1
|
Tan BB, Schwartz NE, Copes LE, Garland T. Effects of long-term voluntary wheel running and selective breeding for wheel running on femoral nutrient canals. J Anat 2024; 244:1015-1029. [PMID: 38303650 PMCID: PMC11095308 DOI: 10.1111/joa.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
The nutrient artery provides ~50%-70% of the total blood volume to long bones in mammals. Studying the functional characteristics of this artery in vivo can be difficult and expensive, so most researchers have measured the nutrient foramen, an opening on the outer surface of the bone that served as the entry point for the nutrient artery during development and bone ossification. Others have measured the nutrient canal (i.e., the passage which the nutrient artery once occupied), given that the external dimensions of the foramen do not necessarily remain uniform from the periosteal surface to the medullary cavity. The nutrient canal, as an indicator of blood flow to long bones, has been proposed to provide a link to studying organismal activity (e.g., locomotor behavior) from skeletal morphology. However, although external loading from movement and activity causes skeletal remodeling, it is unclear whether it affects the size or configuration of nutrient canals. To investigate whether nutrient canals can exhibit phenotypic plasticity in response to physical activity, we studied a mouse model in which four replicate high runner (HR) lines have been selectively bred for high voluntary wheel-running behavior. The selection criterion is the average number of wheel revolutions on days 5 and 6 of a 6-day period of wheel access as young adults (~6-8 weeks old). An additional four lines are bred without selection to serve as controls (C). For this study, 100 female mice (half HR, half C) from generation 57 were split into an active group housed with wheels and a sedentary group housed without wheels for 12 weeks starting at ~24 days of age. Femurs were collected, soft tissues were removed, and femora were micro-computed tomography scanned at a resolution of 12 μm. We then imported these scans into AMIRA and created 3D models of femoral nutrient canals. We tested for evolved differences in various nutrient canal traits between HR and C mice, plastic changes resulting from chronic exercise, and the selection history-by-exercise interaction. We found few differences between the nutrient canals of HR versus C mice, or between the active and sedentary groups. We did find an interaction between selection history and voluntary exercise for the total number of nutrient canals per femur, in which wheel access increased the number of canals in C mice but decreased it in HR mice. Our results do not match those from an earlier study, conducted at generation 11, which was prior to the HR lines reaching selection limits for wheel running. The previous study found that mice from the HR lines had significantly larger total canal cross-sectional areas compared to those from C lines. However, this discrepancy is consistent with studies of other skeletal traits, which have found differences between HR and C mice to be somewhat inconsistent across generations, including the loss of some apparent adaptations with continued selective breeding after reaching a selection limit for wheel-running behavior.
Collapse
Affiliation(s)
- Brandon B Tan
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, California, USA
| | - Nicole E Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, California, USA
| | - Lynn E Copes
- Department of Medical Sciences, Frank H. Netter MD School of Medicine, Quinnipiac University, Hamden, Connecticut, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
2
|
Ming KM, Le Verger K, Geiger M, Schmelzle T, Georgalis GL, Shimbo G, Sasaki M, Ohdachi SD, Sánchez-Villagra MR. Insular dwarfism in horses from the Aegean Sea and the Japanese archipelago. Mamm Biol 2024; 104:345-361. [PMID: 39070961 PMCID: PMC11281976 DOI: 10.1007/s42991-024-00408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/22/2024] [Indexed: 07/30/2024]
Abstract
The horse (Equus caballus) varieties from Skyros and Rhodes islands (Greece) in the Aegean archipelago are extremely small, reaching shoulder heights of only about 1 m. Furthermore, the Japanese archipelago is home to eight small, native horse breeds. We investigated the evolutionary morphology and provided a review of historical documentations of these horses of cultural interest in Greece and Japan, thus providing a comparison of the independent evolution of small size in islands. We integrate cranial data from historical literature with data from newly gathered and curated skulls and analyse a measurement dataset featuring various domestic and mainland horse breeds and varieties. We use non-invasive imaging to study and measure 3D models of the bony labyrinth, housing the inner ear, and the braincase endocast. When considering the effects of allometry by regressing each PC1 scores (for each set of measurements) with the cranial geometric mean from linear measurements as a body size proxy, we show that size explains a large amount of the shape variation in horse crania, the bony labyrinths and brain endocasts. We found high intrabreed variation in all the analysed datasets. Globally, there are at least 30 distinct horse populations on islands, offering the chance to further study processes of convergence in morphological divergence and evaluate the effect of drift and the environment. Supplementary Information The online version contains supplementary material available at 10.1007/s42991-024-00408-4.
