1
|
Sayed MA, Ghazy NM, El Sayed H, El-Bassuony AAH. Synergistic potential of essential oil combinations against Microsporum, Trichophyton, and Epidermophyton. Int Microbiol 2025; 28:811-827. [PMID: 39186133 DOI: 10.1007/s10123-024-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
Dermatophyte infections globally account for 20 to 25% of fungal infections. Dermatophytes have begun exhibiting antifungal drug resistance, making it challenging to treat this particular infection. Essential oils could be used as alternative solutions as they have been used for a long period to treat different infections. The research has demonstrated the antifungal efficacy of cinnamon, clove, lemongrass, tea tree, thyme, and garlic essential oils, and the impact of their combinations was assayed against Microsporum canis, Trichophyton tonsurans, T. violaceum, T. verrucosum, and Epidermophyton floccosum. Polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) was used to identify the most prevalent M. canis. The accession number of M. canis was obtained as ON007275. All tested essential oils exhibited antidermatophytic action except garlic. A synergistic effect was attained by cinnamon + clove, cinnamon + lemongrass, clove + lemongrass, clove + tea tree, and thyme + tea tree combinations. Concerning antifungal activity, M. canis was the most susceptible dermatophytic species, except in the case of thyme T. violaceum, which was the most susceptible dermatophytic species. The maximum inhibition was recorded in the cases of cinnamon and cinnamon + lemongrass combination against M. canis. The least minimum inhibitory concentrations were attained by cinnamon and clove against M. canis, cinnamon + clove against M. canis and T. violaceum, and cinnamon + lemongrass against M. canis, T. violaceum, T. verrucosum, and E. floccosum. The least minimum fungicidal concentration showed by cinnamon against M. canis, cinnamon + clove against M. canis and T. violaceum, cinnamon + lemongrass against M. canis, T. violaceum, T. verrucosum, and E. floccosum, and clove + lemongrass against M. canis.
Collapse
Affiliation(s)
- Mohsen A Sayed
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Nahla M Ghazy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hagar El Sayed
- Dermatology Department, Faculty of Medicine, Kasralainy School of Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
2
|
Kong ASY, Lim SHE, Cheng WH, Yuswan MH, Tan NP, Lai KS. Harnessing Monoterpenes and Monoterpenoids as Weapons against Antimicrobial Resistance. Pol J Microbiol 2025; 74:1-18. [PMID: 40052212 PMCID: PMC11949389 DOI: 10.33073/pjm-2025-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/16/2024] [Indexed: 03/28/2025] Open
Abstract
Antimicrobial resistance (AMR) poses a formidable challenge in global healthcare, driving the exploration of natural products for novel antimicrobials. Among these, essential oils (EOs) derived from medicinal plants are rich sources of diverse bioactive compounds. Monoterpenes and monoterpenoids, critical constituents of EOs, have emerged as promising agents in combating multidrugresistant (MDR) pathogens. This review analyzed recent literature on the efficacy of monoterpenes against AMR, highlighting their broad-spectrum activity and potential as alternative therapeutic options for MDR infections. Mechanistic insights reveal their ability to disrupt cell membranes, inhibit biofilm formation, and modulate gene expression linked to virulence and resistance, thereby reducing microbial viability through alterations in membrane potential, enzymatic activity, and genetic regulation. Synergistic interactions between monoterpenes and conventional antibiotics are also elucidated. Innovative approaches in monoterpene research are explored, although challenges such as resistance, limited solubility, volatility, and potential toxicity are acknowledged, emphasizing the need for advanced formulation strategies and interdisciplinary research. The synergy observed with conventional antibiotics, coupled with their ability to target specific microbial resistance mechanisms, underscores the potential of monoterpenes in combating antibioticresistant infections. Future investigations should prioritize optimizing monoterpenes' therapeutic properties and assessing their safety profiles to fully exploit their potential in addressing AMR.
