1
|
Nebreda SM, Hernández Fernández M, Marugán-Lobón J. Macroevolutionary integration underlies limb modularity in the origin of avian flight. Biol Lett 2025; 21:20240685. [PMID: 40328312 DOI: 10.1098/rsbl.2024.0685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/16/2025] [Accepted: 03/19/2025] [Indexed: 05/08/2025] Open
Abstract
The origin of flight in avian dinosaurs has been historically an ideal framework for proposing the evolutionary relationship between form and function in limb proportions under the hypothesis of specialized locomotor modules. However, other hypotheses suggest that the evolution of the forelimb and the hindlimb is strongly influenced by shared developmental constraints, entailing that limbs evolve in an integrated manner and keeping the scientific debate open. To assess this, we used an alternative morphometric approach to compare and statistically analyse limb morphological covariation in a phylogenetically broad context across non-avian maniraptoran theropods and modern birds. Our results show that the maniraptoran lineage shares a strong covariation between limb proportions, a pattern indicating that consistent morphological integration has constrained the forelimb and hindlimb evolutionary transformation. Different evolutionary grades within Maniraptora, both volant and non-volant lineages, display distinct and weaker covariation patterns, suggesting the emergence of independent evolutionary trends within such underlying patterns of integration. These findings are consistent with a developmental hypothesis in which the evolutionary transformation of limbs in maniraptoran dinosaurs was influenced by its serial homology, underscored by shared developmental programmes. Thus, limb evolution was not solely driven by modular (functional) specialization for flight.
Collapse
Affiliation(s)
- Sergio M Nebreda
- Centre for the Integration in Palaeobiology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, California 90037, USA
| | - Manuel Hernández Fernández
- Departamento de Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Cambio Medioambiental, Instituto de Geociencias (UCM, CSIC), Madrid, 28040, Spain
| | - Jesús Marugán-Lobón
- Centre for the Integration in Palaeobiology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Unidad de Paleontología, Departamento de Biología, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
2
|
Segesdi M, Brabant D, Cornette R, Houssaye A. How does the shape of the wing and hindlimb bones of aquatic birds relate to their locomotor abilities? Anat Rec (Hoboken) 2024; 307:3801-3829. [PMID: 38803316 DOI: 10.1002/ar.25512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Aquatic birds represent diverse ecologies and locomotion types. Some became flightless or lost the ability for effective terrestrial locomotion, yet, certain species excel in water, on land, and in air, despite differing physical characteristics associated with each medium. In this exploratory study, we intend to quantitatively analyze the morphological variety of multiple limb bones of aquatic birds using 3D geometric morphometrics. Morphological variation is mainly driven by phylogeny, which also affects size and locomotion. However, the shape of the ulna, including the proportion and orientation of the epiphyses is influenced by size and aquatic propulsive techniques even when phylogeny is taken into consideration. Certain trends, possibly linked to functions, can be observed too in other bones, notably in cases where phylogenetic and functional signals are probably mixed when some taxa only englobe species with similar functional requirements: penguins exhibit the most distinctive wing bone morphologies, highly adapted to wing-propulsion; advanced foot-propellers exhibit femur morphology that reduces proximal mobility but supports stability; knee structures, like cnemial crests of varied sizes and orientations, are crucial for muscle attachments and efficient movement in water and on land; taxa relying on their feet in water but retaining terrestrial abilities share features enabling swimming and walking postures. Size-linked changes distinguish the wing bones of non-wing-propelled taxa. For hindlimbs, larger size relates to robust bones probably linked to terrestrial abilities, but robustness in femora can be connected to foot-propulsion. These results help us better understand birds' skeletal adaptation and can be useful inferring extinct species' ecology.