Collapse
Affiliation(s)
- Keesha M. Ming
- Department of Paleontology, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Kévin Le Verger
- Department of Paleontology, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Madeleine Geiger
- Naturmuseum St. Gallen, Rorschacher Strasse 263, 9016 St. Gallen, Switzerland
| | - Thomas Schmelzle
- Department of Paleontology, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Georgios L. Georgalis
- Department of Paleontology, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| | - Genya Shimbo
- Institute of Veterinary Medicine, Hokkaido University, Kita-19, Nishi-8, Kita-Ku, Sapporo, 060-0819 Japan
| | - Motoki Sasaki
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555 Japan
| | - Satoshi D. Ohdachi
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-Ku, Sapporo, 060-0819 Japan
| | | |
Collapse
|
3
|
Khan RH, Rhodes JS, Girard IA, Schwartz NE, Garland T. Does Behavior Evolve First? Correlated Responses to Selection for Voluntary Wheel-Running Behavior in House Mice. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:97-117. [PMID: 38728689 DOI: 10.1086/730153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.
Collapse
|
4
|
Hanson M, Hoffman EA, Norell MA, Bhullar BAS. Response to Comment on "The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization". Science 2022; 376:eabl8181. [PMID: 35737783 DOI: 10.1126/science.abl8181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
David et al. claim that vestibular shape does not reflect function and that we did not use phylogenetic inference methods in our primary analyses. We show that their claims are countered by comparative and direct experimental evidence from across Vertebrata and that their models are empirically unverified. We did use phylogenetic methods to test our hypotheses. Moreover, their phylogenetic correction attempts are methodologically inappropriate.
Collapse
Affiliation(s)
- Michael Hanson
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Eva A Hoffman
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Castro AA, Karakostis FA, Copes LE, McClendon HE, Trivedi AP, Schwartz NE, Garland T. Effects of selective breeding for voluntary exercise, chronic exercise, and their interaction on muscle attachment site morphology in house mice. J Anat 2022; 240:279-295. [PMID: 34519035 PMCID: PMC8742976 DOI: 10.1111/joa.13547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscles attach to bone at their origins and insertions, and the interface where tendon meets bone is termed the attachment site or enthesis. Mechanical stresses at the muscle/tendon-bone interface are proportional to the surface area of the bony attachment sites, such that a larger attachment site will distribute loads over a wider area. Muscles that are frequently active and/or are of larger size should cause attachment sites to hypertrophy (training effect); however, experimental studies of animals subjected to exercise have provided mixed results. To enhance our ability to detect training effects (a type of phenotypic plasticity), we studied a mouse model in which 4 replicate lines of High Runner (HR) mice have been selectively bred for 57 generations. Selection is based on the average number of wheel revolutions on days 5 & 6 of a 6-day period of wheel access as young adults (6-8 weeks old). Four additional lines are bred without regard to running and serve as non-selected controls (C). On average, mice from HR lines voluntarily run ~3 times more than C mice on a daily basis. For this study, we housed 50 females (half HR, half C) with wheels (Active group) and 50 (half HR, half C) without wheels (Sedentary group) for 12 weeks starting at weaning (~3 weeks old). We tested for evolved differences in muscle attachment site surface area between HR and C mice, plastic changes resulting from chronic exercise, and their interaction. We used a precise, highly repeatable method for quantifying the three-dimensional (3D) surface area of four muscle attachment sites: the humerus deltoid tuberosity (the insertion point for the spinodeltoideus, superficial pectoralis, and acromiodeltoideus), the femoral third trochanter (the insertion point for the quadratus femoris), the femoral lesser trochanter (the insertion point for the iliacus muscle), and the femoral greater trochanter (insertion point for the middle gluteal muscles). In univariate analyses, with body mass as a covariate, mice in the Active group had significantly larger humerus deltoid tuberosities than Sedentary mice, with no significant difference between HR and C mice and no interaction between exercise treatment and linetype. These differences between Active and Sedentary mice were also apparent in the multivariate analyses. Surface areas of the femoral third trochanter, femoral lesser trochanter, and femoral greater trochanter were unaffected by either chronic wheel access or selective breeding. Our results, which used robust measurement protocols and relatively large sample sizes, demonstrate that muscle attachment site morphology can be (but is not always) affected by chronic exercise experienced during ontogeny. However, contrary to previous results for other aspects of long bone morphology, we did not find evidence for evolutionary coadaptation of muscle attachments with voluntary exercise behavior in the HR mice.
