1
|
Lucek K, Flury JM, Willi Y. Genomic implications of the repeated shift to self-fertilization across a species' geographic distribution. J Hered 2025; 116:43-53. [PMID: 39171640 DOI: 10.1093/jhered/esae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
The ability to self-fertilize often varies among closely related hermaphroditic plant species, though, variation can also exist within species. In the North American Arabidopsis lyrata, the shift from self-incompatibility (SI) to selfing established in multiple regions independently, mostly since recent postglacial range expansion. This has made the species an ideal model for the investigation of the genomic basis of the breakdown of SI and its population genetic consequences. By comparing nearby selfing and outcrossing populations across the entire species' geographic distribution, we investigated variation at the self-incompatibility (S-)locus and across the genome. Furthermore, a diallel crossing experiment on one mixed-mating population was performed to gain insight into the inheritance of mating system variation. We confirmed that the breakdown of SI had evolved in several S-locus backgrounds. The diallel suggested the involvement of biparental contributions with dominance relations. Though, the population-level genome-wide association study did not single out clear-cut candidate genes but several regions with one near the S-locus. On the implication side, selfing as compared to outcrossing populations had less than half of the genomic diversity, while the number and length of runs of homozygosity (ROHs) scaled with the degree of inbreeding. Selfing populations with a history of long expansion had the longest ROHs. The results highlight that mating system shift to selfing, its genetic underpinning and the likely negative genomic consequences for evolutionary potential can be strongly interlinked with past range dynamics.
Collapse
Affiliation(s)
- Kay Lucek
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Jana M Flury
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Maenosono T, Isono K, Kuronuma T, Hatai M, Chimura K, Kubo KI, Kokubun H, Greppi JA, Watanabe H, Uehara K, Tsuchimatsu T. Exploring the Allelic Diversity of the Self-Incompatibility Gene Across Natural Populations in Petunia (Solanaceae). Genome Biol Evol 2024; 16:evae270. [PMID: 39673752 DOI: 10.1093/gbe/evae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
Self-incompatibility (SI) is a genetic mechanism to prevent self-fertilization and thereby promote outcrossing in hermaphroditic plant species through discrimination of self and nonself-pollen by pistils. In many SI systems, recognition between pollen and pistils is controlled by a single multiallelic locus (called the S-locus), in which multiple alleles (called S-alleles) are segregating. Because of the extreme level of polymorphism of the S-locus, identification of S-alleles has been a major issue in many SI studies for decades. Here, we report an RNA-seq-based method to explore allelic diversity of the S-locus by employing the long-read sequencing technology of the Oxford Nanopore MinION and applied it for the gametophytic SI system of Petunia (Solanaceae), in which the female determinant is a secreted ribonuclease called S-RNase that inhibits the elongation of self-pollen tubes by degrading RNA. We developed a method to identify S-alleles by the search of S-RNase sequences, using the previously reported sequences as queries, and found in total 62 types of S-RNase including 45 novel types. We validated this method through Sanger sequencing and crossing experiments, confirming the sequencing accuracy and SI phenotypes corresponding to genotypes. Then, using the obtained sequence data together with polymerase chain reaction-based genotyping in a larger sample set of 187 plants, we investigated the diversity, frequency, and the level of shared polymorphism of S-alleles across populations and species. The method and the dataset obtained in Petunia will be an important basis for further studying the evolution of S-RNase-based gametophytic SI systems in natural populations.