Collapse
Affiliation(s)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Mohd Hafis Yuswan
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ngai-Paing Tan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Taghipour Z, Bahmanzadeh M, Rahimi R. The Effects of Clove and Its Constituents on Reproductive System: a Comprehensive Review. Reprod Sci 2023; 30:2591-2614. [PMID: 37040058 DOI: 10.1007/s43032-023-01223-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023]
Abstract
Clove with the scientific name of Syzygium aromaticum (L.) Merr. & L.M. Perry is an evergreen tree in which its buds are used for medicinal purposes. Traditional medicine manuscripts as well as recent studies reported its effects on male and female reproductive systems. The aim of this study is to investigate the reported contradictory effects of clove and its phytochemicals on the reproductive system of both males and females. All types of in vitro, animal, and human studies of clove and its main constituents in the field of reproductive systems were collected via searching electronic databases including PubMed and Scopus from the onset till 2021. In this review, 76 articles were included, of which 25 were related to male reproduction, 32 were related to female reproduction, and 19 were related to reproductive malignancies. Analysis of the literature indicates the effects of clove and its constituents especially eugenol and β-caryophyllene on the level of sex hormones, fertility, sperm abnormalities, endometriosis, menstrual cycle, as well as gynecological infections, and reproductive tumors. The main mechanism of clove has not been understood yet but it seems that different parameters affect its pharmacological activity including the type of extract, dose, and duration of administration as well as the primary cause of the disorder. According to the effects of clove on different parts of the reproductive system, it seems that it can be a suitable candidate for related disorders, provided that more and more detailed studies are done on it.
Collapse
Affiliation(s)
- Zahra Taghipour
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Bahmanzadeh
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Suleiman MA, Usman MA, Awogbamila SO, Idris UA, Ibrahim FB, Mohammed HO. Therapeutic activity of eugenol towards mitigation of anaemia and oxidative organ damage caused by Plasmodium berghei. Mol Biochem Parasitol 2023; 255:111577. [PMID: 37329986 DOI: 10.1016/j.molbiopara.2023.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
The parasite responsible for causing malaria infection, Plasmodium, is known to exhibit resistance to a number of already available treatments. This has prompted the continue search for new antimalarial drugs ranging from medicinal plant parts to synthetic compounds. In lieu of this, the mitigative action of the bioactive compound, eugenol towards P. berghei-induced anaemia and oxidative organ damage was investigated following a demonstration of in vitro and in vivo antiplasmodial effects. Mice were infected with chloroquine-sensitive strain of P. berghei and thereafter treated with eugenol at doses of 10 and 20 mg/kg body weight (BW) for seven days. The packed cell volume and redox sensitive biomarkers in the liver, brain and spleen were measured. Our result demonstrated that eugenol significantly (p < 0.05) ameliorated the P. berghei-associated anaemia at a dose of 10 mg/kg BW. In addition, the compound, at a dose of 10 mg/kg BW, significantly (p < 0.05) alleviated the P. berghei-induced organ damage. This evidently confirmed that eugenol plays an ameliorative role towards P. berghei-related pathological alterations. Hence, the study opens up a new therapeutic use of eugenol against plasmodium parasite.
Collapse
Affiliation(s)
- Mukhtar Adeiza Suleiman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria.
