1
|
Rehsawla R, Bhandari S, Dey SS, Das A, Sevugapperumal N, Renukadevi P, Ghosh A. Diversity in Thrips palmi: exploration of genetic and ecological heterogeneity. Gene 2025; 943:149252. [PMID: 39828066 DOI: 10.1016/j.gene.2025.149252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Thrips palmi Karny (Thysanoptera: Thripidae), an impactful pest in Southeast and East Asia, spread to Africa, Oceania, and the Americas in the past decades. Besides being a principal pest of vegetables, legumes, fibre, and ornamental crops, T. palmi serves as the vector for several plant viruses that cause substantial economic losses. The impact of intraspecies heterogeneity in the evolution of pesticide-resistant, host-specific, and geo-ecological strains is known for several thrips species. The present study aims to explore the genetic basis of the intraspecies heterogeneity of T. palmi populations if any. The genetic diversity within T. palmi has been recognized by 35 microsatellite markers, sequencing mitochondrial cytochrome oxidase subunit I (mtCOI), and internal transcribed spacer 2 (ITS2) markers. A total of 93 populations were collected from diverse ecological niches of India. Out of which 20 populations were identified as T. palmi. A total of 286 mtCOI and 66 ITS2 sequences of T. palmi originating from different parts of the world including the sequences generated in this study were considered to ascertain the genetic diversity. All the collected Indian populations are clustered into two distinct ancestries in Structure analysis, with a predominant inclination towards Ancestry II. A high intraspecific diversity of global populations of T. palmi up to 19% based on mtCOI sequences and 15% in ITS2 sequences is indicative of the presence of cryptic species. Phylogenetic analyses and haplotype networking clustered the global population of T. palmi into five lineages. Restricted gene flow was anticipated among the major lineages of T. palmi. The results suggest the existence of reproductively isolated populations due to potential geographical barriers. Excess of rare alleles suggested a recent selective sweep or population expansion after a recent bottleneck that seeks a further evolutionary understanding of T. palmi population globally, and its introduction and ecesis in new areas. The study proposes that T. palmi populations across the globe represent a species complex with broader genetic boundaries and reproductive isolation that suggest further taxonomical appraisal.
Collapse
Affiliation(s)
- Rizwana Rehsawla
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012 India
| | - Shiksha Bhandari
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012 India
| | - Shyam Sundar Dey
- Division of Vegetable Sciences, ICAR-Indian Agricultural Research Institute, New Delhi 110012 India
| | - Amrita Das
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012 India
| | | | - P Renukadevi
- Tamil Nadu Agricultural University, Department of Plant Pathology, Coimbatore 641003 India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012 India.
| |
Collapse
|
2
|
Condori B, Recuerda M, Illera JC, Milá B. The Relative Roles of Selection and Drift in the Chaffinch Radiation (Aves: Fringilla) Across the Atlantic Archipelagos of Macaronesia. Ecol Evol 2025; 15:e71307. [PMID: 40242797 PMCID: PMC12000227 DOI: 10.1002/ece3.71307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Island populations diverge from the mainland and from each other by both natural selection and neutral forces such as founder effects and genetic drift. In this work, we aim to determine the relative roles of selection and drift in the diversification of chaffinches (Fringilla spp.) in Macaronesia. We tested the hypothesis that taxa inhabiting Macaronesian archipelagos, which exhibit significant differences in habitat and climate compared with the mainland, should experience distinct ecological pressures, leading to divergence at loci under selection related to environmental variables. To determine the role of local adaptation in the differentiation of these taxa, we performed genotype-environment association (GEA) analyses using ten environmental variables and 52,306 single nucleotide polymorphism markers obtained from genotyping-by-sequencing (GBS) in 79 chaffinches. Redundancy analysis (RDA) revealed that genomic variation is associated with environmental variables and identified candidate genes related to phenotypic traits and environmental variables. Variables associated with habitat type and precipitation, together with drift, played an important role in the genomic differentiation between chaffinches from Macaronesia and the mainland, as well as within the Canarian archipelago. Genetic drift was identified as the main factor in the differentiation of North African chaffinches from Macaronesia and mainland Europe, as well as Madeira chaffinches from those in the Canary Islands. Finally, chaffinches from the Canary Islands show an incipient diversification process at the genetic and phenotypic level driven by both selection and neutral processes. Our results suggest that both habitat-driven local adaptation and drift have played a role in the radiation of chaffinch taxa in Macaronesia.