Collapse
Affiliation(s)
- Martin Segesdi
- Department of Paleontology, ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Budapest, Hungary
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
- Department of Paleontology and Geology, Hungarian Natural History Museum, Budapest, Hungary
| | - Delphine Brabant
- Plateforme Surfaçus, Délégation de l'Innovation Numérique, Direction générale déléguée aux collections, Muséum National d'Histoire Naturelle, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Alexandra Houssaye
- Mécanismes adaptatifs et évolution (MECADEV), UMR 7179, MNHN, Paris, France
| |
Collapse
|
3
|
Marek RD, Felice RN. The neck as a keystone structure in avian macroevolution and mosaicism. BMC Biol 2023; 21:216. [PMID: 37833771 PMCID: PMC10576348 DOI: 10.1186/s12915-023-01715-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The origin of birds from non-avian theropod dinosaur ancestors required a comprehensive restructuring of the body plan to enable the evolution of powered flight. One of the proposed key mechanisms that allowed birds to acquire flight and modify the associated anatomical structures into diverse forms is mosaic evolution, which describes the parcelization of phenotypic traits into separate modules that evolve with heterogeneous tempo and mode. Avian mosaicism has been investigated with a focus on the cranial and appendicular skeleton, and as such, we do not understand the role of the axial column in avian macroevolution. The long, flexible neck of extant birds lies between the cranial and pectoral modules and represents an opportunity to study the contribution of the axial skeleton to avian mosaicism. RESULTS Here, we use 3D geometric morphometrics in tandem with phylogenetic comparative methods to provide, to our knowledge, the first integrative analysis of avian neck evolution in context with the head and wing and to interrogate how the interactions between these anatomical systems have influenced macroevolutionary trends across a broad sample of extant birds. We find that the neck is integrated with both the head and the forelimb. These patterns of integration are variable across clades, and only specific ecological groups exhibit either head-neck or neck-forelimb integration. Finally, we find that ecological groups that display head-neck and neck-forelimb integration tend to display significant shifts in the rate of neck morphological evolution. CONCLUSIONS Combined, these results suggest that the interaction between trophic ecology and head-neck-forelimb mosaicism influences the evolutionary variance of the avian neck. By linking together the biomechanical functions of these distinct anatomical systems, the cervical vertebral column serves as a keystone structure in avian mosaicism and macroevolution.
Collapse
Affiliation(s)
- Ryan D Marek
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK.
| | - Ryan N Felice
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| |
Collapse
|
4
|
Wang M, Zhou Z. Low morphological disparity and decelerated rate of limb size evolution close to the origin of birds. Nat Ecol Evol 2023; 7:1257-1266. [PMID: 37277496 DOI: 10.1038/s41559-023-02091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
The origin of birds from theropod dinosaurs involves many changes in musculoskeletal anatomy and epidermal structures, including multiple instances of convergence and homology-related traits that contribute to the refinement of flight capability. Changes in limb sizes and proportions are important for locomotion (for example, the forelimb for bird flight); thus, understanding these patterns is central to investigating the transition from terrestrial to volant theropods. Here we analyse the patterns of morphological disparity and the evolutionary rate of appendicular limbs along avialan stem lineages using phylogenetic comparative approaches. Contrary to the traditional wisdom that an evolutionary innovation like flight would promote and accelerate evolvability, our results show a shift to low disparity and decelerated rate near the origin of avialans that is largely ascribed to the evolutionarily constrained forelimb. These results suggest that natural selection shaped patterns of limb evolution close to the origin of avialans in a way that may reflect the winged forelimb 'blueprint' associated with powered flight.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Tyler J, Hocking DP, Younger JL. Intrinsic and extrinsic drivers of shape variation in the albatross compound bill. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230751. [PMID: 37593712 PMCID: PMC10427816 DOI: 10.1098/rsos.230751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Albatross are the largest seabirds on Earth and have a suite of adaptations for their pelagic lifestyle. Rather than having a bill made of a single piece of keratin, Procellariiformes have a compound rhamphotheca, made of several joined plates. Drivers of the shape of the albatross bill have not been explored. Here we use three-dimensional scans of 61 upper bills from 12 species of albatross to understand whether intrinsic (species assignment & size) or extrinsic (diet) factors predict bill shape. Diet is a significant predictor of bill shape with coarse dietary categories providing higher R2 values than dietary proportion data. We also find that of the intrinsic factors, species assignment accounts for ten times more of the variation than size (72% versus 6.8%) and that there is a common allometric vector of shape change between all species. When considering species averages in a phylogenetic framework, there are significant Blomberg's K results for both shape and size (K = 0.29 & 1.10) with the first axis of variation having a much higher K value (K = 1.9), reflecting the split in shape at the root of the tree. The influence of size on bill shape is limited, with species assignment and diet predicting far more of the variation. The results show that both intrinsic and extrinsic factors are needed to understand morphological evolution.
