1
|
Adams N, Dias T, Skeen HR, Pegan T, Willard DE, Winger B, Ruegg K, Weeks BC, Bay R. Genetic and morphological shifts associated with climate change in a migratory bird. BMC Biol 2025; 23:3. [PMID: 39773181 PMCID: PMC11705884 DOI: 10.1186/s12915-024-02107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Rapid morphological change is emerging as a consequence of climate change in many systems. It is intuitive to hypothesize that temporal morphological trends are driven by the same selective pressures that have established well-known ecogeographic patterns over spatial environmental gradients (e.g., Bergman's and Allen's rules). However, mechanistic understanding of contemporary morphological shifts is lacking. RESULTS We combine morphological data and whole genome sequencing from a four-decade dataset in the migratory bird hermit thrush (Catharus guttatus) to test whether morphological shifts over time are accompanied by genetic change. Using genome-wide association, we identify alleles associated with body size, bill length, and wing length. Shifts in morphology and concordant shifts in morphology-associated alleles over time would support a genetic basis for the observed changes in morphology over recent decades, potentially an adaptive response to climate change. In our data, bill size decreases were paralleled by genetic shifts in bill size-associated alleles. On the other hand, alleles associated with body size showed no shift in frequency over time. CONCLUSIONS Together, our results show mixed support for evolutionary explanations of morphological response to climate change. Temporal shifts in alleles associated with bill size support the hypothesis that selection is driving temporal morphological trends. The lack of evidence for genetic shifts in body size alleles could be explained by a large role of plasticity or technical limitations associated with the likely polygenic architecture of body size, or both. Disentangling the mechanisms responsible for observed morphological response to changing environments will be vital for predicting future organismal and population responses to climate change.
Collapse
Affiliation(s)
- Nicole Adams
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tiffany Dias
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Heather R Skeen
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, 60605, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Teresa Pegan
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, 48109, USA
- Museum of Zoology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David E Willard
- Gantz Family Collection Center, Field Museum of Natural History, Chicago, IL, 60605, USA
| | - Ben Winger
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, 48109, USA
- Museum of Zoology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kristen Ruegg
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brian C Weeks
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rachael Bay
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Balog K, Wadday AS, Al-Hasan BA, Wanjala G, Kusza S, Fehér P, Stéger V, Bagi Z. MtDNA genetic diversity and phylogeographic insights into giant domestic pigeon (Columba livia domestica) breeds: connections between Central Europe and the Middle East. Poult Sci 2024; 103:104310. [PMID: 39306953 PMCID: PMC11458985 DOI: 10.1016/j.psj.2024.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 10/11/2024] Open
Abstract
Humans have selectively bred domestic pigeons (Columba livia domestica) to create breeds with a diversity of shapes, colors and other attributes. Since Darwin, the domestic pigeon has always been a popular model species for scientific research because of its richness of form, colouration and behaviour. It is believed that the world's squab pigeon industry uses breeds and hybrids from the Mediterranean region. An exception is the indigenous giant pigeon breeds of the Carpathian Basin, whose origin is not known. Therefore, our aims were 1) to understand the phylogenetic relationships of giant pigeons, which sheds light on the origin of Hungarian breeds and their relationship to the Mediterranean giant pigeon breed group; 2) to contribute molecular genetic data to the genealogy of 2 Iraqi pigeon breeds close to the pigeon domestication center, including the culturally important Iraqi Red Pigeon, and 3) to compare the genetic diversity of European and Middle Eastern domestic pigeon populations and to draw conclusions on the phylogenetic relationships between pigeon breeds and molecular clues to their different breeding practices of both regions. A 655-bp-long sequence of the cytochrome oxidase 1 (COI) region of the mitochondrial DNA was studied in a total of 276 pigeons (19 breeds). A total of 27 haplotypes were found, of which 22 were unique. The highest genetic diversity was found in the Carpathian Basin, and the lowest in the Iraqi region. STRUCTURE analysis revealed low structurality, K=3 was the most likely. The majority of the samples belong to the most ancient haplotype H_2=219, however the Jacobin pigeon is on a very separate evolutionary branch with a large number of mutations. None of the 19 breeds investigated in this study have been previously studied in phylogenetics, and most of these breeds have potential as squab pigeons, and have good meat forms for utilization, therefore the results of this study may also be of help to the squab pigeon industry.