Collapse
Affiliation(s)
- Brian Condori
- Department of Biodiversity and Evolutionary BiologyNational Museum of Natural Sciences, Spanish National Research Council (CSIC)MadridSpain
| | - María Recuerda
- Department of Biodiversity and Evolutionary BiologyNational Museum of Natural Sciences, Spanish National Research Council (CSIC)MadridSpain
- Cornell Laboratory of OrnithologyCornell UniversityIthacaNew YorkUSA
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC‐Oviedo University‐Principality of Asturias)University of OviedoMieresSpain
| | - Borja Milá
- Department of Biodiversity and Evolutionary BiologyNational Museum of Natural Sciences, Spanish National Research Council (CSIC)MadridSpain
| |
Collapse
|
3
|
Dai JX, Cao LJ, Chen JC, Yang F, Shen XJ, Ma LJ, Hoffmann AA, Chen M, Wei SJ. Testing for adaptive changes linked to range expansion following a single introduction of the fall webworm. Mol Ecol 2024; 33:e17038. [PMID: 37277936 DOI: 10.1111/mec.17038] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Adaptive evolution following colonization can affect the impact of invasive species. The fall webworm (FWW) invaded China 40 years ago through a single introduction event involving a severe bottleneck and subsequently diverged into two genetic groups. The well-recorded invasion history of FWW, coupled with a clear pattern of genetic divergence, provides an opportunity to investigate whether there is any sign of adaptive evolution following the invasion. Based on genome-wide SNPs, we identified genetically separated western and eastern groups of FWW and correlated spatial variation in SNPs with geographical and climatic factors. Geographical factors explained a similar proportion of the genetic variation across all populations compared with climatic factors. However, when the two population groups were analysed separately, environmental factors explained more variation than geographical factors. SNP outliers in populations of the western group had relatively stronger response to precipitation than temperature-related variables. Functional annotation of SNP outliers identified genes associated with insect cuticle protein potentially related to desiccation adaptation in the western group and genes associated with lipase biosynthesis potentially related to temperature adaptation in the eastern group. Our study suggests that invasive species may maintain the evolutionary potential to adapt to heterogeneous environments despite a single invasion event. The molecular data suggest that quantitative trait comparisons across environments would be worthwhile.
Collapse
Affiliation(s)
- Jin-Xu Dai
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangyuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Min Chen
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
4
|
Adu GB, Awuku FJ, Garcia-Oliveira AL, Amegbor IK, Nelimor C, Nboyine J, Karikari B, Atosona B, Manigben KA, Aboyadana PA. DArTseq-based SNP markers reveal high genetic diversity among early generation fall armyworm tolerant maize inbred lines. PLoS One 2024; 19:e0294863. [PMID: 38630672 PMCID: PMC11023204 DOI: 10.1371/journal.pone.0294863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/09/2023] [Indexed: 04/19/2024] Open
Abstract
Diversity analysis using molecular markers serves as a powerful tool in unravelling the intricacies of inclusivity within various populations and is an initial step in the assessment of populations and the development of inbred lines for host plant resistance in maize. This study was conducted to assess the genetic diversity and population structure of 242 newly developed S3 inbred lines using 3,305 single nucleotide polymorphism (SNP) markers and to also assess the level of homozygosity achieved in each of the inbred lines. A total of 1,184 SNP markers were found highly informative, with a mean polymorphic information content (PIC) of 0.23. Gene diversity was high among the inbred lines, ranging from 0.04 to 0.50, with an average of 0.27. The residual heterozygosity of the 242 S3 inbred lines averaged 8.8%, indicating moderately low heterozygosity levels among the inbred lines. Eighty-four percent of the 58,322 pairwise kinship coefficients among the inbred lines were near zero (0.00-0.05), with only 0.3% of them above 0.50. These results revealed that many of the inbred lines were distantly related, but none were redundant, suggesting each inbred line had a unique genetic makeup with great potential to provide novel alleles for maize improvement. The admixture-based structure analysis, principal coordinate analysis, and neighbour-joining clustering were concordant in dividing the 242 inbred lines into three subgroups based on the pedigree and selection history of the inbred lines. These findings could guide the effective use of the newly developed inbred lines and their evaluation in quantitative genetics and molecular studies to identify candidate lines for breeding locally adapted fall armyworm tolerant varieties in Ghana and other countries in West and Central Africa.
Collapse
Affiliation(s)
| | | | - Ana Luisa Garcia-Oliveira
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
- Department of Molecular Biology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Isaac Kodzo Amegbor
- CSIR-Savanna Agricultural Research Institute, Nyankpala, Ghana
- Faculty of Natural and Agricultural Sciences, Department of Plant Breeding, University of the Free State, Bloemfontein, South Africa
| | - Charles Nelimor
- CSIR-Savanna Agricultural Research Institute, Nyankpala, Ghana
| | - Jerry Nboyine
- CSIR-Savanna Agricultural Research Institute, Nyankpala, Ghana
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | | | | | | |
Collapse
|
5
|
Ma LJ, Cao LJ, Chen JC, Tang MQ, Song W, Yang FY, Shen XJ, Ren YJ, Yang Q, Li H, Hoffmann AA, Wei SJ. Rapid and Repeated Climate Adaptation Involving Chromosome Inversions following Invasion of an Insect. Mol Biol Evol 2024; 41:msae044. [PMID: 38401527 PMCID: PMC10924284 DOI: 10.1093/molbev/msae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.
Collapse
Affiliation(s)
- Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng-Qing Tang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fang-Yuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ya-Jing Ren
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiong Yang
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ary Anthony Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
6
|
Wang X, Wang W, Qin Y, Wang M, Li Y, Liu H. Population Genetic Diversity of Two Blue Oat Mite Species on Triticum Hosts in China. INSECTS 2023; 14:377. [PMID: 37103192 PMCID: PMC10143575 DOI: 10.3390/insects14040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Blue oat mite species, including Penthaleus major and P. tectus, are pests widely distributed across China that cause damage to winter wheat. This study evaluated the genetic diversity of P. major and P. tectus on Triticum hosts collected from 23 geographic locations based on mitochondrial cytochrome c oxidase subunit I (COI) sequences. We identified nine haplotypes in 438 P. major individuals from 21 geographic locations and five haplotypes in 139 P. tectus individuals from 11 geographic locations. Meanwhile, P. major exhibits high values of haplotype diversity (Hd) and nucleotide diversity (Pi) (Hd = 0.534 > 0.5 and Pi = 0.012 > 0.005), representing a large stable population with a long evolutionary history. P. tectus shows low values of Hd and Pi (Hd = 0.112 < 0.5 and Pi = 0 < 0.005), which suggest recent founder events. Moreover, demographic analysis suggested that P. major and P. tectus have not undergone a recent population expansion. The lowest genetic variation was observed in Xiangzhou (XZ-HB), Zaoyang (ZY-HB), Siyang (SY-JS), and Rongxian (RX-SC), with only one species and one haplotype identified in over 30 individuals. Robust genetic differentiation was found in P. major compared to P. tectus, which provides a theoretical basis for the widespread distribution of P. major in China.