Collapse
Affiliation(s)
- Alberto A. Castro
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Fotios Alexandros Karakostis
- PaleoanthropologyDepartment of GeosciencesSenckenberg Centre for Human Evolution and PalaeoenvironmentUniversity of TübingenTübingenGermany
| | - Lynn E. Copes
- Department of Medical SciencesFrank H. Netter MD School of MedicineQuinnipiac UniversityHamdenConnecticutUSA
| | - Holland E. McClendon
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Aayushi P. Trivedi
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Nicole E. Schwartz
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| |
Collapse
|
6
|
Castro AA, Rabitoy H, Claghorn GC, Garland T. Rapid and longer-term effects of selective breeding for voluntary exercise behavior on skeletal morphology in house mice. J Anat 2021; 238:720-742. [PMID: 33089524 PMCID: PMC7855075 DOI: 10.1111/joa.13341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/24/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Selection experiments can elucidate the varying course of adaptive changes across generations. We examined the appendicular skeleton of house mice from four replicate High Runner (HR) lines bred for physical activity on wheels and four non-selected Control (C) lines. HR mice reached apparent selection limits between generations 17 and 27, running ~3-fold more than C. Studies at generations 11, 16, and 21 found that HR mice had evolved thicker hindlimb bones, heavier feet, and larger articular surface areas of the knee and hip joint. Based on biomechanical theory, any or all of these evolved differences may be beneficial for endurance running. Here, we studied mice from generation 68, plus a limited sample from generation 58, to test whether the skeleton continued to evolve after selection limits were reached. Contrary to our expectations, we found few differences between HR and C mice for these later generations, and some of the differences in bone dimensions identified in earlier generations were no longer statistically significant. We hypothesize that the loss of apparently coadapted lower-level traits reflects (1) deterioration related to a gradual increase in inbreeding and/or (2) additional adaptive changes that replace the functional benefits of some skeletal changes.
Collapse
Affiliation(s)
- Alberto A. Castro
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCAUSA
| | - Hannah Rabitoy
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCAUSA
| | - Gerald C. Claghorn
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCAUSA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|
7
|
Bhagat R, Bertrand OC, Silcox MT. Evolution of arboreality and fossoriality in squirrels and aplodontid rodents: Insights from the semicircular canals of fossil rodents. J Anat 2021; 238:96-112. [PMID: 32812227 PMCID: PMC7754939 DOI: 10.1111/joa.13296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/03/2023] Open
Abstract
Reconstructing locomotor behaviour for fossil animals is typically done with postcranial elements. However, for species only known from cranial material, locomotor behaviour is difficult to reconstruct. The semicircular canals (SCCs) in the inner ear provide insight into an animal's locomotor agility. A relationship exists between the size of the SCCs relative to body mass and the jerkiness of an animal's locomotion. Additionally, studies have also demonstrated a relationship between SCC orthogonality and angular head velocity. Here, we employ two metrics for reconstructing locomotor agility, radius of curvature dimensions and SCC orthogonality, in a sample of twelve fossil rodents from the families Ischyromyidae, Sciuridae and Aplodontidae. The method utilizing radius of curvature dimensions provided a reconstruction of fossil rodent locomotor behaviour that is more consistent with previous studies assessing fossil rodent locomotor behaviour compared to the method based on SCC orthogonality. Previous work on ischyromyids suggests that this group displayed a variety of locomotor modes. Members of Paramyinae and Ischyromyinae have relatively smaller SCCs and are reconstructed to be relatively slower compared to members of Reithroparamyinae. Early members of the Sciuroidea clade including the sciurid Cedromus wilsoni and the aplodontid Prosciurus relictus are reconstructed to be more agile than ischyromyids, in the range of extant arboreal squirrels. This reconstruction supports previous inferences that arboreality was likely an ancestral trait for this group. Derived members of Sciuridae and Aplodontidae vary in agility scores. The fossil squirrel Protosciurus cf. rachelae is inferred from postcranial material as arboreal, which is in agreement with its high agility, in the range of extant arboreal squirrels. In contrast, the fossil aplodontid Mesogaulus paniensis has a relatively low agility score, similar to the fossorial Aplodontia rufa, the only living aplodontid rodent. This result is in agreement with its postcranial reconstruction as fossorial and with previous indications that early aplodontids were more arboreal than their burrowing descendants.
