1
|
Cabrera-Sosa L, Safarpour M, Kattenberg JH, Ramirez R, Vinetz JM, Rosanas-Urgell A, Gamboa D, Delgado-Ratto C. Comparing newly developed SNP barcode panels with microsatellites to explore population genetics of malaria parasites in the Peruvian Amazon. Front Genet 2024; 15:1488109. [PMID: 39748949 PMCID: PMC11693692 DOI: 10.3389/fgene.2024.1488109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control programs. We previously designed AmpliSeq assays for MMS, which include different traits of interest (resistance markers and pfhrp2/3 deletions), and SNP barcodes to provide population genetics estimates of Plasmodium vivax and Plasmodium falciparum parasites in the Peruvian Amazon. The present study compares the genetic resolution of the barcodes in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate population genetics of Amazonian malaria parasites. Methods We analyzed 51 P. vivax and 80 P. falciparum samples from three distinct areas in the Loreto region of the Peruvian Amazon: Nueva Jerusalén (NJ), Mazan (MZ), and Santa Emilia (SE). Population genetics estimates and costs were compared using the SNP barcodes (P. vivax: 40 SNPs and P. falciparum: 28 SNPs) and MS panels (P. vivax: 16 MS and P. falciparum: 7 MS). Results The P. vivax genetic diversity (expected heterozygosity, He) trends were similar for both markers: He MS = 0.68-0.78 (p > 0.05) and He SNP = 0.36-0.38 (p > 0.05). P. vivax pairwise genetic differentiation (fixation index, FST) was also comparable: FST-MS = 0.04-0.14 and FST-SNP = 0.03-0.12 (pairwise p > 0.05). In addition, P. falciparum genetic diversity trends (He MS = 0-0.48, p < 0.05; He SNP = 0-0.09, p < 0.05) and pairwise FST comparisons (FST-MS = 0.14-0.65, FST-SNP = 0.19-0.61, pairwise p > 0.05) were concordant between both panels. For P. vivax, no geographic clustering was observed with any panel, whereas for P. falciparum, similar population structure clustering was observed with both markers, assigning most parasites from NJ to a distinct subpopulation from MZ and SE. We found significant differences in detecting polyclonal infections: for P. vivax, MS identified a higher proportion of polyclonal infections than SNP (69% vs. 33%, p = 3.3 × 10-5), while for P. falciparum, SNP and MS detected similar rates (46% vs. 31%, p = 0.21). The AmpliSeq assay had a higher estimated per-sample cost compared to MS ($183 vs. $27-49). Discussion The SNP barcodes in the AmpliSeq assays offered comparable results to MS for investigating population genetics in P. vivax and P. falciparum populations, despite some discrepancies in determining polyclonality. Given both panels have their respective advantages and limitations, the choice between both should be guided by research objectives, costs, and resource availability.