Collapse
|
7
|
Shen XJ, Chen JC, Cao LJ, Ma ZZ, Sun LN, Gao YF, Ma LJ, Wang JX, Ren YJ, Cao HQ, Gong YJ, Hoffmann AA, Wei SJ. Interspecific and intraspecific variation in susceptibility of two co-occurring pest thrips, Frankliniella occidentalis and Thrips palmi, to nine insecticides. PEST MANAGEMENT SCIENCE 2023. [PMID: 37042232 DOI: 10.1002/ps.7502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/19/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Field control of pest thrips mainly relies on insecticides, but the toxicity of insecticides can vary among thrips species and populations. In this study, we examined the susceptibility of multiple field populations of two thrips pests, Frankliniella occidentalis, and Thrips palmi, that often co-occur on vegetables, to nine insecticides belonging to seven subgroups. RESULTS The highest level of variation in susceptibility among F. occidentalis populations was for spinetoram (73.92 fold difference between most resistant and most susceptible population), followed by three neonicotinoids (8.06-15.99 fold), while among T. palmi populations, it was also for spinetoram (257.19 fold), followed by emamectin benzoate, sulfoxaflor, and acetamiprid (23.64-45.50 fold). These findings suggest evolved resistance to these insecticides in some populations of the two thrips. One population of F. occidentalis had a particularly high level of resistance overall, being the most resistant for five of the nine insecticides tested. Likewise, a population of T. palmi had high resistance to all nine insecticides, again suggesting the evolution of resistance to multiple chemicals. For F. occidentalis, the LC95 values of most populations were higher than the field-recommended dosage for all insecticides except chlorfenapyr and emamectin benzoate. For several T. palmi populations, the LC95 values also tended to be higher than recommended dosages, except in the case of emamectin benzoate and spinetoram. CONCLUSIONS Our study found interspecific and intraspecific variations in the susceptibility of two thrips to nine insecticides and multiple resistance in some populations, highlighting the need for ongoing monitoring and resistance management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhong-Zheng Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Na Sun
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yong-Fu Gao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Xu Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jing Ren
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hua-Qian Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jun Gong
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Anthony Ary Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
8
|
Ke F, Li J, Vasseur L, You M, You S. Temporal sampling and network analysis reveal rapid population turnover and dynamic migration pattern in overwintering regions of a cosmopolitan pest. Front Genet 2022; 13:986724. [PMID: 36110208 PMCID: PMC9469019 DOI: 10.3389/fgene.2022.986724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic makeup of insect pest is informative for source-sink dynamics, spreading of insecticide resistant genes, and effective management. However, collecting samples from field populations without considering temporal resolution and calculating parameters related to historical gene flow may not capture contemporary genetic pattern and metapopulation dynamics of highly dispersive pests. Plutella xylostella (L.), the most widely distributed Lepidopteran pest that developed resistance to almost all current insecticides, migrates heterogeneously across space and time. To investigate its real-time genetic pattern and dynamics, we executed four samplings over two consecutive years across Southern China and Southeast Asia, and constructed population network based on contemporary gene flow. Across 48 populations, genetic structure analysis identified two differentiated insect swarms, of which the one with higher genetic variation was replaced by the other over time. We further inferred gene flow by estimation of kinship relationship and constructed migration network in each sampling time. Interestingly, we found mean migration distance at around 1,000 km. Such distance might have contributed to the formation of step-stone migration and migration circuit over large geographical scale. Probing network clustering across sampling times, we found a dynamic P. xylostella metapopulation with more active migration in spring than in winter, and identified a consistent pattern that some regions are sources (e.g., Yunnan in China, Myanmar and Vietnam) while several others are sinks (e.g., Guangdong and Fujian in China) over 2 years. Rapid turnover of insect swarms and highly dynamic metapopulation highlight the importance of temporal sampling and network analysis in investigation of source-sink relationships and thus effective pest management of P. xylostella, and other highly dispersive insect pests.