| | - Mohammed Aliyu Usman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | - Umar Adam Idris
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Fatima Binta Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Halimat-Oyibo Mohammed
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
5
|
Sen P, Gupta L, Vijay M, Vermani Sarin M, Shankar J, Hameed S, Vijayaraghavan P. 4-Allyl-2-methoxyphenol modulates the expression of genes involved in efflux pump, biofilm formation and sterol biosynthesis in azole resistant Aspergillus fumigatus. Front Cell Infect Microbiol 2023; 13:1103957. [PMID: 36816579 PMCID: PMC9929553 DOI: 10.3389/fcimb.2023.1103957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Antifungal therapy for aspergillosis is becoming problematic because of the toxicity of currently available drugs, biofilm formation on host surface, and increasing prevalence of azole resistance in Aspergillus fumigatus. Plants are rich source of bioactive molecules and antimicrobial activity of aromatic bioactive compounds draws attention because of its promising biological properties. The present study elucidated the antibiofilm activity of 4-allyl-2-methoxyphenol (eugenol) against azole-resistant environmental A. fumigatus isolates. Methods Soil samples were collected from agricultural fields across India; azole-resistant A. fumigatus (ARAF) were isolated followed by their molecular identification. Antibiofilm activity of eugenol was calculated via tetrazolium based-MTT assay. The expression of the multidrug efflux pumps genes MDR1, MDR4, transporters of the MFS gene, erg11A gene encoding 14α demethylase, and transcription regulatory genes, MedA, SomA and SrbA, involved in biofilm formation of A. fumigatus were calculated by quantitative real time PCR. Results Out of 89 A. fumigatus isolates, 10 were identified as azole resistant. Eugenol exhibited antibiofilm activity against ARAF isolates, ranging from 312 to 500 µg/mL. Confocal laser scanning microscopy analysis revealed absence of extracellular matrix of ARAF biofilm after eugenol treatment. The gene expression indicated significantly low expression of efflux pumps genes MDR1, MDR4, erg11A and MedA in eugenol treated ARAF isolates when compared with untreated isolates. Conclusions Our results demonstrate that eugenol effects the expression of efflux pump and biofilm associated genes as well as inhibits biofilm formation in azole resistant isolates of A. fumigatus.
Collapse
Affiliation(s)
- Pooja Sen
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Lovely Gupta
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Mukund Vijay
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Maansi Vermani Sarin
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - Pooja Vijayaraghavan
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India,*Correspondence: Pooja Vijayaraghavan,
| |
Collapse
|
6
|
Clove Essential Oil and Its Main Constituent, Eugenol, as Potential Natural Antifungals against Candida spp. Alone or in Combination with Other Antimycotics Due to Synergistic Interactions. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010215. [PMID: 36615409 PMCID: PMC9821947 DOI: 10.3390/molecules28010215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
The occurrence of candidiasis, including superficial infections, has recently increased dramatically, especially in immunocompromised patients. Their treatment is often ineffective due to the resistance of yeasts to antimycotics. Therefore, there is a need to search for new antifungals. The aim of this study was to determine the antifungal effect of clove essential oil (CEO) and eugenol (EUG) towards both reference and clinical Candida spp. strains isolated from the oral cavity of patients with hematological malignancies, and to investigate their mode of action and the interactions in combination with the selected antimycotics. These studies were performed using the broth microdilution method, tests with sorbitol and ergosterol, and a checkerboard technique, respectively. The CEO and EUG showed activity against all Candida strains with a minimal inhibitory concentration (MIC) in the range of 0.25-2 mg/mL. It was also found that both natural products bind to ergosterol in the yeast cell membrane. Moreover, the interactions between CEO and EUG with several antimycotics-cetylpyridinium chloride, chlorhexidine, silver nitrate and triclosan-showed synergistic or additive effects in combination, except nystatin. This study confirms that the studied compounds appear to be a very promising group of phytopharmaceuticals used topically in the treatment of superficial candidiasis. However, this requires further studies in vivo.
Collapse
|
7
|
Didehdar M, Chegini Z, Shariati A. Eugenol: A novel therapeutic agent for the inhibition of Candida species infection. Front Pharmacol 2022; 13:872127. [PMID: 36016558 PMCID: PMC9395595 DOI: 10.3389/fphar.2022.872127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
The high occurrence and mortality rates related to candidiasis emphasize the urgent need to introduce new therapeutic approaches to treat this infection. Eugenol, the main phenolic component of Clove and Cinnamomum essential oil, has been used to inhibit growth and different virulence factors of Candida, including strains with decreased susceptibility to antifungals, particularly fluconazole. The results showed that this compound could bind to Candida membrane and decrease ergosterol biosynthesis, consequently leading to cell wall and membrane damage. Additionally, eugenol not only reduced germ tube formation, which reduces nutrient absorption from host tissues, but it also increased the levels of lipid peroxidation and reactive oxygen species, which induces oxidative stress and causes high permeability in the fungal cell membrane. Eugenol inhibited Candida cells’ adhesion capacity; additionally, this compound inhibited the formation of biofilms and eliminated established Candida biofilms on a variety of surfaces. Furthermore, by disrupting fungal cell integrity, eugenol could boost the entry of the antifungal drugs into the Candida cell, improving treatment efficacy. Therefore, eugenol could be used in the clinical management of various presentations of candidiasis, especially mucocutaneous presentations such as oral and vulvovaginal infections. However, further investigations, including in vivo and animal studies, toxicology studies and clinical trials, as well as molecular analysis, are needed to improve formulations and develop novel antifungal agents based on eugenol.
