1
|
Bentley-Hewitt K, Flammensbeck CK, Hedderley DI, Wellenreuther M. Assessment of Stress and Immune Gene Expression in Australasian Snapper ( Chrysophrys auratus) Exposed to Chronic Temperature Change. Genes (Basel) 2025; 16:385. [PMID: 40282345 PMCID: PMC12027476 DOI: 10.3390/genes16040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Snapper is a significant commercial, recreational, and cultural teleost species in New Zealand, with aquaculture potential. The impact of long-term (chronic) temperature changes on immune and stress responses have not been studied in snapper, yet they have a critical importance to the health status of the fish. Methods: We investigated a set of genes in 30 individual snapper including fin, head kidney, and liver tissue, fish (10 per group) were exposed to either warm (22 °C), cold (14 °C), or ambient temperatures (10.5-18.6 °C) for 3 months. Results: Analyses of experimental fish using NanoString technologies to assess stress- and immune-related genes in the three tissue types showed that 22 out of 25 genes changed significantly in the experiment, indicating the significant impacts of chronic temperature changes on stress and immune responses. Furthermore, using a combined dataset based on this study and a previous one testing the impact of acute temperature changes in snapper, we identified five genes in the non-lethal fin-clip samples that can predict internal organ health status. Conclusions: Taken together, our experiments demonstrate the potential of the NanoString gene expression assessment tool for the rapid monitoring of stress responses in snapper, which can aid in the selection of stress-resilient wild stocks, monitor species in aquaculture environments, and inform the selection of locations for aquaculture.
Collapse
Affiliation(s)
- Kerry Bentley-Hewitt
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand;
| | - Christina K. Flammensbeck
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research, Centre Box 5114, Port Nelson, Nelson 7043, New Zealand; (C.K.F.); (M.W.)
- The School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Duncan I. Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand;
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research, Centre Box 5114, Port Nelson, Nelson 7043, New Zealand; (C.K.F.); (M.W.)
- The School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
2
|
Sniegula S, Stoks R, Golab MJ. Insect responses to seasonal time constraints under global change are facilitated by warming and counteracted by invasive alien predators. Sci Rep 2024; 14:24565. [PMID: 39427019 PMCID: PMC11490650 DOI: 10.1038/s41598-024-76057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
In seasonal environments, organisms with complex life cycles not only contend with seasonal time constraints (TC) but also increasingly face global change stressors that may interfere with responses to TC. Here, we tested how warming and predator stress imposed during the egg and larval stages shaped life history and behavioural responses to TC in the temperate damselfly Ischnura elegans. Eggs from early and late clutches in the season were subjected to ambient and 4 °C warming temperature and the presence or absence of predator cues from perch and signal crayfish. After hatching, larvae were retained at the same thermal regime, and the predator treatment was continued or not up to emergence. The late eggs decreased their development time, especially under warming and when not exposed to predator cues. However, the late eggs increased their development time when exposed to predator cues, especially to crayfish cues. The TC decreased survival of late larvae that were as eggs exposed to crayfish cues, indicating a carry-over effect. The TC and warming additively reduced late larvae development time to emergence. Independent of the TC, predator cue effects on development time were stronger during the egg than during the larval stage. The late individuals expressed lower mass at emergence, which mirrored the size difference between field-collected mothers. Warming caused a higher mass at emergence. The late individuals increased their boldness and showed a higher number of moves, whereas warming caused a decreased boldness. There was no predator cue effect on larval behaviour. The results indicate that late individuals compensate for late season egg laying, which is facilitated under warming but counteracted under predation risk, especially when imposed by the crayfish.
