.0°C, regardless of the parental temperature. Routine oxygen consumption of Step +3.0°C fish was significantly higher than Control; however, their aerobic scope recovered to the same level as Control fish. Step +3.0°C fish exhibited significant upregulation of genes related to mitochondrial activity and energy production, which could be associated with their increased metabolic rates. These results indicate that restoration of aerobic scope is possible when fish experience gradual thermal increase across multiple generations, but the metabolic and molecular responses are different from fish reared at the same elevated thermal conditions in successive generations.
Collapse
Affiliation(s)
- Moisés A Bernal
- KAUST Environmental Epigenetics Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Jennifer M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Heather D Veilleux
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Taewoo Ryu
- APEC Climate Center (APCC), Busan, Republic of Korea
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Timothy Ravasi
- KAUST Environmental Epigenetics Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Abstract
Preconception cold-induced alterations of sperm DNA methylation result in offspring with altered brown adipose tissue and improved adaptation to overnutrition and hypothermia.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
12
|
Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity (Edinb) 2018; 121:225-238. [PMID: 29915335 DOI: 10.1038/s41437-018-0101-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/06/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Parental experience with parasites and pathogens can lead to increased offspring resistance to infection, through a process known as transgenerational immune priming (TGIP). Broadly defined, TGIP occurs across a wide range of taxa, and can be viewed as a type of phenotypic plasticity, with hosts responding to the pressures of relevant local infection risk by altering their offspring's immune defenses. There are ever increasing examples of both invertebrate and vertebrate TGIP, which go beyond classical examples of maternal antibody transfer. Here we critically summarize the current evidence for TGIP in both invertebrates and vertebrates. Mechanisms underlying TGIP remain elusive in many systems, but while it is unlikely that they are conserved across the range of organisms with TGIP, recent insight into epigenetic modulation may challenge this view. We place TGIP into a framework of evolutionary ecology, discussing costs and relevant environmental variation. We highlight how the ecology of species or populations should affect if, where, when, and how TGIP is realized. We propose that the field can progress by incorporating evolutionary ecology focused designs to the study of the so far well chronicled, but mostly descriptive TGIP, and how rapidly developing -omic methods can be employed to further understand TGIP across taxa.
Collapse
|
13
|
Roth O, Landis SH. Trans-generational plasticity in response to immune challenge is constrained by heat stress. Evol Appl 2017; 10:514-528. [PMID: 28515783 PMCID: PMC5427669 DOI: 10.1111/eva.12473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/23/2017] [Indexed: 12/24/2022] Open
Abstract
Trans‐generational plasticity (TGP) is the adjustment of phenotypes to changing habitat conditions that persist longer than the individual lifetime. Fitness benefits (adaptive TGP) are expected upon matching parent–offspring environments. In a global change scenario, several performance‐related environmental factors are changing simultaneously. This lowers the predictability of offspring environmental conditions, potentially hampering the benefits of TGP. For the first time, we here explore how the combination of an abiotic and a biotic environmental factor in the parental generation plays out as trans‐generational effect in the offspring. We fully reciprocally exposed the parental generation of the pipefish Syngnathus typhle to an immune challenge and elevated temperatures simulating a naturally occurring heatwave. Upon mating and male pregnancy, offspring were kept in ambient or elevated temperature regimes combined with a heat‐killed bacterial epitope treatment. Differential gene expression (immune genes and DNA‐ and histone‐modification genes) suggests that the combined change of an abiotic and a biotic factor in the parental generation had interactive effects on offspring performance, the temperature effect dominated over the immune challenge impact. The benefits of certain parental environmental conditions on offspring performance did not sum up when abiotic and biotic factors were changed simultaneously supporting that available resources that can be allocated to phenotypic trans‐generational effects are limited. Temperature is the master regulator of trans‐generational phenotypic plasticity, which potentially implies a conflict in the allocation of resources towards several environmental factors. This asks for a reassessment of TGP as a short‐term option to buffer environmental variation in the light of climate change.
Collapse
Affiliation(s)
- Olivia Roth
- GEOMAR Evolutionary Ecology of Marine Fishes Helmholtz Centre for Ocean Research Kiel Germany
| | - Susanne H Landis
- GEOMAR Evolutionary Ecology of Marine Fishes Helmholtz Centre for Ocean Research Kiel Germany
| |
Collapse
|