Collapse
Affiliation(s)
- Taiga Maenosono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
- Graduate School of Science and Technology, Chiba University, Chiba 263-8522, Japan
| | - Kazuho Isono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| | - Takanori Kuronuma
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa 277-0882, Japan
| | - Miho Hatai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| | - Kaori Chimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| | - Ken-Ichi Kubo
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Hisashi Kokubun
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | | | - Hitoshi Watanabe
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa 277-0882, Japan
| | - Koichi Uehara
- College of Liberal Arts and Sciences, Chiba University, Chiba 263-8522, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| |
Collapse
|
3
|
Le Veve A, Genete M, Lepers-Blassiau C, Ponitzki C, Poux C, Vekemans X, Durand E, Castric V. The genetic architecture of the load linked to dominant and recessive self-incompatibility alleles in Arabidopsis halleri and Arabidopsis lyrata. eLife 2024; 13:RP94972. [PMID: 39222005 PMCID: PMC11368402 DOI: 10.7554/elife.94972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The long-term balancing selection acting on mating types or sex-determining genes is expected to lead to the accumulation of deleterious mutations in the tightly linked chromosomal segments that are locally 'sheltered' from purifying selection. However, the factors determining the extent of this accumulation are poorly understood. Here, we took advantage of variations in the intensity of balancing selection along a dominance hierarchy formed by alleles at the sporophytic self-incompatibility system of the Brassicaceae to compare the pace at which linked deleterious mutations accumulate among them. We first experimentally measured the phenotypic manifestation of the linked load at three different levels of the dominance hierarchy. We then sequenced and phased polymorphisms in the chromosomal regions linked to 126 distinct copies of S-alleles in two populations of Arabidopsis halleri and three populations of Arabidopsis lyrata. We find that linkage to the S-locus locally distorts phylogenies over about 10-30 kb along the chromosome. The more intense balancing selection on dominant S-alleles results in greater fixation of linked deleterious mutations, while recessive S-alleles accumulate more linked deleterious mutations that are segregating. Hence, the structure rather than the overall magnitude of the linked genetic load differs between dominant and recessive S-alleles. Our results have consequences for the long-term evolution of new S-alleles, the evolution of dominance modifiers between them, and raise the question of why the non-recombining regions of some sex and mating type chromosomes expand over evolutionary times while others, such as the S-locus of the Brassicaceae, remain restricted to small chromosomal regions.
Collapse
Affiliation(s)
| | | | | | | | - Céline Poux
- Univ. Lille, CNRS, UMR 8198 – Evo-Eco-PaleoLilleFrance
| | | | | | | |
Collapse
|
4
|
Zhang D, Li YY, Zhao X, Zhang C, Liu DK, Lan S, Yin W, Liu ZJ. Molecular insights into self-incompatibility systems: From evolution to breeding. PLANT COMMUNICATIONS 2024; 5:100719. [PMID: 37718509 PMCID: PMC10873884 DOI: 10.1016/j.xplc.2023.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weilun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Clavé C, Dheur S, Ament-Velásquez SL, Granger-Farbos A, Saupe SJ. het-B allorecognition in Podospora anserina is determined by pseudo-allelic interaction of genes encoding a HET and lectin fold domain protein and a PII-like protein. PLoS Genet 2024; 20:e1011114. [PMID: 38346076 PMCID: PMC10890737 DOI: 10.1371/journal.pgen.1011114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Filamentous fungi display allorecognition genes that trigger regulated cell death (RCD) when strains of unlike genotype fuse. Podospora anserina is one of several model species for the study of this allorecognition process termed heterokaryon or vegetative incompatibility. Incompatibility restricts transmission of mycoviruses between isolates. In P. anserina, genetic analyses have identified nine incompatibility loci, termed het loci. Here we set out to clone the genes controlling het-B incompatibility. het-B displays two incompatible alleles, het-B1 and het-B2. We find that the het-B locus encompasses two adjacent genes, Bh and Bp that exist as highly divergent allelic variants (Bh1/Bh2 and Bp1/Bp2) in the incompatible haplotypes. Bh encodes a protein with an N-terminal HET domain, a cell death inducing domain bearing homology to Toll/interleukin-1 receptor (TIR) domains and a C-terminal domain with a predicted lectin fold. The Bp product is homologous to PII-like proteins, a family of small trimeric proteins acting as sensors of adenine nucleotides in bacteria. We show that although the het-B system appears genetically allelic, incompatibility is in fact determined by the non-allelic Bh1/Bp2 interaction while the reciprocal Bh2/Bp1 interaction plays no role in incompatibility. The highly divergent C-terminal lectin fold domain of BH determines recognition specificity. Population studies and genome analyses indicate that het-B is under balancing selection with trans-species polymorphism, highlighting the evolutionary significance of the two incompatible haplotypes. In addition to emphasizing anew the central role of TIR-like HET domains in fungal RCD, this study identifies novel players in fungal allorecognition and completes the characterization of the entire het gene set in that species.