Collapse
Affiliation(s)
- Raj Bhagat
- Department of AnthropologyUniversity of Toronto ScarboroughTorontoONCanada
| | | | - Mary T. Silcox
- Department of AnthropologyUniversity of Toronto ScarboroughTorontoONCanada
| |
Collapse
|
8
|
Morimoto N, Kunimatsu Y, Nakatsukasa M, Ponce de León MS, Zollikofer CPE, Ishida H, Sasaki T, Suwa G. Variation of bony labyrinthine morphology in Mio−Plio−Pleistocene and modern anthropoids. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:276-292. [DOI: 10.1002/ajpa.24098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 03/06/2020] [Accepted: 05/17/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Naoki Morimoto
- Laboratory of Physical Anthropology Graduate School of Science, Kyoto University Kyoto Japan
| | - Yutaka Kunimatsu
- Faculty of Business Administration Ryukoku University Fushimi, Kyoto Japan
| | - Masato Nakatsukasa
- Laboratory of Physical Anthropology Graduate School of Science, Kyoto University Kyoto Japan
| | | | | | | | | | - Gen Suwa
- University Museum, University of Tokyo Hongo, Bunkyo‐ku, Tokyo Japan
| |
Collapse
|
9
|
Potapova EG. Morphological Specificity of the Auditory Capsule of Sciurid (Sciuridae, Rodentia). BIOL BULL+ 2020. [DOI: 10.1134/s1062359019070094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Zherebtsova OV, Potapova EG. Pathways and Level of Morphological Adaptations in Modern Diatomyidae and Ctenodactylidae (Rodentia). BIOL BULL+ 2020. [DOI: 10.1134/s1062359019070124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Pfaff C, Schultz JA, Schellhorn R. The vertebrate middle and inner ear: A short overview. J Morphol 2019; 280:1098-1105. [PMID: 30117612 PMCID: PMC6766920 DOI: 10.1002/jmor.20880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 01/11/2023]
Abstract
The evolution of the various hearing adaptations is connected to major structural changes in nearly all groups of vertebrates. Besides hearing, the detection of acceleration and orientation in space are key functions of this mechanosensory system. The symposium "show me your ear - the inner and middle ear in vertebrates" held at the 11th International Congress of Vertebrate Morphology (ICVM) 2016 in Washington, DC (USA) intended to present current research addressing adaptation and evolution of the vertebrate otic region, auditory ossicles, vestibular system, and hearing physiology. The symposium aimed at an audience with interest in hearing research focusing on morphological, functional, and comparative studies. The presented talks and posters lead to the contributions of this virtual issue highlighting recent advances in the vertebrate balance and hearing system. This article serves as an introduction to the virtual issue contributions and intends to give a short overview of research papers focusing on vertebrate labyrinth and middle ear related structures in past and recent years.
Collapse
Affiliation(s)
- Cathrin Pfaff
- University of Vienna, Department of PalaeontologyViennaAustria
| | - Julia A. Schultz
- University of Chicago, Department of Organismal Biology and AnatomyChicagoIllinoisUSA
- Rheinische Friedrich‐Wilhelms‐Universität Bonn, Steinmann Institut für Geologie, Mineralogie und PaläontologieBonnGermany
| | - Rico Schellhorn
- Rheinische Friedrich‐Wilhelms‐Universität Bonn, Steinmann Institut für Geologie, Mineralogie und PaläontologieBonnGermany
| |
Collapse
|
12
|
Lewton KL, Ritzman T, Copes LE, Garland T, Capellini TD. Exercise‐induced loading increases ilium cortical area in a selectively bred mouse model. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:543-551. [DOI: 10.1002/ajpa.23770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Kristi L. Lewton
- Department of Integrative Anatomical Sciences Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Biological Sciences Human & Evolutionary Biology Section, University of Southern California, Los Angeles, CA
- Department of Human Evolutionary Biology Harvard University, Cambridge, MA
| | - Terrence Ritzman
- Department of Neuroscience Washington University School of Medicine, St. Louis, MO
- Department of Anthropology Washington University St. Louis, MO
- Human Evolution Research Institute University of Cape Town, Cape Town, South Africa
| | - Lynn E. Copes
- Department of Medical Sciences, Frank H. Netter MD School of Medicine Quinnipiac University, Hamden, CT
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside, Riverside, CA
| | | |
Collapse
|
13
|
