1
|
Verhaar N, Geburek F. Real-time ancillary diagnostics for intraoperative assessment of intestinal viability in horses-looking for answers across species. Vet Surg 2025; 54:648-664. [PMID: 40114354 PMCID: PMC12063719 DOI: 10.1111/vsu.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/09/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Clinical intestinal viability assessment is associated with significant limitations, and there is an undisputable need for ancillary diagnostics during colic surgery. Human and companion animal surgeons struggle with similar intraoperative issues, yet there is little exchange between specialists. Therefore, this narrative review aimed to create an overview of real-time ancillary diagnostics with the potential for intraoperative intestinal viability assessment in horses. Most real-time ancillary diagnostics can be classified as either tissue perfusion or oxygenation assessments. Intestinal perfusion may be quantified using dark field microscopy, laser Doppler flowmetry, or fluorescence angiography (FA). In particular, indocyanine green FA has gained popularity in human medicine and is increasingly employed to predict intestinal injury. Intestinal oxygen saturation can be measured by pulse oximetry or mixed tissue oximetry. The latter can be conducted using visible light or near-infrared spectrophotometry, and these measurements correlate with clinical outcomes in various species. Other real-time diagnostics include thermography and techniques currently under development, such as laser speckle flowgraphy or photoacoustic imaging. The modalities discussed are minimally invasive and may be used for intraoperative assessments of the intestine. However, limitations include the occurrence of artifacts and the subjective nature of some modalities. Techniques such as indocyanine green FA and tissue oximetry are already available in veterinary practice and have the potential for use during colic surgery. However, blinded clinical trials are lacking in all species, and more research is needed to determine the accuracy and cutoff values in equine-specific intestinal lesions.
Collapse
Affiliation(s)
- Nicole Verhaar
- Clinic for HorsesUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Florian Geburek
- Clinic for HorsesUniversity of Veterinary Medicine HannoverHannoverGermany
| |
Collapse
|
2
|
Frabasile L, Amendola C, Buttafava M, Chincarini M, Contini D, Cozzi B, De Zani D, Guerri G, Lacerenza M, Minero M, Petrizzi L, Qiu L, Rabbogliatti V, Rossi E, Spinelli L, Straticò P, Vignola G, Zani DD, Dalla Costa E, Torricelli A. Non-invasive estimation of in vivo optical properties and hemodynamic parameters of domestic animals: a preliminary study on horses, dogs, and sheep. Front Vet Sci 2023; 10:1243325. [PMID: 37789868 PMCID: PMC10543119 DOI: 10.3389/fvets.2023.1243325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Abstract
Biosensors applied in veterinary medicine serve as a noninvasive method to determine the health status of animals and, indirectly, their level of welfare. Near infrared spectroscopy (NIRS) has been suggested as a technology with this application. This study presents preliminary in vivo time domain NIRS measurements of optical properties (absorption coefficient, reduced scattering coefficient, and differential pathlength factor) and hemodynamic parameters (concentration of oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin, and tissue oxygen saturation) of tissue domestic animals, specifically of skeletal muscle (4 dogs and 6 horses) and head (4 dogs and 19 sheep). The results suggest that TD NIRS in vivo measurements on domestic animals are feasible, and reveal significant variations in the optical and hemodynamic properties among tissue types and species. In horses the different optical and hemodynamic properties of the measured muscles can be attributed to the presence of a thicker adipose layer over the muscle in the Longissimus Dorsi and in the Gluteus Superficialis as compared to the Triceps Brachii. In dogs the absorption coefficient is higher in the head (temporalis musculature) than in skeletal muscles. The smaller absorption coefficient for the head of the sheep as compared to the head of dogs may suggest that in sheep we are indeed reaching the brain cortex while in dog light penetration can be hindered by the strongly absorbing muscle covering the cranium.