Collapse
Affiliation(s)
- Joshua Tyler
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - David P. Hocking
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Zoology, Tasmanian Museum and Art Gallery, Hobart, Tasmania, Australia
| | - Jane L. Younger
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania 7004, Australia
| |
Collapse
|
6
|
Lowi-Merri TM, Demuth OE, Benito J, Field DJ, Benson RBJ, Claramunt S, Evans DC. Reconstructing locomotor ecology of extinct avialans: a case study of Ichthyornis comparing sternum morphology and skeletal proportions. Proc Biol Sci 2023; 290:20222020. [PMID: 36883281 PMCID: PMC9993061 DOI: 10.1098/rspb.2022.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
Avian skeletal morphology is associated with locomotor function, including flight style, swimming and terrestrial locomotion, and permits informed inferences on locomotion in extinct taxa. The fossil taxon Ichthyornis (Avialae: Ornithurae) has long been regarded as highly aerial, with flight similar to terns or gulls (Laridae), and skeletal features resembling foot-propelled diving adaptations. However, rigorous testing of locomotor hypotheses has yet to be performed on Ichthyornis, despite its notable phylogenetic position as one of the most crownward stem birds. We analysed separate datasets of three-dimensional sternal shape (geometric morphometrics) and skeletal proportions (linear measurements across the skeleton), to examine how well these data types predict locomotor traits in Neornithes. We then used this information to infer locomotor capabilities of Ichthyornis. We find strong support for both soaring and foot-propelled swimming capabilities in Ichthyornis. Further, sternal shape and skeletal proportions provide complementary information on avian locomotion: skeletal proportions allow better predictions of the capacity for flight, whereas sternal shape predicts variation in more specific locomotor abilities such as soaring, foot-propelled swimming and escape burst flight. These results have important implications for future studies of extinct avialan ecology and underscore the importance of closely considering sternum morphology in investigations of fossil bird locomotion.
Collapse
Affiliation(s)
- Talia M. Lowi-Merri
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6
| | - Oliver E. Demuth
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Structure and Motion Laboratory, Royal Veterinary College, Hatfield, UK
| | - Juan Benito
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Daniel J. Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
| | - Roger B. J. Benson
- Division of Paleontology, American Museum of Natural History, 200 Central Park West, New York, NY 12004, USA
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Santiago Claramunt
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6
| | - David C. Evans
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6
| |
Collapse
|
7
|
Cordero GA, Werneburg I. Domestication and the comparative embryology of birds. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:447-459. [PMID: 35604321 DOI: 10.1002/jez.b.23144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Studies of domesticated animals have greatly contributed to our understanding of avian embryology. Foundational questions in developmental biology were motivated by Aristotle's observations of chicken embryos. By the 19th century, the chicken embryo was at the center stage of developmental biology, but how closely does this model species mirror the ample taxonomic diversity that characterizes the avian tree of life? Here, we provide a brief overview of the taxonomic breadth of comparative embryological studies in birds. We particularly focused on staging tables and papers that attempted to document the timing of developmental transformations. We show that most of the current knowledge of avian embryology is based on Galliformes (chicken and quail) and Anseriformes (duck and goose). Nonetheless, data are available for some ecologically diverse avian subclades, including Struthioniformes (e.g., ostrich, emu) and Sphenisciformes (penguins). Thus far, there has only been a handful of descriptive embryological studies in the most speciose subclade of Aves, that is, the songbirds (Passeriniformes). Furthermore, we found that temporal variances for developmental events are generally uniform across a consensus chronological sequence for birds. Based on the available data, developmental trajectories for chicken and other model species appear to be highly similar. We discuss future avenues of research in comparative avian embryology in light of the currently available wealth of data on domesticated species and beyond.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), Eberhard Karls Universität Tübingen, Tübingen, Germany
- Department of Animal Biology, Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), Eberhard Karls Universität Tübingen, Tübingen, Germany