Collapse
Affiliation(s)
- Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
- *Correspondence: Aref Shariati,
| |
Collapse
|
8
|
Houshmandzad M, Sharifzadeh A, Khosravi A, Shokri H. Potential antifungal impact of citral and linalool administered individually or combined with fluconazole against clinical isolates of Candida krusei. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Candida krusei is recognized as a major fungal pathogen in patients with immunodeficiency disorders. The present study aimed at investigating the anticandidal activities of citral and linalool combined with fluconazole (FLZ) against FLZ-resistant C. krusei strains. Methods: Antifungal activities were evaluated by the broth microdilution (MD) method to determine the minimum inhibitory and fungicidal concentrations (namely, MICs and MFCs) according to the Clinical and Laboratory Standards Institute (CLSI) M27-A3 document. The interactions were further evaluated using fractional inhibitory concentration indices (FICIs) for combinations of citral+FLZ and linalool+FLZ, calculated from checkerboard MD assays. Results: The mean ± standard deviation (SD) MIC values of citral, linalool, and FLZ against the C. krusei isolates were 70.23 ± 17, 150 ± 38.73, and 74.66 ± 36.95 μg/mL, respectively. Some fungicidal activities were also observed for citral (2.5) and linalool (1.53) against the C. krusei isolates. The FICI values of citral+FLZ and linalool+FLZ for the C. krusei isolates ranged from 0.4 to 1.00 and 0.19 to 0.63, respectively. The additive and synergistic interactions of linalool + FLZ were further observed in 12 (57.1%) and 9 (42.9%) C. krusei isolates. However, there was an additive interaction for citral + FLZ in 17 (80.9%) isolates. They also showed a synergistic interaction in only four (19.1%) isolates. Moreover, linalool and citral plus FLZ did not have any antagonistic effect on any isolates. Conclusion: The study findings support the possible capabilities of citral and linalool, as anticandidal agents, and FLZ might be supplemented with citral and/or linalool for treating FLZ-resistant C. krusei infections.
Collapse
Affiliation(s)
- Mehdi Houshmandzad
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Aghil Sharifzadeh
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Khosravi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hojjatollah Shokri
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
9
|
Castelo-Branco D, Lockhart SR, Chen YC, Santos DA, Hagen F, Hawkins NJ, Lavergne RA, Meis JF, Le Pape P, Rocha MFG, Sidrim JJC, Arendrup M, Morio F. Collateral consequences of agricultural fungicides on pathogenic yeasts: A One Health perspective to tackle azole resistance. Mycoses 2022; 65:303-311. [PMID: 34821412 PMCID: PMC11268486 DOI: 10.1111/myc.13404] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023]
Abstract
Candida and Cryptococcus affect millions of people yearly, being responsible for a wide array of clinical presentations, including life-threatening diseases. Interestingly, most human pathogenic yeasts are not restricted to the clinical setting, as they are also ubiquitous in the environment. Recent studies raise concern regarding the potential impact of agricultural use of azoles on resistance to medical antifungals in yeasts, as previously outlined with Aspergillus fumigatus. Thus, we undertook a narrative review of the literature and provide lines of evidence suggesting that an alternative, environmental route of azole resistance, may develop in pathogenic yeasts, in addition to patient route. However, it warrants sound evidence to support that pathogenic yeasts cross border between plants, animals and humans and that environmental reservoirs may contribute to azole resistance in Candida or other yeasts for humans. As these possibilities could concern public health, we propose a road map for future studies under the One Health perspective.