Collapse
Affiliation(s)
| | | | | | - Matteo Chincarini
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, Teramo, Italy
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Bruno Cozzi
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Legnaro, Italy
| | - Donatella De Zani
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Lodi, Italy
| | - Giulia Guerri
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, Teramo, Italy
| | | | - Michela Minero
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Lodi, Italy
| | - Lucio Petrizzi
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, Teramo, Italy
| | - Lina Qiu
- School of Software, South China Normal University, Guangzhou, China
| | - Vanessa Rabbogliatti
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Lodi, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Lorenzo Spinelli
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, Italy
| | - Paola Straticò
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, Teramo, Italy
| | - Giorgio Vignola
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, Teramo, Italy
| | - Davide Danilo Zani
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Lodi, Italy
| | - Emanuela Dalla Costa
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Lodi, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, Italy
| |
Collapse
|
3
|
Cowling N, Woldeyohannes S, Sole Guitart A, Goodwin W. Measurement of Tissue Oximetry in Standing Unsedated and Sedated Horses. Vet Sci 2021; 8:vetsci8100202. [PMID: 34679032 PMCID: PMC8537620 DOI: 10.3390/vetsci8100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Near infrared spectroscopy (NIRS) noninvasively measures peripheral tissue oxygen saturation (StO2) and may be useful to detect early changes in StO2 in anaesthetized and critically ill horses. This study aimed to identify the muscle belly that provided the highest percentage of successful StO2 readings and the highest mean StO2 value. Fifty adult horses were enrolled in a prospective controlled study. StO2 was measured at six different muscles in each horse, for each intervention: hair overlying the muscle was clipped (post clipping: PC), clipped skin was cleaned with chlorhexidine (post-surgical prepping: PP) and medetomidine was administered intravenously (post medetomidine: PM). Mean StO2 values were calculated for each muscle, and a linear effects model was used to assess the effect of muscle group and intervention on StO2. The sartorius muscle gave the highest percentage of successful StO2 values (p < 0.001) and the highest mean (90% CI) StO2 values for the PC, PP and PM interventions. Surgical prepping of the skin increased the success for measurement of StO2 values. For all muscles, administration of medetomidine was associated with lower StO2 values (p < 0.001). In conclusion, of the muscles examined, the sartorius muscle may be the preferred muscle to measure StO2 in horses, and clipping and cleaning of the probe placement site is recommended.
Collapse
|
4
|
Stefanik E, Drewnowska O, Lisowska B, Turek B. Causes, Effects and Methods of Monitoring Gas Exchange Disturbances during Equine General Anaesthesia. Animals (Basel) 2021; 11:2049. [PMID: 34359177 PMCID: PMC8300395 DOI: 10.3390/ani11072049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Horses, due to their unique anatomy and physiology, are particularly prone to intraoperative cardiopulmonary disorders. In dorsally recumbent horses, chest wall movement is restricted and the lungs are compressed by the abdominal organs, leading to the collapse of the alveoli. This results in hypoventilation, leading to hypercapnia and respiratory acidosis as well as impaired tissue oxygen supply (hypoxia). The most common mechanisms disturbing gas exchange are hypoventilation, atelectasis, ventilation-perfusion (V/Q) mismatch and shunt. Gas exchange disturbances are considered to be an important factor contributing to the high anaesthetic mortality rate and numerous post-anaesthetic side effects. Current monitoring methods, such as a pulse oximetry, capnography, arterial blood gas measurements and spirometry, may not be sufficient by themselves, and only in combination with each other can they provide extensive information about the condition of the patient. A new, promising, complementary method is near-infrared spectroscopy (NIRS). The purpose of this article is to review the negative effect of general anaesthesia on the gas exchange in horses and describe the post-operative complications resulting from it. Understanding the changes that occur during general anaesthesia and the factors that affect them, as well as improving gas monitoring techniques, can improve the post-aesthetic survival rate and minimize post-operative complications.
Collapse
Affiliation(s)
- Elżbieta Stefanik
- Department of Large Animals Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
| | - Olga Drewnowska
- Department of Large Animals Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
| | - Barbara Lisowska
- National Geriatrics, Rheumatology and Rehabilitation Institute, Spartańska 1, 02-637 Warsaw, Poland;
| | - Bernard Turek
- Department of Large Animals Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
| |
Collapse
|
5
|
Fosgate GT. Study design synopsis: Bias can cast a dark shadow over studies. Equine Vet J 2020; 53:205-216. [PMID: 33135243 DOI: 10.1111/evj.13358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/31/2020] [Accepted: 09/20/2020] [Indexed: 11/29/2022]
Abstract
The study of free-living populations is important to generate knowledge related to the epidemiology of disease and other health outcomes. These studies are unable to provide the same level of control as is possible in laboratory studies and thus are susceptible to certain errors. The primary categories of study errors are random and systematic. Random errors cause imprecision and can be quantified using statistical methods including the calculation of confidence intervals. Systematic errors cause bias, which is typically difficult to quantify within the context of an individual study. The three main categories of systematic errors are selection, information, and confounding bias. Selection bias occurs when enrolled animals are not representative of the target population of interest in respect to characteristics important to the primary study objective. Information bias occurs when data collected from enrolled animals deviates from the true value. Information bias is most damaging when errors vary among comparison groups. Both selection and information bias are prevented through the application of good study design procedures. Researchers should select study animals after careful consideration of the primary study objective and desired target population. Investigators can reduce information bias through standardised data collection procedures and the use of blinding. Confounding bias occurs when the measured association between a predictor and an outcome ignores the influential effect of an additional variable. Confounding is common and analysts must implement the appropriate statistical adjustments to reduce the associated bias. All studies will have some errors and biased data with high precision are the most damaging to the validity of study conclusions. Authors can facilitate the critical evaluation of their research by providing text related to the limitations and potential sources of bias within the discussion section of their manuscripts.
Collapse
Affiliation(s)
- Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|