Collapse
Affiliation(s)
- Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Maria J Golab
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
3
|
Wos G, Palomar G, Marszałek M, Sniegula S. Comparative Transcriptomic Reveals Greater Similarities in Response to Temperature Than to Invasive Alien Predator in the Damselfly Ischnura elegans Across Different Geographic Scales. Evol Appl 2024; 17:e70002. [PMID: 39247089 PMCID: PMC11377989 DOI: 10.1111/eva.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
The impact of global changes on populations may not be necessarily uniform across a species' range. Here, we aim at comparing the phenotypic and transcriptomic response to warming and an invasive predator cue in populations across different geographic scales in the damselfly Ischnura elegans. We collected adult females in two ponds in southern Poland (central latitude) and two ponds in southern Sweden (high latitude). We raised their larvae in growth chambers and exposed them to combination of temperature and a predator cue released by the crayfish Orconectes limosus. When larvae reached the prefinal larval stage, they were phenotyped for traits related to growth and size and collected for a gene expression analysis. High-latitude populations exhibited greater phenotypic and transcriptomic variation than central-latitude populations. Across latitudes and ponds, temperature generally increased growth rate and the predator cue decreased mass, but the effects of temperature were also pond-specific. Comparison of the transcriptomic profiles revealed a greater overlap in the response to temperature across latitudes and ponds, especially for pathway-related oxidative stress and sugar and lipid metabolism. The transcriptomic response to a predator cue and to the interaction temperature × predator cue was more pond-specific and overlapped only for few genes and pathways related to cuticle, development and signal transduction. We demonstrated that central- and high-latitude populations may partially respond through similar mechanisms to warming and, to a lower extent to a predator cue and to the interaction temperature × predator cue. For the predator cue and the interaction, the large fraction of ponds-specific genes suggests local adaptation. We show that high-latitude populations were generally more plastic at the phenotypic and transcriptomic level and may be more capable to cope with environmental changes than their central-latitude counterparts.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| | - Gemma Palomar
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences Complutense University of Madrid Madrid Spain
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| |
Collapse
|
4
|
Wos G, Palomar G, Golab MJ, Marszałek M, Sniegula S. Effects of overwintering on the transcriptome and fitness traits in a damselfly with variable voltinism across two latitudes. Sci Rep 2024; 14:12192. [PMID: 38806592 PMCID: PMC11133422 DOI: 10.1038/s41598-024-63066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Winter diapause consists of cessation of development that allows individuals to survive unfavourable conditions. Winter diapause may bear various costs and questions have been raised about the evolutionary mechanisms maintaining facultative diapause. Here, we explored to what extent a facultative winter diapause affects life-history traits and the transcriptome in the damselfly Ischnura elegans, and whether these effects were latitude-specific. We collected adult females at central and high latitudes and raised their larvae in growth chambers. Larvae were split into a non-diapausing and post-winter (diapausing) cohort, were phenotyped and collected for a gene expression analysis. At the phenotypic level, we found no difference in survival between the two cohorts, and the post-winter cohort was larger and heavier than the non-winter cohort. These effects were mostly independent of the latitude of origin. At the transcriptomic level, wintering affected gene expression with a small fraction of genes significantly overlapping across latitudes, especially those related to morphogenesis. In conclusion, we found clear effects of diapause on the phenotype but little evidence for latitudinal-specific effects of diapause. Our results showed a shared transcriptomic basis underpinning diapause demonstrated, here, at the intraspecific level and supported the idea of evolutionary convergence of the response to diapause across organisms.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Gemma Palomar
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
| | - Maria J Golab
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
5
|
Amer NR, Stoks R, Antoł A, Sniegula S. Microgeographic differentiation in thermal and antipredator responses and their carry-over effects across life stages in a damselfly. PLoS One 2024; 19:e0295707. [PMID: 38394143 PMCID: PMC10889876 DOI: 10.1371/journal.pone.0295707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 02/25/2024] Open
Abstract
Global warming and invasive species, separately or combined, can impose a large impact on the condition of native species. However, we know relatively little about how these two factors, individually and in combination, shape phenotypes in ectotherms across life stages and how this can differ between populations. We investigated the non-consumptive predator effects (NCEs) imposed by native (perch) and invasive (signal crayfish) predators experienced only during the egg stage or during both the egg and larval stages in combination with warming on adult life history traits of the damselfly Ischnura elegans. To explore microgeographic differentiation, we compared two nearby populations differing in thermal conditions and predator history. In the absence of predator cues, warming positively affected damselfly survival, possibly because the warmer temperature was closer to the optimal temperature. In the presence of predator cues, warming decreased survival, indicating a synergistic effect of these two variables on survival. In one population, predator cues from perch led to increased survival, especially under the current temperature, likely because of predator stress acclimation phenomena. While warming decreased, predator cues increased larval development time with a proportionally stronger effect of signal crayfish cues experienced during the egg stage, indicating a negative carry-over effect from egg to larva. Warming and predator cues increased mass at emergence, with the predator effect driven mainly by exposure to signal crayfish cues during the egg stage, indicating a positive carry-over effect from egg to adult. Notably, warming and predator effects were not consistent across the two studied populations, suggesting a phenotypic signal of adaptation at a microgeographic scale to thermal conditions and predator history. We also observed pronounced shifts during ontogeny from synergistic (egg and early larval stage) toward additive (late larval stage up to emergence) effects between warming and predator stress. The results point out that population- and life-stage-specific responses in life-history traits to NCEs are needed to predict fitness consequences of exposure to native and invasive predators and warming in prey at a microgeographic scale.