Collapse
Affiliation(s)
- Débora Castelo-Branco
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Shawn R Lockhart
- Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta, Georgia, USA
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | | | - Rose-Anne Lavergne
- Nantes University Hospital and EA1155 IICiMed, Nantes University, Nantes, France
| | - Jacques F Meis
- Center of Expertise in Mycology, Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Patrice Le Pape
- Nantes University Hospital and EA1155 IICiMed, Nantes University, Nantes, France
| | - Marcos Fabio Gadelha Rocha
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - José Julio Costa Sidrim
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Maiken Arendrup
- Copenhagen University Hospital, and Statens Serum Institut, Copenhagen, Denmark
| | - Florent Morio
- Nantes University Hospital and EA1155 IICiMed, Nantes University, Nantes, France
| |
Collapse
|
10
|
Ulanowska M, Olas B. Biological Properties and Prospects for the Application of Eugenol-A Review. Int J Mol Sci 2021; 22:3671. [PMID: 33916044 PMCID: PMC8036490 DOI: 10.3390/ijms22073671] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Eugenol is a phenolic aromatic compound obtained mainly from clove oil. Due to its known antibacterial, antiviral, antifungal, anticancer, anti-inflammatory and antioxidant properties, it has long been used in various areas, such as cosmetology, medicine, and pharmacology. However, high concentrations can be toxic. A dose of 2.5 mg/kg body weight is regarded as safe. This paper reviews the current state of knowledge regarding the activities and application of eugenol and its derivatives and recent research of these compounds. This review is based on information concerning eugenol characteristics and recent research from articles in PubMed. Eugenol remains of great interest to researchers, since its multidirectional action allows it to be a potential component of drugs and other products with therapeutic potential against a range of diseases.
Collapse
Affiliation(s)
| | - Beata Olas
- Department of General Biochemistry, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland;
| |
Collapse
|
11
|
Dąbrowska M, Zielińska-Bliźniewska H, Kwiatkowski P, Łopusiewicz Ł, Pruss A, Kostek M, Kochan E, Sienkiewicz M. Inhibitory Effect of Eugenol and trans-Anethole Alone and in Combination with Antifungal Medicines on Candida albicans Clinical Isolates. Chem Biodivers 2021; 18:e2000843. [PMID: 33711200 DOI: 10.1002/cbdv.202000843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/12/2021] [Indexed: 01/05/2023]
Abstract
One of the most common pathogens among yeasts is Candida albicans, which presents a serious health threat. The study aimed to check the antifungal properties of trans-anethole and eugenol with selected antifungal medicines (AMs) against C. albicans clinical isolates. The checkerboard method was used to tests of interactions between these compounds. Achieved results indicated that eugenol showed synergistic and additive activities with miconazole and econazole against investigated clinical isolates, respectively. Moreover, the combination - trans-anethole - miconazole also showed an additive effect against two clinical isolate. We tried to relate the results to changes in C. albicans cell sheaths under the influence of essential oils compounds (EOCs) performing the Fourier transform infrared spectra analysis to confirm the presence of particular chemical moieties in C. albicans cells. Nevertheless, no strong relationships was observed between synergistic and additive actions of used EOC-AMs combinations and chemical moieties in C. albicans cells.
Collapse
Affiliation(s)
- Marta Dąbrowska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752, Lodz, Poland
| | - Hanna Zielińska-Bliźniewska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752, Lodz, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich Avenue, 70-111, Szczecin, Poland
| | - Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Janickiego 35, 71-270, Szczecin, Poland
| | - Agata Pruss
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich Avenue, 70-111, Szczecin, Poland
| | - Mateusz Kostek
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Janickiego 35, 71-270, Szczecin, Poland
| | - Ewa Kochan
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, 90-151, Łódź, Poland
| | - Monika Sienkiewicz
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752, Lodz, Poland
| |
Collapse
|