Collapse
Affiliation(s)
- Luis Cabrera-Sosa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mahdi Safarpour
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | | | - Roberson Ramirez
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Cabrera-Sosa L, Safarpour M, Kattenberg JH, Ramirez R, Vinetz J, Rosanas-Urgell A, Gamboa D, Delgado-Ratto C. Comparing newly developed SNP barcode panels with microsatellites to explore population genetics of malaria parasites in the Peruvian Amazon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611954. [PMID: 39314390 PMCID: PMC11418992 DOI: 10.1101/2024.09.09.611954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control/elimination programs. Considering the genetic differences among parasites from different areas in the Peruvian Amazon, we previously designed SNP barcode panels for Plasmodium vivax (Pv) and P. falciparum (Pf), integrated into AmpliSeq assays, to provide population genetics estimates of malaria parasites. These AmpliSeq assays are ideal for MMS: multiplexing different traits of interest, applicable to many use cases, and high throughput for large numbers of samples. The present study compares the genetic resolution of the SNP barcode panels in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate Amazonian malaria parasites. Malaria samples collected in remote areas of the Peruvian Amazon (51 Pv & 80 Pf samples) were characterized using the Ampliseq assays and MS. Population genetics estimates (complexity of infection, genetic diversity and differentiation, and population structure) were compared using the SNP barcodes (Pv: 40 SNPs & Pf: 28 SNPs) and MS panels (Pv: 16 MS & Pf: 7 MS). The genetic diversity of Pv (expected heterozygosity, He ) was similar across the subpopulations for both makers: He MS = 0.68 - 0.78 (p = 0.23) and He SNP = 0.36 - 0.38 (p = 0.80). Pairwise genetic differentiation (fixation index, F ST ) was also comparable: F ST-MS = 0.04 - 0.14 and F ST-SNP = 0.03 - 0.12 (p = 0.34 - 0.85). No geographic clustering was observed with any panel. In addition, Pf genetic diversity trends ( He MS = 0 - 0.48 p = 0.03 - 1; He SNP = 0 - 0.09, p = 0.03 - 1) and pairwise F ST comparisons (F ST-MS = 0.14 - 0.65, F ST-SNP = 0.19 - 0.61, p = 0.24 - 0.83) were concordant between the panels. Similar population structure clustering was observed with both SNP and MS, highlighting one Pf subpopulation in an indigenous community. The SNP barcodes in the Pv AmpliSeq v2 Peru and Pf AmpliSeq v1 Peru assays offer comparable results to MS panels when investigating population genetics in Pv and Pv populations. Therefore, the AmpliSeq assays can efficiently characterize malaria transmission dynamics and population structure and support malaria elimination efforts in Peru.
Collapse
|
3
|
Carranza J, Pérez-González J, Anaya G, de Jong M, Broggini C, Zachos FE, McDevitt AD, Niedziałkowska M, Sykut M, Csányi S, Bleier N, Csirke L, Røed K, Saint-Andrieux C, Barboiron A, Gort-Esteve A, Ruiz-Olmo J, Seoane JM, Godoy JA, Mackiewicz P, de la Peña E, Vedel G, McFarlane SE, Pemberton J, Membrillo A. Genome-wide SNP assessment of contemporary European red deer genetic structure highlights the distinction of peripheral populations and the main admixture zones in Europe. Mol Ecol 2024; 33:e17508. [PMID: 39161130 DOI: 10.1111/mec.17508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
Genome-wide technologies open up new possibilities to clarify questions on genetic structure and phylogeographic history of taxa previously studied with microsatellite loci and mitochondrial sequences. Here, we used 736 individual red deer (Cervus elaphus) samples genotyped at 35,701 single nucleotide polymorphism loci (SNPs) to assess the population structure of the species throughout Europe. The results identified 28 populations, with higher degrees of genetic distinction in peripheral compared to mainland populations. Iberian red deer show high genetic differentiation, with lineages in Western and Central Iberia maintaining their distinctiveness, which supports separate refugial ranges within Iberia along with little recent connection between Iberian and the remaining Western European populations. The Norwegian population exhibited the lowest variability and the largest allele frequency differences from mainland European populations, compatible with a history of bottlenecks and drift during post-glacial colonization from southern refugia. Scottish populations showed high genetic distance from the mainland but high levels of diversity. Hybrid zones were found between Eastern and Western European lineages in Central Europe as well as in the Pyrenees, where red deer from France are in close contact with Iberian red deer. Anthropogenic restocking has promoted the Pyrenean contact zone, admixture events in populations on the Isle of Rum and in the Netherlands, and at least partly the admixture of the two main lineages in central-eastern Europe. Our analysis enabled detailed resolution of population structure of a large mammal widely distributed throughout Europe and contributes to resolving the evolutionary history, which can also inform conservation and management policies.