- Fachbereich Geowissenschaften, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Environmental signal in the evolutionary diversification of bird skeletons. Nature 2022; 611:306-311. [DOI: 10.1038/s41586-022-05372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
|
9
|
Smith NA, Koeller KL, Clarke JA, Ksepka DT, Mitchell JS, Nabavizadeh A, Ridgley RC, Witmer LM. Convergent evolution in dippers (Aves, Cinclidae): The only wing-propelled diving songbirds. Anat Rec (Hoboken) 2021; 305:1563-1591. [PMID: 34813153 PMCID: PMC9298897 DOI: 10.1002/ar.24820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
Of the more than 6,000 members of the most speciose avian clade, Passeriformes (perching birds), only the five species of dippers (Cinclidae, Cinclus) use their wings to swim underwater. Among nonpasserine wing‐propelled divers (alcids, diving petrels, penguins, and plotopterids), convergent evolution of morphological characteristics related to this highly derived method of locomotion have been well‐documented, suggesting that the demands of this behavior exert strong selective pressure. However, despite their unique anatomical attributes, dippers have been the focus of comparatively few studies and potential convergence between dippers and nonpasseriform wing‐propelled divers has not been previously examined. In this study, a suite of characteristics that are shared among many wing‐propelled diving birds were identified and the distribution of those characteristics across representatives of all clades of extant and extinct wing‐propelled divers were evaluated to assess convergence. Putatively convergent characteristics were drawn from a relatively wide range of sources including osteology, myology, endocranial anatomy, integument, and ethology. Comparisons reveal that whereas nonpasseriform wing‐propelled divers do in fact share some anatomical characteristics putatively associated with the biomechanics of underwater “flight”, dippers have evolved this highly derived method of locomotion without converging on the majority of concomitant changes observed in other taxa. Changes in the flight musculature and feathers, reduction of the keratin bounded external nares and an increase in subcutaneous fat are shared with other wing‐propelled diving birds, but endocranial anatomy shows no significant shifts and osteological modifications are limited. Muscular and integumentary novelties may precede skeletal and neuroendocranial morphology in the acquisition of this novel locomotory mode, with implications for understanding potential biases in the fossil record of other such transitions. Thus, dippers represent an example of a highly derived and complex behavioral convergence that is not fully associated with the anatomical changes observed in other wing‐propelled divers, perhaps owing to the relative recency of their divergence from nondiving passeriforms.
Collapse
Affiliation(s)
- N Adam Smith
- Campbell Geology Museum, Clemson University, Clemson, South Carolina, USA.,Department of Science and Education, Field Museum of Natural History, Chicago, Illinois, USA
| | - Krista L Koeller
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Julia A Clarke
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | | | - Jonathan S Mitchell
- Department of Biology, West Virginia University Institute of Technology, Beckley, West Virginia, USA
| | - Ali Nabavizadeh
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ryan C Ridgley
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, USA
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, USA
| |
Collapse
|
10
|
Baumgart SL, Sereno PC, Westneat MW. Wing Shape in Waterbirds: Morphometric Patterns Associated with Behavior, Habitat, Migration, and Phylogenetic Convergence. Integr Org Biol 2021; 3:obab011. [PMID: 34381962 DOI: 10.1093/iob/obab011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Wing shape plays a critical role in flight function in birds and other powered fliers and has been shown to be correlated with flight performance, migratory distance, and the biomechanics of generating lift during flight. Avian wing shape and flight mechanics have also been shown to be associated with general foraging behavior and habitat choice. We aim to determine if wing shape in waterbirds, a functionally and ecologically diverse assemblage united by their coastal and aquatic habitats, is correlated with various functional and ecological traits. We applied geometric morphometric approaches to the spread wings of a selection of waterbirds to search for evolutionary patterns between wing shape and foraging behavior, habitat, and migratory patterns. We found strong evidence of convergent evolution of high and low aspect ratio wing shapes in multiple clades. Foraging behavior also consistently exhibits strong evolutionary correlations with wing shape. Habitat, migration, and flight style, in contrast, do not exhibit significant correlation with wing shape in waterbirds. Although wing shape is critical to aerial flight function, its relationship to habitat and periodic locomotor demands such as migration is complex.