Collapse
Affiliation(s)
- Nermeen R. Amer
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Robby Stoks
- Department of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Andrzej Antoł
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Szymon Sniegula
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
6
|
Nagano K, Hiraiwa MK, Ishiwaka N, Seko Y, Hashimoto K, Uchida T, Sánchez-Bayo F, Hayasaka D. Global warming intensifies the interference competition by a poleward-expanding invader on a native dragonfly species. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230449. [PMID: 38026017 PMCID: PMC10663793 DOI: 10.1098/rsos.230449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Rapid climate warming has boosted biological invasions and the distribution or expansion polewards of many species: this can cause serious impacts on local ecosystems within the invaded areas. Subsequently, native species may be exposed to threats of both interspecific competition with invaders and temperature rises. However, effects of warming on interspecific interactions, especially competition between invader and native species remains unclear. To better understand the combined threats of biological invasions and warming, the effect of temperature on competitive interactions between two dragonfly species, the expanding Trithemis aurora from Southeast Asia and the Japanese native Orthetrum albistylum speciosum were assessed based on their foraging capacity. Although the stand-alone effect of temperature on foraging intake of the native dragonfly was not apparent, its intake significantly decreased with increasing temperatures when the invader T. aurora was present. Such reductions in foraging might lead to displacement of the native species through competition for food resources. This suggests that impacts of invader species against native species are expected to be more severe when interspecific competition is exacerbated by temperature rises.
Collapse
Affiliation(s)
- Koki Nagano
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
| | - Masayoshi K. Hiraiwa
- Faculty of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
| | - Naoto Ishiwaka
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
| | - Yugo Seko
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Koya Hashimoto
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Taizo Uchida
- Faculty of Architecture and Civil Engineering, Kyushu Sangyo University, Higashi-ku, Matsukadai 2-3-1, Fukuoka, Fukuoka 813-8503, Japan
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Daisuke Hayasaka
- Faculty of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
| |
Collapse
|
7
|
Girgente JS, McIntyre NE. Watershed-Mediated Ecomorphological Variation: A Case Study with the Twin-Striped Clubtail Dragonfly ( Hylogomphus geminatus). INSECTS 2023; 14:754. [PMID: 37754722 PMCID: PMC10531528 DOI: 10.3390/insects14090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Anthropogenic land-cover change is modifying ecosystems at an accelerating rate. Changes to ecomorphologically variable taxa within those ecosystems serve as early-warning signs that resources on which humans and other animals depend are being altered. One known ecomorphologically variable taxon is Hylogomphus geminatus, a species of dragonfly in the southeastern United States that shows pronounced variation in total body length across its limited geographic range. We measured total length of live as well as preserved museum specimens of H. geminatus and the sympatric species Progomphus obscurus (as a means for comparison). Both species showed significant size differences linked to HUC-8 watersheds in which they occur. H. geminatus showed additional significant differences on either side of the Apalachicola River, Florida, for all comparisons by sex. In overlapping watersheds, the species tended to show the same trends in length relative to their respective averages. Smaller body length was associated with more urban and agricultural land cover. These findings indicate that ecomorphological variation is tied to the watershed scale and point to significant variations on either side of the Apalachicola River. More thorough future analyses would be needed to verify trends in body length and identify the drivers behind them.
Collapse
Affiliation(s)
| | - Nancy E. McIntyre
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|