Collapse
Affiliation(s)
- Corinne Clavé
- IBGC, UMR 5095, CNRS-Université de Bordeaux, Bordeaux, France
| | - Sonia Dheur
- IBGC, UMR 5095, CNRS-Université de Bordeaux, Bordeaux, France
| | | | | | - Sven J. Saupe
- IBGC, UMR 5095, CNRS-Université de Bordeaux, Bordeaux, France
| |
Collapse
|
6
|
Haghighatnia M, Machac A, Schmickl R, Lafon Placette C. Darwin's 'mystery of mysteries': the role of sexual selection in plant speciation. Biol Rev Camb Philos Soc 2023; 98:1928-1944. [PMID: 37337476 DOI: 10.1111/brv.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Sexual selection is considered one of the key processes that contribute to the emergence of new species. While the connection between sexual selection and speciation has been supported by comparative studies, the mechanisms that mediate this connection remain unresolved, especially in plants. Similarly, it is not clear how speciation processes within plant populations translate into large-scale speciation dynamics. Here, we review the mechanisms through which sexual selection, pollination, and mate choice unfold and interact, and how they may ultimately produce reproductive isolation in plants. We also overview reproductive strategies that might influence sexual selection in plants and illustrate how functional traits might connect speciation at the population level (population differentiation, evolution of reproductive barriers; i.e. microevolution) with evolution above the species level (macroevolution). We also identify outstanding questions in the field, and suitable data and tools for their resolution. Altogether, this effort motivates further research focused on plants, which might potentially broaden our general understanding of speciation by sexual selection, a major concept in evolutionary biology.
Collapse
Affiliation(s)
- Mohammadjavad Haghighatnia
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Antonin Machac
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
| |
Collapse
|
7
|
Nasrallah JB. Stop and go signals at the stigma-pollen interface of the Brassicaceae. PLANT PHYSIOLOGY 2023; 193:927-948. [PMID: 37423711 PMCID: PMC10517188 DOI: 10.1093/plphys/kiad301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Affiliation(s)
- June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Li Y, Mamonova E, Köhler N, van Kleunen M, Stift M. Breakdown of self-incompatibility due to genetic interaction between a specific S-allele and an unlinked modifier. Nat Commun 2023; 14:3420. [PMID: 37296115 PMCID: PMC10256779 DOI: 10.1038/s41467-023-38802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Breakdown of self-incompatibility has frequently been attributed to loss-of-function mutations of alleles at the locus responsible for recognition of self-pollen (i.e. the S-locus). However, other potential causes have rarely been tested. Here, we show that self-compatibility of S1S1-homozygotes in selfing populations of the otherwise self-incompatible Arabidopsis lyrata is not due to S-locus mutation. Between-breeding-system cross-progeny are self-compatible if they combine S1 from the self-compatible cross-partner with recessive S1 from the self-incompatible cross-partner, but self-incompatible with dominant S-alleles. Because S1S1 homozygotes in outcrossing populations are self-incompatible, mutation of S1 cannot explain self-compatibility in S1S1 cross-progeny. This supports the hypothesis that an S1-specific modifier unlinked to the S-locus causes self-compatibility by functionally disrupting S1. Self-compatibility in S19S19 homozygotes may also be caused by an S19-specific modifier, but we cannot rule out a loss-of-function mutation of S19. Taken together, our findings indicate that breakdown of self-incompatibility is possible without disruptive mutations at the S-locus.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.
| | - Ekaterina Mamonova
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Nadja Köhler
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.
| |
Collapse
|
9
|
Hongo JA, de Castro GM, Albuquerque Menezes AP, Rios Picorelli AC, Martins da Silva TT, Imada EL, Marchionni L, Del-Bem LE, Vieira Chaves A, Almeida GMDF, Campelo F, Lobo FP. CALANGO: A phylogeny-aware comparative genomics tool for discovering quantitative genotype-phenotype associations across species. PATTERNS (NEW YORK, N.Y.) 2023; 4:100728. [PMID: 37409050 PMCID: PMC10318336 DOI: 10.1016/j.patter.2023.100728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 03/15/2023] [Indexed: 07/07/2023]
Abstract
Living species vary significantly in phenotype and genomic content. Sophisticated statistical methods linking genes with phenotypes within a species have led to breakthroughs in complex genetic diseases and genetic breeding. Despite the abundance of genomic and phenotypic data available for thousands of species, finding genotype-phenotype associations across species is challenging due to the non-independence of species data resulting from common ancestry. To address this, we present CALANGO (comparative analysis with annotation-based genomic components), a phylogeny-aware comparative genomics tool to find homologous regions and biological roles associated with quantitative phenotypes across species. In two case studies, CALANGO identified both known and previously unidentified genotype-phenotype associations. The first study revealed unknown aspects of the ecological interaction between Escherichia coli, its integrated bacteriophages, and the pathogenicity phenotype. The second identified an association between maximum height in angiosperms and the expansion of a reproductive mechanism that prevents inbreeding and increases genetic diversity, with implications for conservation biology and agriculture.