Collapse
Affiliation(s)
- Stephanie L Baumgart
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E, 57th St, Chicago, IL 60637, USA
| | - Paul C Sereno
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E, 57th St, Chicago, IL 60637, USA.,Committee on Evolutionary Biology, University of Chicago, 1027 E, 57th St, Chicago, IL 60637, USA
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E, 57th St, Chicago, IL 60637, USA.,Committee on Evolutionary Biology, University of Chicago, 1027 E, 57th St, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Ali JR, Aitchison JC, Meiri S. Redrawing Wallace’s Line based on the fauna of Christmas Island, eastern Indian Ocean. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Based on a comprehensive literature survey, we determined the sources of the terrestrial vertebrate species on Christmas Island, asking where they originated relative to Wallace’s Line (the southern end of the divide lies 1100 km to the east, where the Lombok Strait adjoins the eastern Indian Ocean). The two bats, Pipistrellus murrayi and Pteropus natalis, are from the west. Concerning the endemic and ‘resident’ bird species, one is from the west (Collocalia natalis), four are from the east (Accipiter fasciatus, Egretta novaehollandiae, Falco cenchroides and Ninox natalis) and the other 15 are ambiguous or indeterminate. Most of the land-locked species are also from the east: rodents Rattus macleari and Rattus nativitatis, and squamates Cryptoblepharus egeriae, Emoia nativitatis and Lepidodactylus listeria. Additionally, two have westerly origins (Crocidura trichura and Cyrtodactylus sadleiri), one is ambiguous (Emoia atrocostata) and another is unknown (Ramphotyphlops exocoeti). West-directed surface currents that flow across the eastern Indian Ocean towards Christmas Island would have facilitated most of the land-animal colonizations. We therefore suggest that Wallace’s Line be redrawn such that the landmass is placed on the Australasian side of this fundamental biogeographical boundary.
Collapse
Affiliation(s)
- Jason R Ali
- Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jonathan C Aitchison
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Australia
| | - Shai Meiri
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Watanabe J. Clade-specific evolutionary diversification along ontogenetic major axes in avian limb skeleton. Evolution 2018; 72:2632-2652. [PMID: 30328113 DOI: 10.1111/evo.13627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022]
Abstract
The evolutionary diversification of birds has been facilitated by specializations for various locomotor modes, with which the proportion of the limb skeleton is closely associated. However, recent studies have identified phylogenetic signals in this system, suggesting the presence of historical factors that have affected its evolutionary variability. In this study, to explore potential roles of ontogenetic integration in biasing the evolution in the avian limb skeleton, evolutionary diversification patterns in six avian families (Anatidae, Procellariidae, Ardeidae, Phalacrocoracidae, Laridae, and Alcidae) were examined and compared to the postnatal ontogenetic trajectories in those taxa, based on measurement of 2641 specimens and recently collected ontogenetic series, supplemented by published data. Morphometric analyses of lengths of six limb bones (humerus, ulna, carpometacarpus, femur, tibiotarsus, and tarsometatarsus) demonstrated that: (1) ontogenetic trajectories are diverse among families; (2) evolutionary diversification is significantly anisotropic; and, most importantly, (3) major axes of evolutionary diversification are correlated with clade-specific ontogenetic major axes in the shape space. These results imply that the evolutionary variability of the avian limbs has been biased along the clade-specific ontogenetic trajectories. It may explain peculiar diversification patterns characteristic to some avian groups, including the long-leggedness in Ardeidae and tendency for flightlessness in Anatidae.