Gonzales LA, Malinzak MD, Kay RF. Intraspecific variation in semicircular canal morphology—A missing element in adaptive scenarios? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168:10-24. [DOI: 10.1002/ajpa.23692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/06/2018] [Accepted: 07/12/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Lauren A. Gonzales
- Department of Biomedical Sciences University of South Carolina School of Medicine‐Greenville Greenville South Carolina
| | - Michael D. Malinzak
- Department of Evolutionary Anthropology Duke University Durham North Carolina
- Department of Radiology Duke University School of Medicine Durham North Carolina
| | - Richard F. Kay
- Department of Evolutionary Anthropology Duke University Durham North Carolina
| |
Collapse
|
14
|
Abstract
The cavity system of the inner ear—the so-called bony labyrinth—houses the senses of balance and hearing. This structure is embedded in dense petrous bone, fully formed by birth and generally well preserved in human skeletal remains, thus providing a rich source of morphological information about past populations. Here we show that labyrinthine morphology tracks genetic distances and geography in an isolation-by-distance model with dispersal from Africa. Because petrous bones have become prime targets of ancient DNA recovery, we propose that all destructive studies first acquire high-resolution 3D computed-tomography data prior to any invasive sampling. Such data will constitute an important archive of morphological variation in past and present populations, and will permit individual-based genotype–phenotype comparisons. The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype–phenotype comparisons.
Collapse
|
15
|
Castro AA, Garland T. Evolution of hindlimb bone dimensions and muscle masses in house mice selectively bred for high voluntary wheel-running behavior. J Morphol 2018. [DOI: 10.1002/jmor.20809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alberto A. Castro
- Department of Evolution, Ecology, and Organismal Biology; University of California, Riverside; Riverside California 92521
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology; University of California, Riverside; Riverside California 92521
| |
Collapse
|
16
|
Copes LE, Schutz H, Dlugsoz EM, Judex S, Garland T. Locomotor activity, growth hormones, and systemic robusticity: An investigation of cranial vault thickness in mouse lines bred for high endurance running. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:442-458. [DOI: 10.1002/ajpa.23446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Affiliation(s)
- L. E. Copes
- Department of Medical Sciences, Frank H. Netter MD School of MedicineQuinnipiac UniversityHamden Connecticut06518
| | - H. Schutz
- Department of BiologyPacific Lutheran UniversityTacoma Washington, DC98447
| | - E. M. Dlugsoz
- Department of BiologyUniversity of CaliforniaRiverside, Riverside California92521
| | - S. Judex
- Department of Biomedical EngineeringStony Brook UniversityStony Brook New York11794
| | - T. Garland
- Department of BiologyUniversity of CaliforniaRiverside, Riverside California92521
| |
Collapse
|
17
|
Size Variation under Domestication: Conservatism in the inner ear shape of wolves, dogs and dingoes. Sci Rep 2017; 7:13330. [PMID: 29042574 PMCID: PMC5645459 DOI: 10.1038/s41598-017-13523-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/25/2017] [Indexed: 11/08/2022] Open
Abstract
A broad sample of wolves, dingoes, and domesticated dogs of different kinds and time periods was used to identify changes in size and shape of the organs of balance and hearing related to domestication and to evaluate the potential utility of uncovered patterns as markers of domestication. Using geometric morphometrics coupled with non-invasive imaging and three-dimensional reconstructions, we exposed and compared complex structures that remain largely conserved. There is no statistically significant difference in the levels of shape variation between prehistoric and modern dogs. Shape variance is slightly higher for the different components of the inner ear in modern dogs than in wolves, but these differences are not significant. Wolves express a significantly greater level of variance in the angle between the lateral and the posterior canal than domestic dog breeds. Wolves have smaller levels of size variation than dogs. In terms of the shape of the semicircular canals, dingoes reflect the mean shape in the context of variation in the sample. This mirrors the condition of feral forms in other organs, in which there is an incomplete return to the characteristics of the ancestor. In general, morphological diversity or disparity in the inner ear is generated by scaling.