Collapse
Affiliation(s)
- Jorge Augusto Hongo
- Instituto de Computação, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-872, Brazil
| | - Giovanni Marques de Castro
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Alison Pelri Albuquerque Menezes
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Agnello César Rios Picorelli
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thieres Tayroni Martins da Silva
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Eddie Luidy Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luiz-Eduardo Del-Bem
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Anderson Vieira Chaves
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gabriel Magno de Freitas Almeida
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Felipe Campelo
- Department of Computer Science, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| | - Francisco Pereira Lobo
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
10
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
11
|
Origin and persistence of polymorphism in loci targeted by disassortative preference: a general model. J Math Biol 2022; 86:4. [PMID: 36441252 DOI: 10.1007/s00285-022-01832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The emergence and persistence of polymorphism within populations generally requires specific regimes of natural or sexual selection. Here, we develop a unified theoretical framework to explore how polymorphism at targeted loci can be generated and maintained by either disassortative mating choice or balancing selection due to, for example, heterozygote advantage. To this aim, we model the dynamics of alleles at a single locus A in a population of haploid individuals, where reproductive success depends on the combination of alleles carried by the parents at locus A. Our theoretical study of the model confirms that the conditions for the persistence of a given level of allelic polymorphism depend on the relative reproductive advantages among pairs of individuals. Interestingly, equilibria with unbalanced allelic frequencies were shown to emerge from successive introduction of mutants. We then investigate the role of the function linking allelic divergence to reproductive advantage on the evolutionary fate of alleles within the population. Our results highlight the significance of the shape of this function for both the number of alleles maintained and their level of genetic divergence. Large number of alleles are maintained with substantial replacement of alleles, when disassortative advantage slowly increases with allelic differentiation . In contrast, few highly differentiated alleles are predicted to be maintained when genetic differentiation has a strong effect on disassortative advantage. These opposite effects predicted by our model explain how disassortative mate choice may lead to various levels of allelic differentiation and polymorphism, and shed light on the effect of mate preferences on the persistence of balanced and unbalanced polymorphism in natural population.
Collapse
|
12
|
Czuppon P, Billiard S. Revisiting the number of self-incompatibility alleles in finite populations: From old models to new results. J Evol Biol 2022; 35:1296-1308. [PMID: 35852940 DOI: 10.1111/jeb.14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/26/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022]
Abstract
Under gametophytic self-incompatibility (GSI), plants are heterozygous at the self-incompatibility locus (S-locus) and can only be fertilized by pollen with a different allele at that locus. The last century has seen a heated debate about the correct way of modelling the allele diversity in a GSI population that was never formally resolved. Starting from an individual-based model, we derive the deterministic dynamics as proposed by Fisher (The genetical theory of natural selection - A complete, Variorum edition, Oxford University Press, 1958) and compute the stationary S-allele frequency distribution. We find that the stationary distribution proposed by Wright (Evolution, 18, 609, 1964) is close to our theoretical prediction, in line with earlier numerical confirmation. Additionally, we approximate the invasion probability of a new S-allele, which scales inversely with the number of resident S-alleles. Lastly, we use the stationary allele frequency distribution to estimate the population size of a plant population from an empirically obtained allele frequency spectrum, which complements the existing estimator of the number of S-alleles. Our expression of the stationary distribution resolves the long-standing debate about the correct approximation of the number of S-alleles and paves the way for new statistical developments for the estimation of the plant population size based on S-allele frequencies.