Collapse
Affiliation(s)
- Fushi Ke
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Jianyu Li
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Minsheng You, ; Shijun You,
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- BGI-Sanya, Sanya, China
- *Correspondence: Minsheng You, ; Shijun You,
| |
Collapse
|
9
|
Li J, Shi L, Vasseur L, Zhao Q, Chen J, You M, You S. Genetic analyses reveal regional structure and demographic expansion of the predominant tea pest Empoasca onukii (Hemiptera: Cicadellidae) in China. PEST MANAGEMENT SCIENCE 2022; 78:2838-2850. [PMID: 35393736 DOI: 10.1002/ps.6908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The tea green leafhopper, Empoasca onukii Matsuda, is the most destructive insect pest of tea plantations in East Asia. Despite its economic importance and previous studies on this species, it remains unclear as to how this small-sized pest can have such wide range. RESULTS By sequencing three mitochondrial genes and 17 microsatellite loci, we revealed the regional structure and demographic expansion of 59 E. onukii populations in China. Bayesian analysis of population genetic structure (BAPS) on microsatellites identified four genetic groups with spatial discontinuities, while analysis on mitochondrial genes inferred five nested and differentiated clusters. Both the Mantel test and the generalized linear model indicated a significant pattern of isolation by geographic distance in E. onukii populations. Based on the approximate Bayesian computation approach, E. onukii was found to have originated from southwestern China and expanded northward and eastward. While MIGRATE-N and Bayesian stochastic search variable selection (BSSVS) procedure in BEAST confirmed the possible eastward and northward dispersal from Yunnan, they also detected more gene flow from the derived populations in central and southeastern China. CONCLUSION Our results suggest that the current distribution and structure of E. onukii is complicatedly influenced by human activities of cultivation, wide dissemination of tea in ancient China as well as recent transportation of tea seedlings for establishing new tea plantations. Insights into genetic differentiation and demographic expansion patterns from this study provide an important basis for the development of area-wide management of the E. onukii populations. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinyu Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Longqing Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
| | - Qian Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Jie Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| |
Collapse
|
10
|
Jangra S, Ghosh A, Mukherjee S, Baranwal VK, Dietzgen RG. Development of a Polymerase Spiral Reaction-Based Isothermal Assay for Rapid Identification of Thrips palmi. Front Mol Biosci 2022; 9:853339. [PMID: 35586189 PMCID: PMC9108268 DOI: 10.3389/fmolb.2022.853339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/23/2022] [Indexed: 12/03/2022] Open
Abstract
Thrips cause considerable economic losses to a wide range of food, feed, and forest crops. They also transmit several plant viruses. Being cryptic, it is often difficult to distinguish thrips species in crops and large consignments by conventional methods. Melon thrips (Thrips palmi Karny, Thysanoptera: Thripidae) is an invasive insect pest of vegetables, legumes, and ornamentals besides being vector to several viruses. It poses a threat to domestic and international plant biosecurity and can invade and establish in new areas. Here, we report a polymerase spiral reaction (PSR)-based isothermal assay for rapid, sensitive, specific, low-cost, and on-site detection of T. palmi. To the best of our knowledge, this is the first application of PSR in the identification of any insect species. A primer pair designed based on 3′-polymorphism of mtCOIII region can specifically identify T. palmi without any cross-reactivity with predominant thrips species. The assay uses crude lysate of a single thrips saving time and reagents involved in nucleic acid extraction. The presence of T. palmi is visualized by the appearance of bright fluorescence under ultraviolet light or a change in reaction color thus avoiding gel electrophoresis steps. The entire process can be completed in 70 min on-site using only an ordinary water bath. The assay is sensitive to detecting as little as 50 attograms of T. palmi template. The assay was validated with known thrips specimens and found to be efficient in diagnosing T. palmi under natural conditions. The described method will be useful for non-expert personnel to detect an early infestation, accidental introduction to a new area, restrict the spread of diseases and formulate appropriate management strategies.
Collapse
Affiliation(s)
- Sumit Jangra
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Amalendu Ghosh, , orcid.org/0000-0001-6634-5771
| | - Sunil Mukherjee
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Virendra Kumar Baranwal
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
11
|
Zhang Y, Song W, Cao L, Chen J, Hoffmann AA, Wen J, Wei S. Population differentiation and intraspecific genetic admixture in two Eucryptorrhynchus weevils (Coleoptera: Curculionidae) across northern China. Ecol Evol 2022; 12:e8806. [PMID: 35414902 PMCID: PMC8986550 DOI: 10.1002/ece3.8806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Increasing damage of pests in agriculture and forestry can arise both as a consequence of changes in local species and through the introduction of alien species. In this study, we used population genetics approaches to examine population processes of two pests of the tree-of-heaven trunk weevil (TTW), Eucryptorrhynchus brandti (Harold) and the tree-of-heaven root weevil (TRW), E. scrobiculatus (Motschulsky) on the tree-of-heaven across their native range of China. We analyzed the population genetics of the two weevils based on ten highly polymorphic microsatellite markers. Population genetic diversity analysis showed strong population differentiation among populations of each species, with F ST ranges from 0.0197 to 0.6650 and from -0.0724 to 0.6845, respectively. Populations from the same geographic areas can be divided into different genetic clusters, and the same genetic cluster contained populations from different geographic populations, pointing to dispersal of the weevils possibly being human-mediated. Redundancy analysis showed that the independent effects of environment and geography could account for 93.94% and 29.70% of the explained genetic variance in TTW, and 41.90% and 55.73% of the explained genetic variance in TRW, respectively, indicating possible impacts of local climates on population genetic differentiation. Our study helps to uncover population genetic processes of these local pest species with relevance to control methods.