Collapse
Affiliation(s)
- K Balog
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary; Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary
| | - A S Wadday
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032, Debrecen, Hungary
| | - B A Al-Hasan
- Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq; Department of Laboratory, Al-Najaf Veterinary Hospital, Najaf, Iraq; Department of Veterinary Microbiology, College of Veterinary Medicine, University of Al-Qadisiyah, Diwaniyah City, Iraq
| | - G Wanjala
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary; Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary; Institute of Animal Sciences and Wildlife Management, University of Szeged, Hungary
| | - Sz Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary
| | - P Fehér
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - V Stéger
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Z Bagi
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
3
|
Zhang R, Mu C, Chang L, Shen X, Bu Z, Yang M, Fu S, Tang Q, Liu P, Yang X. Whole-Genome Sequencing for Identifying Candidate Genes Related to the Special Phenotypes of the Taihu Dianzi Pigeon. Animals (Basel) 2024; 14:1047. [PMID: 38612286 PMCID: PMC11011069 DOI: 10.3390/ani14071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The Taihu Dianzi pigeon is a breed native to China, and its special piebalding, crest, and polydactyly phenotypes are the result of artificial and natural selection. Here, we analyzed the genetic differences among three kinds of pigeons with different phenotypes at the genomic level. A selective sweep was conducted based on the fixation index (FST) and nucleotide diversity (π) ratio, and the results revealed that MC1R was related to the formation of the distinctive piebalding of the Taihu Dianzi pigeon. Combined with the results of genome-wide association studies, we identified candidate genes associated with the crest (SMYD and STOX2) and polydactyly (SLC52A3 and ANGPT4). The candidate genes identified in this study and their variants may be useful for understanding the genetic mechanism underlying the special phenotypes of the Taihu Dianzi pigeon. This study provides new insights into the genetic factors that may influence the formation of the special piebalding, crest, and polydactyly characteristics in pigeons.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Chunyu Mu
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Lingling Chang
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Xinyue Shen
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Zhu Bu
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Mingjun Yang
- Henan Tiancheng Pigeon Industry Co., Ltd., Pingdingshan 462513, China; (M.Y.); (P.L.); (X.Y.)
| | - Shengyong Fu
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Qingping Tang
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Peiyao Liu
- Henan Tiancheng Pigeon Industry Co., Ltd., Pingdingshan 462513, China; (M.Y.); (P.L.); (X.Y.)
| | - Xiaoming Yang
- Henan Tiancheng Pigeon Industry Co., Ltd., Pingdingshan 462513, China; (M.Y.); (P.L.); (X.Y.)
| |
Collapse
|
4
|
Hou H, Wang X, Li X, Cai X, Tu Y, Yang C, Yao J. Genome-wide association study of growth traits and validation of key mutations (MSTN c.C861T) associated with the muscle mass of meat pigeons. Anim Genet 2024; 55:110-122. [PMID: 38069460 DOI: 10.1111/age.13382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024]
Abstract
Selective breeding of meat pigeons is primarily based on growth traits, especially muscle mass (MM). Identification of functional genes and molecular markers of growth and slaughter traits through a genome-wide association study (GWAS) will help to elucidate the underlying molecular mechanisms and provide a theoretical basis for the selective breeding of meat pigeons. The phenotypic data of body weight (BW) and body size (BS) of 556 meat pigeons at 52 and 80 weeks of age were collected. In total, 160 434 high-quality single nucleotide polymorphism sites were obtained by restriction site-associated DNA sequencing. The GWAS analysis revealed that MSTN, IGF2BP3 and NCAPG/LCORL were important candidate genes affecting the growth traits of meat pigeons. IGF2BP3 and NCAPG/LCORL were highly correlated to BW and BS, which are related to overall growth and development, while MSTN was associated with pectoral thickness and BW. Phenotypic association validation with the use of two meat pigeon populations found that the MSTN mutation c.C861T determines the MM. These results provide new insights into the genetic mechanisms underlying phenotypic variations of growth traits and MM in commercial meat pigeons. The identified markers and genes provide a theoretical basis for the selective breeding of meat pigeons.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Engineer Research Center, Shanghai, China
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Engineer Research Center, Shanghai, China
| | - Xin Li
- Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Engineer Research Center, Shanghai, China
| | - Xia Cai
- Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Engineer Research Center, Shanghai, China
| | - Yingying Tu
- National Poultry Engineer Research Center, Shanghai, China
| | - Changsuo Yang
- Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Engineer Research Center, Shanghai, China
| | - Junfeng Yao
- Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Engineer Research Center, Shanghai, China
| |
Collapse
|
5
|
Nannan M, Wenjun W, Ran Z, Yongsheng S, Rongyan Z, Hui C, Sumin Z, Hui X. Population genomics reveals that a missense mutation in EDNRB2 contributes to white plumage color in pigeons. Poult Sci 2024; 103:103225. [PMID: 38035860 PMCID: PMC10698677 DOI: 10.1016/j.psj.2023.103225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
Plumage color is an important economic trait for breed feature identification and consumer's requirements in pigeons. The domestic pigeon has multiple types of plumage color, thereby providing a unique opportunity to identify the genetic basis of plumage coloration. White feather color is common for meat and medicinal use. To investigate the genetic variation associated with white plumage color in pigeons, we use genome resequencing and population genomics to identify the genomic regions with strong selective signature between pigeons with brown and white plumage color. Meanwhile, we obtained some candidate genes with melanin or melanosome biosynthesis in selected regions. Finally, we identified a missense mutation p.E256K in the EDNRB2 completely associated with white plumage color. These findings provide a basis for genetic variation in pigeons with plumage color phenotype.