Collapse
Affiliation(s)
- Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | |
Collapse
|
13
|
Abhinandan K, Sankaranarayanan S, Macgregor S, Goring DR, Samuel MA. Cell-cell signaling during the Brassicaceae self-incompatibility response. TRENDS IN PLANT SCIENCE 2022; 27:472-487. [PMID: 34848142 DOI: 10.1016/j.tplants.2021.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Self-incompatibility (SI) is a mechanism that many plant families employ to prevent self-fertilization. In the Brassicaceae, the S-haplotype-specific interaction of the pollen-borne ligand, and a stigma-specific receptor protein kinase triggers a signaling cascade that culminates in the rejection of self-pollen. While the upstream molecular components at the receptor level of the signaling pathway have been extensively studied, the intracellular responses beyond receptor activation were not as well understood. Recent research has uncovered several key molecules and signaling events that operate in concert for the manifestation of the self-incompatible responses in Brassicaceae stigmas. Here, we review the recent discoveries in both the compatible and self-incompatible pathways and provide new perspectives on the early stages of Brassicaceae pollen-pistil interactions.
Collapse
Affiliation(s)
- Kumar Abhinandan
- University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada; 20/20 Seed Labs Inc., Nisku, Alberta T9E 7N5, Canada
| | | | - Stuart Macgregor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Daphne R Goring
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Marcus A Samuel
- University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
14
|
Macgregor SR, Lee HK, Nelles H, Johnson DC, Zhang T, Ma C, Goring DR. Autophagy is required for self-incompatible pollen rejection in two transgenic Arabidopsis thaliana accessions. PLANT PHYSIOLOGY 2022; 188:2073-2084. [PMID: 35078230 PMCID: PMC8969033 DOI: 10.1093/plphys/kiac026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 05/16/2023]
Abstract
Successful reproduction in the Brassicaceae is mediated by a complex series of interactions between the pollen and the pistil, and some species have an additional layer of regulation with the self-incompatibility trait. While the initial activation of the self-incompatibility pathway by the pollen S-locus protein 11/S locus cysteine-rich protein and the stigma S Receptor Kinase is well characterized, the downstream mechanisms causing self-pollen rejection are still not fully understood. In previous studies, we detected the presence of autophagic bodies with self-incompatible (SI) pollinations in Arabidopsis lyrata and transgenic Arabidopsis thaliana lines, but whether autophagy was essential for self-pollen rejection was unknown. Here, we investigated the requirement of autophagy in this response by crossing mutations in the essential AUTOPHAGY7 (ATG7) and ATG5 genes into two different transgenic SI A. thaliana lines in the Col-0 and C24 accessions. By using these previously characterized transgenic lines that express A. lyrata and Arabidopsis halleri self-incompatibility genes, we demonstrated that disrupting autophagy weakened their SI responses in the stigma. When the atg7 or atg5 mutations were present, an increased number of SI pollen was found to hydrate and form pollen tubes that successfully fertilized the SI pistils. Additionally, we confirmed the presence of GFP-ATG8a-labeled autophagosomes in the stigmatic papillae following SI pollinations. Together, these findings support the requirement of autophagy in the self-incompatibility response and add to the growing understanding of the intracellular mechanisms employed in the transgenic A. thaliana stigmas to reject self-pollen.
Collapse
Affiliation(s)
- Stuart R Macgregor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | | | - Hayley Nelles
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Daniel C Johnson
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Tong Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
15
|
De Cauwer I, Vernet P, Billiard S, Godé C, Bourceaux A, Ponitzki C, Saumitou-Laprade P. Widespread coexistence of self-compatible and self-incompatible phenotypes in a diallelic self-incompatibility system in Ligustrum vulgare (Oleaceae). Heredity (Edinb) 2021; 127:384-392. [PMID: 34482370 PMCID: PMC8479060 DOI: 10.1038/s41437-021-00463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The breakdown of self-incompatibility (SI) in angiosperms is one of the most commonly observed evolutionary transitions. While multiple examples of SI breakdown have been documented in natural populations, there is strikingly little evidence of stable within-population polymorphism with both inbreeding (self-compatible) and outcrossing (self-incompatible) individuals. This absence of breeding system polymorphism corroborates theoretical expectations that predict that in/outbreeding polymorphism is possible only under very restricted conditions. However, theory also predicts that a diallelic sporophytic SI system should facilitate the maintenance of such polymorphism. We tested this prediction by studying the breeding system of Ligustrum vulgare L., an insect-pollinated hermaphroditic species of the Oleaceae family. Using stigma tests with controlled pollination and paternity assignment of open-pollinated progenies, we confirmed the existence of two self-incompatibility groups in this species. We also demonstrated the occurrence of self-compatible individuals in different populations of Western Europe arising from a mutation affecting the functioning of the pollen component of SI. Our results show that the observed low frequency of self-compatible individuals in natural populations is compatible with theoretical predictions only if inbreeding depression is very high.