Collapse
Affiliation(s)
- Yu‐Jie Zhang
- Beijing Key Laboratory for Forest Pests Control, College of ForestryBeijing Forestry UniversityBeijingChina
- Institute of Plant ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Wei Song
- Beijing Key Laboratory for Forest Pests Control, College of ForestryBeijing Forestry UniversityBeijingChina
- Institute of Plant ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Li‐Jun Cao
- Institute of Plant ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jin‐Cui Chen
- Institute of Plant ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Ary A. Hoffmann
- School of BioSciencesBio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Jun‐Bao Wen
- Beijing Key Laboratory for Forest Pests Control, College of ForestryBeijing Forestry UniversityBeijingChina
| | - Shu‐Jun Wei
- Institute of Plant ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| |
Collapse
|
12
|
Urquía D, Gutierrez B, Pozo G, Pozo MJ, Torres MDL. Origin and dispersion pathways of guava in the Galapagos Islands inferred through genetics and historical records. Ecol Evol 2021; 11:15111-15131. [PMID: 34765164 PMCID: PMC8571588 DOI: 10.1002/ece3.8193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/07/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Guava (Psidium guajava) is an aggressive invasive plant in the Galapagos Islands. Determining its provenance and genetic diversity could explain its adaptability and spread, and how this relates to past human activities. With this purpose, we analyzed 11 SSR markers in guava individuals from Isabela, Santa Cruz, San Cristobal, and Floreana islands in the Galapagos, as well as from mainland Ecuador. The mainland guava population appeared genetically differentiated from the Galapagos populations, with higher genetic diversity levels found in the former. We consistently found that the Central Highlands region of mainland Ecuador is one of the most likely origins of the Galapagos populations. Moreover, the guavas from Isabela and Floreana show a potential genetic input from southern mainland Ecuador, while the population from San Cristobal would be linked to the coastal mainland regions. Interestingly, the proposed origins for the Galapagos guava coincide with the first human settlings of the archipelago. Through approximate Bayesian computation, we propose a model where San Cristobal was the first island to be colonized by guava from the mainland, and then, it would have spread to Floreana and finally to Santa Cruz; Isabela would have been seeded from Floreana. An independent trajectory could also have contributed to the invasion of Floreana and Isabela. The pathway shown in our model agrees with the human colonization history of the different islands in the Galapagos. Our model, in conjunction with the clustering patterns of the individuals (based on genetic distances), suggests that guava introduction history in the Galapagos archipelago was driven by either a single event or a series of introduction events in rapid succession. We thus show that genetic analyses supported by historical sources can be used to track the arrival and spread of invasive species in novel habitats and the potential role of human activities in such processes.
Collapse
Affiliation(s)
- Diego Urquía
- Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
| | - Bernardo Gutierrez
- Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
- Department of ZoologyUniversity of OxfordOxfordUK
| | - Gabriela Pozo
- Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
| | - Maria Jose Pozo
- Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
| | - Maria de Lourdes Torres
- Laboratorio de Biotecnología VegetalUniversidad San Francisco de Quito (USFQ)QuitoEcuador
- Galapagos Science CenterUniversidad San Francisco de Quito and University of North Carolina at Chapel HillGalapagosEcuador
| |
Collapse
|
13
|
Messelink GJ, Lambion J, Janssen A, van Rijn PCJ. Biodiversity in and around Greenhouses: Benefits and Potential Risks for Pest Management. INSECTS 2021; 12:insects12100933. [PMID: 34680702 PMCID: PMC8540207 DOI: 10.3390/insects12100933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The role of plant diversity near greenhouses is heavily debated because it may have both negative and positive effects on pest control inside greenhouses. In this review, we discuss these potential risks and benefits. Although there is the risk of an increased influx of some pests and of viruses transmitted by pests, we argue that biodiversity in the adjacent environment usually has limited effects on pest abundance in greenhouses in temperate climates, as most greenhouse pests in temperate climates are of exotic origin. The main benefit of increased biodiversity near greenhouses is the immigration of natural enemies that can suppress pests inside greenhouses. An open question is how this can be promoted by specific plant communities, plant characteristics, and habitats while minimising risks. Plant biodiversity inside greenhouses can also support biological control. We summarise general methods that growers can use to enhance pest control with functional biodiversity and suggest that it is particularly important to study how biodiversity inside and outside greenhouses can be linked to enhancement of biological pest control with both released and naturally occurring species of natural enemies. Abstract One of the ecosystem services of biodiversity is the contribution to pest control through conservation and stimulation of natural enemies. However, whether plant diversity around greenhouses is beneficial or a potential risk is heavily debated. In this review, we argue that most greenhouse pests in temperate climates are of exotic origin and infest greenhouses mainly through transportation of plant material. For indigenous pests, we discuss the potential ways in which plant diversity around greenhouses can facilitate or prevent pest migrations into greenhouses. As shown in several studies, an important benefit of increased plant diversity around greenhouses is the stimulation of indigenous natural enemies that migrate to greenhouses, where they suppress both indigenous and exotic pests. How this influx can be supported by specific plant communities, plant characteristics, and habitats while minimising risks of increasing greenhouse pest densities, virus transmission, or hyperparasitism needs further studies. It also requires a better understanding of the underlying processes that link biodiversity with pest management. Inside greenhouses, plant biodiversity can also support biological control. We summarise general methods that growers can use to enhance pest control with functional biodiversity and suggest that it is particularly important to study how biodiversity inside and outside greenhouses can be linked to enhancement of biological pest control with both released and naturally occurring species of natural enemies.
Collapse
Affiliation(s)
- Gerben J. Messelink
- BU Greenhouse Horticulture, Wageningen Research, Violierenweg 1, 2665 MV Bleiswijk, The Netherlands
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Correspondence:
| | - Jérôme Lambion
- Groupe de Recherche and Agriculture Biologique (GRAB), Maison de la Bio 255, Chemin de la Castelette, 84911 Avignon, France;
| | - Arne Janssen
- IBED, Department Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (A.J.); (P.C.J.v.R.)