Collapse
Affiliation(s)
- Juan Carranza
- Wildlife Research Unit (UIRCP), University of Córdoba, Córdoba, Spain
| | - Javier Pérez-González
- Biology and Ethology Unit, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Gabriel Anaya
- Wildlife Research Unit (UIRCP), University of Córdoba, Córdoba, Spain
| | - Menno de Jong
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Frankfurt am Main, Germany
| | - Camilla Broggini
- Wildlife Research Unit (UIRCP), University of Córdoba, Córdoba, Spain
| | - Frank E Zachos
- Natural History Museum Vienna, Vienna, Austria
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northwest Territories, Australia
| | - Allan D McDevitt
- Department of Natural Resources and the Environment, Atlantic Technological University, Galway, Ireland
| | | | - Maciej Sykut
- Mammal Research Institute Polish Academy of Sciences, Białowieża, Poland
| | - Sándor Csányi
- Department of Wildlife Biology and Management, Hungarian University of Agriculture and Life Sciences (MATE), Gödöllő, Hungary
| | - Norber Bleier
- Department of Game Management, Ministry of Agriculture, Budapest, Hungary
| | - Lázló Csirke
- Department of Game Management, Ministry of Agriculture, Budapest, Hungary
| | - Knut Røed
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Araceli Gort-Esteve
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Ruiz-Olmo
- Direcció General d'Ecosistemes Forestals i Gestió del Medi, Barcelona, Spain
| | | | - Jose Antonio Godoy
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Paweł Mackiewicz
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Eva de la Peña
- Wildlife Research Unit (UIRCP), University of Córdoba, Córdoba, Spain
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Giovanni Vedel
- Wildlife Research Unit (UIRCP), University of Córdoba, Córdoba, Spain
| | - S Eryn McFarlane
- Department of Biology, York University, Toronto, Ontario, Canada
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Josephine Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alberto Membrillo
- Wildlife Research Unit (UIRCP), University of Córdoba, Córdoba, Spain
| |
Collapse
|
4
|
Pérez-González J, Carranza J, Anaya G, Broggini C, Vedel G, de la Peña E, Membrillo A. Comparative Analysis of Microsatellite and SNP Markers for Genetic Management of Red Deer. Animals (Basel) 2023; 13:3374. [PMID: 37958129 PMCID: PMC10650148 DOI: 10.3390/ani13213374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The analysis of population genetic structure and individual multilocus heterozygosity are crucial for wildlife management and conservation. Microsatellite markers have traditionally been used to assess these genetic parameters. However, single-nucleotide polymorphisms (SNPs) are becoming increasingly popular. Our goal here was to determine to what extent SNPs can provide better insights than microsatellites into the overall genetic status and population genetic processes in the species. To this end, we genotyped 210 red deer (Cervus elaphus) in the Spanish wild population with both 11 microsatellites and 31,712 SNPs. We compared parameters related to population genetic structure and individual multilocus heterozygosity obtained with both types of markers. Our results showed correlations between parameters measured using both microsatellites and SNPs, particularly those related to the level of genetic diversity and genetic differentiation. However, we found notably lower precision of microsatellites in measuring the distribution of genetic diversity among individuals. We conclude that microsatellites can be used to monitor the overall genetic status and detect broad patterns in red deer populations. Nevertheless, the greater precision of SNPs in inferring genetic structure and multilocus heterozygosity leads us to encourage scientists and wildlife managers to prioritize their use whenever possible.
Collapse
Affiliation(s)
- Javier Pérez-González
- Biology and Ethology Unit, Veterinary Faculty, University of Extremadura, 10003 Caceres, Spain
| | - Juan Carranza
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
| | - Gabriel Anaya
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
- Department of Genetics, University of Cordoba, 14071 Cordoba, Spain
| | - Camilla Broggini
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
| | - Giovanni Vedel
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
| | - Eva de la Peña
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
- Institute for Game and Wildlife Research (IREC), 13005 Ciudad Real, Spain
| | - Alberto Membrillo
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
- Department of Specific Didactics, Faculty of Education Sciences, University of Cordoba, 14071 Cordoba, Spain
| |
Collapse
|