Collapse
Affiliation(s)
- Isabelle De Cauwer
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Philippe Vernet
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Sylvain Billiard
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Cécile Godé
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Angélique Bourceaux
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Chloé Ponitzki
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Pierre Saumitou-Laprade
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| |
Collapse
|
16
|
Žerdoner Čalasan A, Hurka H, German DA, Pfanzelt S, Blattner FR, Seidl A, Neuffer B. Pleistocene dynamics of the Eurasian steppe as a driving force of evolution: Phylogenetic history of the genus Capsella (Brassicaceae). Ecol Evol 2021; 11:12697-12713. [PMID: 34594532 PMCID: PMC8462161 DOI: 10.1002/ece3.8015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/06/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Capsella is a model plant genus of the Brassicaceae closely related to Arabidopsis. To disentangle its biogeographical history and intrageneric phylogenetic relationships, 282 individuals of all five currently recognized Capsella species were genotyped using a restriction digest-based next-generation sequencing method. Our analysis retrieved two main lineages within Capsella that split c. one million years ago, with western C. grandiflora and C. rubella forming a sister lineage to the eastern lineage consisting of C. orientalis. The split was attributed to continuous latitudinal displacements of the Eurasian steppe belt to the south during Early Pleistocene glacial cycles. During the interglacial cycles of the Late Pleistocene, hybridization of the two lineages took place in the southwestern East European Plain, leading to the allotetraploid C. bursa-pastoris. Extant genetic variation within C. orientalis postdated any extensive glacial events. Ecological niche modeling showed that suitable habitat for C. orientalis existed during the Last Glacial Maximum around the north coast of the Black Sea and in southern Kazakhstan. Such a scenario is also supported by population genomic data that uncovered the highest genetic diversity in the south Kazakhstan cluster, suggesting that C. orientalis originated in continental Asia and migrated north- and possibly eastwards after the last ice age. Post-glacial hybridization events between C. bursa-pastoris and C. grandiflora/rubella in the southwestern East European Plain and the Mediterranean gave rise to C. thracica. Introgression of C. grandiflora/rubella into C. bursa-pastoris resulted in a new Mediterranean cluster within the already existing Eurasian C. bursa-pastoris cluster. This study shows that the continuous displacement and disruption of the Eurasian steppe belt during the Pleistocene was the driving force in the evolution of Capsella.