- Department of Entomology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Paul C. J. van Rijn
- IBED, Department Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (A.J.); (P.C.J.v.R.)
| |
Collapse
|
14
|
Ghosh A, Jangra S, Dietzgen RG, Yeh WB. Frontiers Approaches to the Diagnosis of Thrips (Thysanoptera): How Effective Are the Molecular and Electronic Detection Platforms? INSECTS 2021; 12:insects12100920. [PMID: 34680689 PMCID: PMC8540714 DOI: 10.3390/insects12100920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Thrips are important agricultural and forest pests. They cause damage by sucking plant sap and transmitting several plant viruses. Correct identification is the key for epidemiological studies and formulating appropriate management strategies. The application of molecular and electronic detection platforms has improved the morphological character-based diagnosis of thrips species. This article reviews research on molecular and automated identification of thrips species and discusses future research strategies for rapid and high throughput thrips diagnosis. Abstract Thrips are insect pests of economically important agricultural, horticultural, and forest crops. They cause damage by sucking plant sap and by transmitting several tospoviruses, ilarviruses, carmoviruses, sobemoviruses, and machlomoviruses. Accurate and timely identification is the key to successful management of thrips species. However, their small size, cryptic nature, presence of color and reproductive morphs, and intraspecies genetic variability make the identification of thrips species challenging. The use of molecular and electronic detection platforms has made thrips identification rapid, precise, sensitive, high throughput, and independent of developmental stages. Multi-locus phylogeny based on mitochondrial, nuclear, and other markers has resolved ambiguities in morphologically indistinguishable thrips species. Microsatellite, RFLP, RAPD, AFLP, and CAPS markers have helped to explain population structure, gene flow, and intraspecies heterogeneity. Recent techniques such as LAMP and RPA have been employed for sensitive and on-site identification of thrips. Artificial neural networks and high throughput diagnostics facilitate automated identification. This review also discusses the potential of pyrosequencing, microarrays, high throughput sequencing, and electronic sensors in delimiting thrips species.
Collapse
Affiliation(s)
- Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.G.); (S.J.)
| | - Sumit Jangra
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.G.); (S.J.)
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Correspondence:
| | - Wen-Bin Yeh
- Department of Entomology, National Chung Hsing University, Taichung City 402, Taiwan;
| |
Collapse
|
15
|
Chen Y, Hou G, Jing M, Teng H, Liu Q, Yang X, Wang Y, Qu J, Shi C, Lu L, Zhang J, Zhang Y. Genomic analysis unveils mechanisms of northward invasion and signatures of plateau adaptation in the Asian house rat. Mol Ecol 2021; 30:6596-6610. [PMID: 34564921 DOI: 10.1111/mec.16194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The Asian house rat (AHR), Rattus tanezumi, has recently invaded the northern half of China. The AHR is a highly adaptive rat species that has also successfully conquered the Qinghai-Tibet Plateau (QTP) and replaced the brown rat (BR), R. norvegicus, at the edge of the QTP. Here, we assembled a draft genome of the AHR and explored the mechanisms of its northward invasion and the genetic basis underlying plateau adaptation in this species. Population genomic analyses revealed that the northwardly invasive AHRs consisted of two independent and genetically distinct populations which might result from multiple independent primary invasion events. One invasive population exhibited reduced genetic diversity and distinct population structure compared with its source population, while the other displayed preserved genetic polymorphisms and little genetic differentiation from its source population. Genes involved in G-protein coupled receptors and carbohydrate metabolism may contribute to the local adaptation of northern AHRs. In particular, RTN4 was identified as a key gene for AHRs in the QTP that favours adaptation to high-altitude hypoxia. Coincidently, the physiological performance and transcriptome profiles of hypoxia-exposed rats both showed better hypoxia adaptation in AHRs than in BRs that failed to colonize the heart of the QTP, which may have facilitated the replacement of the BR population by the invading AHRs at the edge of the QTP. This study provides profound insights into the multiple origins of the northwardly invasive AHR and the great tolerance to hypoxia in this species.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guanmei Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Meidong Jing
- School of Life Sciences, Nantong University, Nantong, China
| | - Huajing Teng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xingen Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Yong Wang
- Dongting Lake Station for Wetland Ecosystem Research, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China
| | - Chengmin Shi
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianxu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yaohua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Mairal M, Chown SL, Shaw J, Chala D, Chau JH, Hui C, Kalwij JM, Münzbergová Z, Jansen van Vuuren B, Le Roux JJ. Human activity strongly influences genetic dynamics of the most widespread invasive plant in the sub-Antarctic. Mol Ecol 2021; 31:1649-1665. [PMID: 34181792 DOI: 10.1111/mec.16045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
The link between the successful establishment of alien species and propagule pressure is well-documented. Less known is how humans influence the post-introduction dynamics of invasive alien populations. The latter requires studying parallel invasions by the same species in habitats that are differently impacted by humans. We analysed microsatellite and genome size variation, and then compared the genetic diversity and structure of invasive Poa annua L. on two sub-Antarctic islands: human-occupied Marion Island and unoccupied Prince Edward Island. We also carried out niche modelling to map the potential distribution of the species on both islands. We found high levels of genetic diversity and evidence for extensive admixture between genetically distinct lineages of P. annua on Marion Island. By contrast, the Prince Edward Island populations showed low genetic diversity, no apparent admixture, and had smaller genomes. On both islands, high genetic diversity was apparent at human landing sites, and on Marion Island, also around human settlements, suggesting that these areas received multiple introductions and/or acted as initial introduction sites and secondary sources (bridgeheads) for invasive populations. More than 70 years of continuous human activity associated with a meteorological station on Marion Island led to a distribution of this species around human settlements and along footpaths, which facilitates ongoing gene flow among geographically separated populations. By contrast, this was not the case for Prince Edward Island, where P. annua populations showed high genetic structure. The high levels of genetic variation and admixture in P. annua facilitated by human activity, coupled with high habitat suitability on both islands, suggest that P. annua is likely to increase its distribution and abundance in the future.