Collapse
Affiliation(s)
- Mao Nannan
- Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Wang Wenjun
- Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhang Ran
- Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Sun Yongsheng
- Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhou Rongyan
- Hebei Agricultural University, Baoding, Hebei 071001, China; Research Institute of Meat Pigeon Industry Technology, Fuping, Hebei 073200, China.
| | - Chen Hui
- Hebei Agricultural University, Baoding, Hebei 071001, China; Research Institute of Meat Pigeon Industry Technology, Fuping, Hebei 073200, China
| | - Zang Sumin
- Hebei Agricultural University, Baoding, Hebei 071001, China; Research Institute of Meat Pigeon Industry Technology, Fuping, Hebei 073200, China
| | - Xie Hui
- Fuping Xige Industrial Co., Ltd., Fuping, Hebei 073200, China; Research Institute of Meat Pigeon Industry Technology, Fuping, Hebei 073200, China
| |
Collapse
|
6
|
Recuerda M, Palacios M, Frías O, Hobson K, Nabholz B, Blanco G, Milá B. Adaptive phenotypic and genomic divergence in the common chaffinch (Fringilla coelebs) following niche expansion within a small oceanic island. J Evol Biol 2023; 36:1226-1241. [PMID: 37485603 DOI: 10.1111/jeb.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023]
Abstract
According to models of ecological speciation, adaptation to adjacent, contrasting habitat types can lead to population divergence given strong enough environment-driven selection to counteract the homogenizing effect of gene flow. We tested this hypothesis in the common chaffinch (Fringilla coelebs) on the small island of La Palma, Canary Islands, where it occupies two markedly different habitats. Isotopic (δ13 C, δ15 N) analysis of feathers indicated that birds in the two habitats differed in ecosystem and/or diet, and analysis of phenotypic traits revealed significant differences in morphology and plumage colouration that are consistent with ecomorphological and ecogeographical predictions respectively. A genome-wide survey of single-nucleotide polymorphism revealed marked neutral structure that was consistent with geography and isolation by distance, suggesting low dispersal. In contrast, loci putatively under selection identified through genome-wide association and genotype-environment association analyses, revealed amarked adaptive divergence between birds in both habitats. Loci associated with phenotypic and environmental differences among habitats were distributed across the genome, as expected for polygenic traits involved in local adaptation. Our results suggest a strong role for habitat-driven local adaptation in population divergence in the chaffinches of La Palma, a process that appears to be facilitated by a strong reduction in effective dispersal distances despite the birds' high dispersal capacity.
Collapse
Affiliation(s)
- María Recuerda
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Mercè Palacios
- Department of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | - Oscar Frías
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Keith Hobson
- Biology Department, Western University, London, Ontario, Canada
| | - Benoit Nabholz
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Guillermo Blanco
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Borja Milá
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
7
|
Williams D. Eagle eyed or bird brained? Eye (Lond) 2023; 37:2426-2430. [PMID: 37353509 PMCID: PMC10397276 DOI: 10.1038/s41433-023-02568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/25/2023] Open
Abstract
The importance of the visual system to birds for behaviours from feeding, mate choice, flying, navigation and determination of seasons, together with the presence of photoreceptors in the retina, the pineal and the brain, render the avian visual system a particularly fruitful model for understanding of eye-brain interactions. In this review we will particularly focus on the pigeon, since here we have a brain stereotactically mapped and a genome fully sequenced, together with a particular bird, the homing pigeon, with remarkable ability to navigate over hundreds of miles and return to exactly the same roosting site with exceptional precision. We might denigrate the avian species by the term bird brained, but here are animals with phenomenal abilities to use their exceptional vision, their eagle eyedness, to best advantage.
Collapse
|
8
|
Yáñez JM, Xu P, Carvalheiro R, Hayes B. Genomics applied to livestock and aquaculture breeding. Evol Appl 2022; 15:517-522. [PMID: 35505887 PMCID: PMC9046759 DOI: 10.1111/eva.13378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias Universidad de Chile
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms College of Ocean and Earth Sciences Xiamen University Xiamen China
| | - Roberto Carvalheiro
- Departamento de Zootecnia Faculdade de Ciências Agrárias e Veterinárias UNESP – Univ Estadual Paulista Jaboticabal, São Paulo Brazil
- CSIRO Agriculture & Food Hobart Tasmania Australia
| | - Ben Hayes
- Centre for Animal Science Queensland Alliance for Agriculture and Food Innovation The University of Queensland Australia
| |
Collapse
|