Collapse
Affiliation(s)
| | - Herbert Hurka
- Department 5: Biology/Chemistry, BotanyUniversity of OsnabrückOsnabrückGermany
| | - Dmitry A. German
- South‐Siberian Botanical GardenAltai State UniversityBarnaulRussia
| | - Simon Pfanzelt
- Experimental TaxonomyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Seeland‐GaterslebenGermany
- Munich Botanical GardenMünchenGermany
| | - Frank R. Blattner
- Experimental TaxonomyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Seeland‐GaterslebenGermany
| | - Anna Seidl
- Institute of BotanyDepartment of Integrative Biology and Biodiversity ResearchUniversity of Natural Resources and Life SciencesVienna (BOKU)Austria
| | - Barbara Neuffer
- Department 5: Biology/Chemistry, BotanyUniversity of OsnabrückOsnabrückGermany
| |
Collapse
|
17
|
Frazee LJ, Rifkin J, Maheepala DC, Grant AG, Wright S, Kalisz S, Litt A, Spigler R. New genomic resources and comparative analyses reveal differences in floral gene expression in selfing and outcrossing Collinsia sister species. G3 (BETHESDA, MD.) 2021; 11:jkab177. [PMID: 34014319 PMCID: PMC8496223 DOI: 10.1093/g3journal/jkab177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
The evolutionary transition from outcross- to self-fertilization is one of the most common in angiosperms and is often associated with a parallel shift in floral morphological and developmental traits, such as reduced flower size and pollen to ovule ratios, known as the "selfing syndrome." How these convergent phenotypes arise, the extent to which they are shaped by selection, and the nature of their underlying genetic basis are unsettled questions in evolutionary biology. The genus Collinsia (Plantaginaceae) includes seven independent transitions from outcrossing or mixed mating to high selfing rates accompanied by selfing syndrome traits. Accordingly, Collinsia represents an ideal system for investigating this parallelism, but requires genomic resource development. We present a high quality de novo genome assembly for the highly selfing species Collinsia rattanii. To begin addressing the basis of selfing syndrome developmental shifts, we evaluate and contrast patterns of gene expression from floral transcriptomes across three stages of bud development for C. rattanii and its outcrossing sister species Collinsia linearis. Relative to C. linearis, total gene expression is less variable among individuals and bud stages in C. rattanii. In addition, there is a common pattern among differentially expressed genes: lower expression levels that are more constant across bud development in C. rattanii relative to C. linearis. Transcriptional regulation of enzymes involved in pollen formation specifically in early bud development may influence floral traits that distinguish selfing and outcrossing Collinsia species through pleiotropic functions. Future work will include additional Collinsia outcrossing-selfing species pairs to identify genomic signatures of parallel evolution.
Collapse
Affiliation(s)
- Lauren J Frazee
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Joanna Rifkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S, Canada
| | - Dinusha C Maheepala
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Alannie-Grace Grant
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Stephen Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S, Canada
| | - Susan Kalisz
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachel Spigler
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
18
|
Vekemans X, Castric V, Hipperson H, Müller NA, Westerdahl H, Cronk Q. Whole-genome sequencing and genome regions of special interest: Lessons from major histocompatibility complex, sex determination, and plant self-incompatibility. Mol Ecol 2021; 30:6072-6086. [PMID: 34137092 PMCID: PMC9290700 DOI: 10.1111/mec.16020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/27/2022]
Abstract
Whole‐genome sequencing of non‐model organisms is now widely accessible and has allowed a range of questions in the field of molecular ecology to be investigated with greater power. However, some genomic regions that are of high biological interest remain problematic for assembly and data‐handling. Three such regions are the major histocompatibility complex (MHC), sex‐determining regions (SDRs) and the plant self‐incompatibility locus (S‐locus). Using these as examples, we illustrate the challenges of both assembling and resequencing these highly polymorphic regions and how bioinformatic and technological developments are enabling new approaches to their study. Mapping short‐read sequences against multiple alternative references improves genotyping comprehensiveness at the S‐locus thereby contributing to more accurate assessments of allelic frequencies. Long‐read sequencing, producing reads of several tens to hundreds of kilobase pairs in length, facilitates the assembly of such regions as single sequences can span the multiple duplicated gene copies of the MHC region, and sequence through repetitive stretches and translocations in SDRs and S‐locus haplotypes. These advances are adding value to short‐read genome resequencing approaches by allowing, for example, more accurate haplotype phasing across longer regions. Finally, we assessed further technical improvements, such as nanopore adaptive sequencing and bioinformatic tools using pangenomes, which have the potential to further expand our knowledge of a number of genomic regions that remain challenging to study with classical resequencing approaches.
Collapse
Affiliation(s)
| | | | - Helen Hipperson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Helena Westerdahl
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, Lund, Sweden
| | - Quentin Cronk
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Villoutreix R, Ayala D, Joron M, Gompert Z, Feder JL, Nosil P. Inversion breakpoints and the evolution of supergenes. Mol Ecol 2021; 30:2738-2755. [PMID: 33786937 PMCID: PMC7614923 DOI: 10.1111/mec.15907] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/04/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The coexistence of discrete morphs that differ in multiple traits is common within natural populations of many taxa. Such morphs are often associated with chromosomal inversions, presumably because the recombination suppressing effects of inversions help maintain alternate adaptive combinations of alleles across the multiple loci affecting these traits. However, inversions can also harbour selected mutations at their breakpoints, leading to their rise in frequency in addition to (or independent from) their role in recombination suppression. In this review, we first describe the different ways that breakpoints can create mutations. We then critically examine the evidence for the breakpoint-mutation and recombination suppression hypotheses for explaining the existence of discrete morphs associated with chromosomal inversions. We find that the evidence that inversions are favoured due to recombination suppression is often indirect. The evidence that breakpoints harbour mutations that are adaptive is also largely indirect, with the characterization of inversion breakpoints at the sequence level being incomplete in most systems. Direct tests of the role of suppressed recombination and breakpoint mutations in inversion evolution are thus needed. Finally, we emphasize how the two hypotheses of recombination suppression and breakpoint mutation can act in conjunction, with implications for understanding the emergence of supergenes and their evolutionary dynamics. We conclude by discussing how breakpoint characterization could improve our understanding of complex, discrete phenotypic forms in nature.