Collapse
Affiliation(s)
- Mario Mairal
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.,Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Victoria, Australia
| | - Justine Shaw
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Desalegn Chala
- Natural History Museum, University of Oslo, Oslo, Norway
| | - John H Chau
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa.,Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Jesse M Kalwij
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, South Africa.,Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Zuzana Münzbergová
- Department of Botany, Charles University, Prague, Czech Republic.,Department of Population Ecology, Czech Academy of Science, Průhonice, Czech Republic
| | - Bettine Jansen van Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Johannes J Le Roux
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.,Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Sherpa S, Després L. The evolutionary dynamics of biological invasions: A multi-approach perspective. Evol Appl 2021; 14:1463-1484. [PMID: 34178098 PMCID: PMC8210789 DOI: 10.1111/eva.13215] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Biological invasions, the establishment and spread of non-native species in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates introduction rates, while climate and land-cover changes may decrease the barriers to invasive populations spread. A detailed knowledge of the invasion history, including assessing source populations, routes of spread, number of independent introductions, and the effects of genetic bottlenecks and admixture on the establishment success, adaptive potential, and further spread, is crucial from an applied perspective to mitigate socioeconomic impacts of invasive species, as well as for addressing fundamental questions on the evolutionary dynamics of the invasion process. Recent advances in genomics together with the development of geographic information systems provide unprecedented large genetic and environmental datasets at global and local scales to link population genomics, landscape ecology, and species distribution modeling into a common framework to study the invasion process. Although the factors underlying population invasiveness have been extensively reviewed, analytical methods currently available to optimally combine molecular and environmental data for inferring invasive population demographic parameters and predicting further spreading are still under development. In this review, we focus on the few recent insect invasion studies that combine different datasets and approaches to show how integrating genetic, observational, ecological, and environmental data pave the way to a more integrative biological invasion science. We provide guidelines to study the evolutionary dynamics of invasions at each step of the invasion process, and conclude on the benefits of including all types of information and up-to-date analytical tools from different research areas into a single framework.
Collapse
Affiliation(s)
- Stéphanie Sherpa
- CNRSLECAUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| | - Laurence Després
- CNRSLECAUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| |
Collapse
|
18
|
Yue L, Cao LJ, Chen JC, Gong YJ, Lin YH, Hoffmann AA, Wei SJ. Low levels of genetic differentiation with isolation by geography and environment in populations of Drosophila melanogaster from across China. Heredity (Edinb) 2021; 126:942-954. [PMID: 33686193 PMCID: PMC8178374 DOI: 10.1038/s41437-021-00419-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
The fruit fly, Drosophila melanogaster, is a model species in evolutionary studies. However, population processes of this species in East Asia are poorly studied. Here we examined the population genetic structure of D. melanogaster across China. There were 14 mitochondrial haplotypes with 10 unique ones out of 23 known from around the globe. Pairwise FST values estimated from 15 novel microsatellites ranged from 0 to 0.11, with geographically isolated populations showing the highest level of genetic uniqueness. STRUCTURE analysis identified high levels of admixture at both the individual and population levels. Mantel tests indicated a strong association between genetic distance and geographical distance as well as environmental distance. Full redundancy analysis (RDA) showed that independent effects of environmental conditions and geography accounted for 62.10% and 31.58% of the total explained genetic variance, respectively. When geographic variables were constrained in a partial RDA analysis, the environmental variables bio2 (mean diurnal air temperature range), bio13 (precipitation of the wettest month), and bio15 (precipitation seasonality) were correlated with genetic distance. Our study suggests that demographic history, geographical isolation, and environmental factors have together shaped the population genetic structure of D. melanogaster after its introduction into China.