Collapse
Affiliation(s)
- Junya Watanabe
- Department of Geology and Mineralogy, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Benson RBJ, Starmer-Jones E, Close RA, Walsh SA. Comparative analysis of vestibular ecomorphology in birds. J Anat 2018; 231:990-1018. [PMID: 29156494 DOI: 10.1111/joa.12726] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 02/06/2023] Open
Abstract
The bony labyrinth of vertebrates houses the semicircular canals. These sense rotational accelerations of the head and play an essential role in gaze stabilisation during locomotion. The sizes and shapes of the semicircular canals have hypothesised relationships to agility and locomotory modes in many groups, including birds, and a burgeoning palaeontological literature seeks to make ecological interpretations from the morphology of the labyrinth in extinct species. Rigorous tests of form-function relationships for the vestibular system are required to support these interpretations. We test the hypothesis that the lengths, streamlines and angles between the semicircular canals are related to body size, wing kinematics and flying style in birds. To do this, we applied geometric morphometrics and multivariate phylogenetic comparative methods to a dataset of 64 three-dimensional reconstructions of the endosseous labyrinth obtained using micro-computed tomography scanning of bird crania. A strong relationship between centroid size of the semicircular canals and body size indicates that larger birds have longer semicircular canals compared with their evolutionary relatives. Wing kinematics related to manoeuvrability (and quantified using the brachial index) explain a small additional portion of the variance in labyrinth size. We also find strong evidence for allometric shape change in the semicircular canals of birds, indicating that major aspects of the shape of the avian labyrinth are determined by spatial constraints. The avian braincase accommodates a large brain, a large eye and large semicircular canals compared with other tetrapods. Negative allometry of these structures means that the restriction of space within the braincase is intense in small birds. This may explain our observation that the angles between planes of the semicircular canals of birds deviate more strongly from orthogonality than those of mammals, and especially from agile, gliding and flying mammals. Furthermore, we find little support for relationships between labyrinth shape and flying style or wing kinematics. Overall, our results suggest that the topological problem of fitting long semicircular canals into a spatially constrained braincase is more important in determining the shape of the avian labyrinth than the specifics of locomotory style or agility. Our results tentatively indicate a link between visual acuity and proportional size of the labyrinth among birds. This suggests that the large labyrinths of birds compared with other tetrapods may result from their generally high visual acuities, and not directly from their ability to fly. The endosseous labyrinths of extinct birds and their close dinosaurian relatives may allow broad inferences about flight or vision, but so far provide few specific insights into detailed aspects of locomotion.
Collapse
Affiliation(s)
| | | | - Roger A Close
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Stig A Walsh
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,School of GeoSciences, The King's Buildings, Edinburgh, UK
| |
Collapse
|
14
|
Diogo R. Etho-Eco-Morphological Mismatches, an Overlooked Phenomenon in Ecology, Evolution and Evo-Devo That Supports ONCE (Organic Nonoptimal Constrained Evolution) and the Key Evolutionary Role of Organismal Behavior. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Paleo-López R, Quintero-Galvis JF, Solano-Iguaran JJ, Sanchez-Salazar AM, Gaitan-Espitia JD, Nespolo RF. A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts. Ecol Evol 2016; 6:3851-61. [PMID: 27516851 PMCID: PMC4972215 DOI: 10.1002/ece3.2097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adaptive radiations, diversification and morphological evolution are predicted to slow‐down after early bursts of diversification. Here, we performed the first comparative phylogenetic analysis in yeasts, testing the “early burst” prediction on species diversification and also on traits of putative ecological relevance (cell‐size and fermentation versatility). We found that speciation rates are constant during the time‐range we considered (ca., 150 millions of years). Phylogenetic signal of both traits was significant (but lower for cell‐size), suggesting that lineages resemble each other in trait‐values. Disparity analysis suggested accelerated evolution (diversification in trait values above Brownian Motion expectations) in cell‐size. We also found a significant phylogenetic regression between cell‐size and fermentation versatility (R2 = 0.10), which suggests correlated evolution between both traits. Overall, our results do not support the early burst prediction both in species and traits, but suggest a number of interesting evolutionary patterns, that warrant further exploration. For instance, we show that the Whole Genomic Duplication that affected a whole clade of yeasts, does not seems to have a statistically detectable phenotypic effect at our level of analysis. In this regard, further studies of fermentation under common‐garden conditions combined with comparative analyses are warranted.