Collapse
Affiliation(s)
- Romain Villoutreix
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier
3, Montpellier 34293, France
| | - Diego Ayala
- UMR MIVEGEC, Univ. Montpellier, CNRS, IRD, 34934 Montpellier, France
| | - Mathieu Joron
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier
3, Montpellier 34293, France
| | | | - Jeffrey L. Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame,
Indiana 46556, USA
| | - Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier
3, Montpellier 34293, France
| |
Collapse
|
20
|
Furumizu C, Sawa S. The RGF/GLV/CLEL Family of Short Peptides Evolved Through Lineage-Specific Losses and Diversification and Yet Conserves Its Signaling Role Between Vascular Plants and Bryophytes. FRONTIERS IN PLANT SCIENCE 2021; 12:703012. [PMID: 34354727 PMCID: PMC8329595 DOI: 10.3389/fpls.2021.703012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Short secreted plant peptides act as key signaling molecules and control a plethora of developmental and physiological processes. The ROOT GROWTH FACTOR (RGF)/GOLVEN (GLV)/CLE-Like (CLEL) family of peptides was discovered to be involved in root development in Arabidopsis thaliana. In contrast to active research efforts, which have been revealing receptors and downstream signaling components, little attention has been paid to evolutionary processes that shaped the RGF signaling system as we know it in angiosperms today. As a first step toward understanding how RGF signaling emerged and evolved, this study aimed to elucidate the phylogenetic distribution and functional conservation of RGF-like sequences. Using publicly available, genome and transcriptome data, RGF-like sequences were searched in 27 liverworts, 22 mosses, 8 hornworts, 23 lycophytes, 23 ferns, 38 gymnosperms, and 8 angiosperms. This led to the identification of more than four hundreds of RGF-like sequences in all major extant land plant lineages except for hornworts. Sequence comparisons within and between taxonomic groups identified lineage-specific characters. Notably, one of the two major RGF subgroups, represented by A. thaliana RGF6/GLV1/CLEL6, was found only in vascular plants. This subgroup, therefore, likely emerged in a common ancestor of vascular plants after its divergence from bryophytes. In bryophytes, our results infer independent losses of RGF-like sequences in mosses and hornworts. On the other hand, a single, highly similar RGF-like sequence is conserved in liverworts, including Marchantia polymorpha, a genetically tractable model species. When constitutively expressed, the M. polymorpha RGF-like sequence (MpRGF) affected plant development and growth both in A. thaliana and M. polymorpha. This suggests that MpRGF can exert known RGF-like effects and that MpRGF is under transcriptional control so that its potent activities are precisely controlled. These data suggest that RGFs are conserved as signaling molecules in both vascular plants and bryophytes and that lineage-specific diversification has increased sequence variations of RGFs. All together, our findings form a basis for further studies into RGF peptides and their receptors, which will contribute to our understandings of how peptide signaling pathways evolve.
Collapse
|
21
|
Ferchaud AL, Laporte M, Wellenreuther M. From the woods to the halls of science: Louis Bernatchez's contributions to science, wildlife conservation and people. Evol Appl 2020; 13:1105-1116. [PMID: 32684949 PMCID: PMC7359837 DOI: 10.1111/eva.13043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Maren Wellenreuther
- School of Biological Sciences The University of Auckland Auckland New Zealand
- The New Zealand Institute for Plant and Food Research Ltd Nelson New Zealand
| |
Collapse
|