Collapse
Affiliation(s)
- Lei Yue
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jun Gong
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yan-Hao Lin
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China ,International Department of Beijing No. 80 High School, Beijing, China
| | - Ary Anthony Hoffmann
- grid.1008.90000 0001 2179 088XBio21 Institute, School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Shu-Jun Wei
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
19
|
Schmidt TL, Swan T, Chung J, Karl S, Demok S, Yang Q, Field MA, Muzari MO, Ehlers G, Brugh M, Bellwood R, Horne P, Burkot TR, Ritchie S, Hoffmann AA. Spatial population genomics of a recent mosquito invasion. Mol Ecol 2021; 30:1174-1189. [PMID: 33421231 DOI: 10.1111/mec.15792] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Population genomic approaches can characterize dispersal across a single generation through to many generations in the past, bridging the gap between individual movement and intergenerational gene flow. These approaches are particularly useful when investigating dispersal in recently altered systems, where they provide a way of inferring long-distance dispersal between newly established populations and their interactions with existing populations. Human-mediated biological invasions represent such altered systems which can be investigated with appropriate study designs and analyses. Here we apply temporally restricted sampling and a range of population genomic approaches to investigate dispersal in a 2004 invasion of Aedes albopictus (the Asian tiger mosquito) in the Torres Strait Islands (TSI) of Australia. We sampled mosquitoes from 13 TSI villages simultaneously and genotyped 373 mosquitoes at genome-wide single nucleotide polymorphisms (SNPs): 331 from the TSI, 36 from Papua New Guinea (PNG) and four incursive mosquitoes detected in uninvaded regions. Within villages, spatial genetic structure varied substantially but overall displayed isolation by distance and a neighbourhood size of 232-577. Close kin dyads revealed recent movement between islands 31-203 km apart, and deep learning inferences showed incursive Ae. albopictus had travelled to uninvaded regions from both adjacent and nonadjacent islands. Private alleles and a co-ancestry matrix indicated direct gene flow from PNG into nearby islands. Outlier analyses also detected four linked alleles introgressed from PNG, with the alleles surrounding 12 resistance-associated cytochrome P450 genes. By treating dispersal as both an intergenerational process and a set of discrete events, we describe a highly interconnected invasive system.
Collapse
Affiliation(s)
- Thomas L Schmidt
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Tom Swan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD, Australia
| | - Jessica Chung
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia.,Melbourne Bioinformatics, University of Melbourne, Parkville, VIC, Australia
| | - Stephan Karl
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Samuel Demok
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Matt A Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Mutizwa Odwell Muzari
- Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital & Health Services, Cairns, QLD, Australia
| | - Gerhard Ehlers
- Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital & Health Services, Cairns, QLD, Australia
| | - Mathew Brugh
- Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital & Health Services, Cairns, QLD, Australia
| | - Rodney Bellwood
- Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital & Health Services, Cairns, QLD, Australia
| | - Peter Horne
- Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital & Health Services, Cairns, QLD, Australia
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Scott Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD, Australia.,Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Shi P, Guo SK, Gao YF, Cao LJ, Gong YJ, Chen JC, Yue L, Li H, Hoffmann AA, Wei SJ. Variable resistance to spinetoram in populations of Thrips palmi across a small area unconnected to genetic similarity. Evol Appl 2020; 13:2234-2245. [PMID: 33005221 PMCID: PMC7513702 DOI: 10.1111/eva.12996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
The melon thrips, Thrips palmi, is an increasingly important pest of vegetables in northern China. Some populations have developed resistance in the field to the insecticide spinetoram. Understanding the origin and dispersal of insecticide-resistant populations can shed light on resistance management strategies. In this study, we tested susceptibility of seven greenhouse populations of T. palmi to spinetoram collected from a small area of about 300 km2 in Shandong Province and examined population genetic structure across the area based on a segment of mitochondrial cox1 gene and 22 microsatellite loci to infer the possible origin and dispersal of insecticide resistance. Levels of resistance to spinetoram differed among seven populations, which included one population with high resistance (LC50 = 759.34 mg/L), three populations with medium resistance (LC50 ranged from 28.69 to 34.79 mg/L), and three populations with low resistance (LC50 ranged from 7.61 to 8.97 mg/L). The populations were genetically differentiated into two groups unrelated to both levels of resistance and geographic distance. The molecular data indicated high levels of gene flow between populations with different levels of resistance to spinetoram and low gene flow among populations with the same level of resistance, pointing to a likely separate history of resistance evolution. Resistance levels of two tested populations to spinetoram decreased 23 and 4.6 times after five generations without any exposure to the pesticide. We therefore suspect that resistance of T. palmi most likely evolved in response to local applications of the insecticide. Our study suggests that the development of resistance could be avoided or resistance even reversed by reducing usage of spinetoram.
Collapse
Affiliation(s)
- Pan Shi
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant Protection China Agricultural University Beijing China
| | - Shao-Kun Guo
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Yong-Fu Gao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Ya-Jun Gong
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Jin-Cui Chen
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Lei Yue
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant Protection China Agricultural University Beijing China
| | - Ary Anthony Hoffmann
- School of BioSciences Bio21 Institute The University of Melbourne Melbourne VIC Australia
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant Protection China Agricultural University Beijing China
| |
Collapse
|
21
|
From Nucleotides to Satellite Imagery: Approaches to Identify and Manage the Invasive Pathogen Xylella fastidiosa and Its Insect Vectors in Europe. SUSTAINABILITY 2020. [DOI: 10.3390/su12114508] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological invasions represent some of the most severe threats to local communities and ecosystems. Among invasive species, the vector-borne pathogen Xylella fastidiosa is responsible for a wide variety of plant diseases and has profound environmental, social and economic impacts. Once restricted to the Americas, it has recently invaded Europe, where multiple dramatic outbreaks have highlighted critical challenges for its management. Here, we review the most recent advances on the identification, distribution and management of X. fastidiosa and its insect vectors in Europe through genetic and spatial ecology methodologies. We underline the most important theoretical and technological gaps that remain to be bridged. Challenges and future research directions are discussed in the light of improving our understanding of this invasive species, its vectors and host–pathogen interactions. We highlight the need of including different, complimentary outlooks in integrated frameworks to substantially improve our knowledge on invasive processes and optimize resources allocation. We provide an overview of genetic, spatial ecology and integrated approaches that will aid successful and sustainable management of one of the most dangerous threats to European agriculture and ecosystems.
Collapse
|