Collapse
Affiliation(s)
- Rocío Paleo-López
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile
| | - Julian F Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile
| | - Jaiber J Solano-Iguaran
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile
| | - Angela M Sanchez-Salazar
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile
| | - Juan D Gaitan-Espitia
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile; CSIRO Oceans & Atmosphere GPO Box 1538 Hobart 7001 Tasmania Australia
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile; Center of Applied Ecology and Sustainability (CAPES) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago 6513677 Chile
| |
Collapse
|
16
|
Wang X, Clarke JA. The evolution of avian wing shape and previously unrecognized trends in covert feathering. Proc Biol Sci 2015; 282:20151935. [PMID: 26446812 PMCID: PMC4614784 DOI: 10.1098/rspb.2015.1935] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/14/2015] [Indexed: 11/12/2022] Open
Abstract
Avian wing shape has been related to flight performance, migration, foraging behaviour and display. Historically, linear measurements of the feathered aerofoil and skeletal proportions have been used to describe this shape. While the distribution of covert feathers, layered over the anterior wing, has long been assumed to contribute to aerofoil properties, to our knowledge no previous studies of trends in avian wing shape assessed their variation. Here, these trends are explored using a geometric-morphometric approach with landmarks describing the wing outline as well as the extent of dorsal and ventral covert feathers for 105 avian species. We find that most of the observed variation is explained by phylogeny and ecology but shows only a weak relationship with previously described flight style categories, wing loading and an investigated set of aerodynamic variables. Most of the recovered variation is in greater primary covert feather extent, followed by secondary feather length and the shape of the wing tip. Although often considered a plastic character strongly linked to flight style, the estimated ancestral wing morphology is found to be generally conservative among basal parts of most major avian lineages. The radiation of birds is characterized by successive diversification into largely distinct areas of morphospace. However, aquatic taxa show convergence in feathering despite differences in flight style, and songbirds move into a region of morphospace also occupied by basal taxa but at markedly different body sizes. These results have implications for the proposed inference of flight style in extinct taxa.
Collapse
Affiliation(s)
- Xia Wang
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas, Austin, TX 78712, USA
| | - Julia A Clarke
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas, Austin, TX 78712, USA
| |
Collapse
|
17
|
Hieronymus TL. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves). BMC Evol Biol 2015; 15:30. [PMID: 25880306 PMCID: PMC4394594 DOI: 10.1186/s12862-015-0303-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecological and phylogenetic diversity of living birds. However, because the feathers that define the wingtip (and hence wingspan and aspect ratio) often do not fossilize, resolution in the pattern of avian wing shape evolution is obscured by missing information. Here I use a comparative approach to investigate the relationship between skeletal proxies of flight feather attachment and wing shape. RESULTS An accessory lobe of the internal index process of digit II-1, a bony correlate of distal primary attachment, shows weak but statistically significant relationships to aspect ratio and mass independent of other skeletal morphology. The dorsal phalangeal fossae of digit II-1, which house distal primaries VIII and IX, also show a trend of increased prominence with higher aspect ratio. Quill knobs on the ulna are examined concurrently, but do not show consistent signal with respect to wing shape. CONCLUSIONS Although quill knobs are cited as skeletal correlates of flight performance in birds, their relationship to wing shape is inconsistent among extant taxa, and may reflect diverging selection pressures acting on a conserved architecture. In contrast, correlates of distal primary feather attachment on the major digit show convergent responses to increasing aspect ratio. In light of the diversity of musculoskeletal and integumentary mophology that underlies wing shape in different avian clades, it is unlikely that a single skeletal feature will show consistent predictive power across Neoaves. Confident inference of wing shape in basal ornithurine birds will require multiple lines of evidence, together with an understanding of clade-specific evolutionary trends within the crown.
Collapse
Affiliation(s)
- Tobin L Hieronymus
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 St Rt 44, Rootstown, 44272, OH, USA.
| |
Collapse
|