Collapse
|
18
|
Dickson BV, Sherratt E, Losos JB, Pierce SE. Semicircular canals in Anolis lizards: ecomorphological convergence and ecomorph affinities of fossil species. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170058. [PMID: 29134056 PMCID: PMC5666239 DOI: 10.1098/rsos.170058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Anolis lizards are a model system for the study of adaptive radiation and convergent evolution. Greater Antillean anoles have repeatedly evolved six similar forms or ecomorphs: crown-giant, grass-bush, twig, trunk, trunk-crown and trunk-ground. Members of each ecomorph category possess a specific set of morphological, ecological and behavioural characteristics which have been acquired convergently. Here we test whether the semicircular canal system-the organ of balance during movement-is also convergent among ecomorphs, reflecting the shared sensory requirements of their ecological niches. As semicircular canal shape has been shown to reflect different locomotor strategies, we hypothesized that each Anolis ecomorph would have a unique canal morphology. Using three-dimensional semilandmarks and geometric morphometrics, semicircular canal shape was characterized in 41 Anolis species from the Greater Antilles and the relationship between canal shape and ecomorph grouping, phylogenetic history, size, head dimensions, and perch characteristics was assessed. Further, canal morphology of modern species was used to predict the ecomorph affinity of five fossil anoles from the Miocene of the Dominican Republic. Of the covariates tested, our study recovered ecomorph as the single-most important covariate of canal morphology in modern taxa; although phylogenetic history, size, and head dimensions also showed a small, yet significant correlation with shape. Surprisingly, perch characteristics were not found to be significant covariates of canal shape, even though they are important habitat variables. Using posterior probabilities, we found that the fossil anoles have different semicircular canals shapes to modern ecomorph groupings implying extinct anoles may have been interacting with their Miocene environment in different ways to modern Anolis species.
Collapse
Affiliation(s)
- Blake V. Dickson
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jonathan B. Losos
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
19
|
Claghorn GC, Thompson Z, Kay JC, Ordonez G, Hampton TG, Garland T. Selective Breeding and Short-Term Access to a Running Wheel Alter Stride Characteristics in House Mice. Physiol Biochem Zool 2017. [DOI: 10.1086/692909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Wallace IJ, Garland T. Mobility as an emergent property of biological organization: Insights from experimental evolution. Evol Anthropol 2016; 25:98-104. [DOI: 10.1002/evan.21481] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Pfaff C, Martin T, Ruf I. Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia). Proc Biol Sci 2016; 282:20150744. [PMID: 26019162 DOI: 10.1098/rspb.2015.0744] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The semicircular canals (SCs) of the inner ear detect angular acceleration and are located in the bony labyrinth of the petrosal bone. Based on high-resolution computed tomography, we created a size-independent database of the bony labyrinth of 50 mammalian species especially rodents of the squirrel-related clade comprising taxa with fossorial, arboreal and gliding adaptations. Our sampling also includes gliding marsupials, actively flying bats, the arboreal tree shrew and subterranean species. The morphometric anatomy of the SCs was correlated to the locomotion mode. Even if the phylogenetic signal cannot entirely be excluded, the main significance for functional morphological studies has been found in the diameter of the SCs, whereas the radius of curvature is of minor interest. Additionally, we found clear differences in the bias angle of the canals between subterranean and gliding taxa, but also between sciurids and glirids. The sensitivity of the inner ear correlates with the locomotion mode, with a higher sensitivity of the SCs in fossorial species than in flying taxa. We conclude that the inner ear of flying and gliding mammals is less sensitive due to the large information flow into this sense organ during locomotion.
Collapse
Affiliation(s)
- Cathrin Pfaff
- Department of Palaeontology, Geozentrum, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Thomas Martin
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, Bonn 53115, Germany
| | - Irina Ruf
- Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Abteilung Paläoanthropologie und Messelforschung, Senckenberganlage 25, Frankfurt am Main 60325, Germany
| |
Collapse
|
22
|
Abstract
The inner ear of mammals consists of the cochlea, which is involved with the sense of hearing, and the vestibule and three semicircular canals, which are involved with the sense of balance. Although different regions of the inner ear contribute to different functions, the bony chambers and membranous ducts are morphologically continuous. The gross anatomy of the cochlea that has been related to auditory physiologies includes overall size of the structure, including volume and total spiral length, development of internal cochlear structures, including the primary and secondary bony laminae, morphology of the spiral nerve ganglion, and the nature of cochlear coiling, including total number of turns completed by the cochlear canal and the relative diameters of the basal and apical turns. The overall sizes, shapes, and orientations of the semicircular canals are related to sensitivity to head rotations and possibly locomotor behaviors. Intraspecific variation, primarily in the shape and orientation of the semicircular canals, may provide additional clues to help us better understand form and function of the inner ear.
Collapse
Affiliation(s)
- Eric G. Ekdale
- Department of BiologySan Diego State UniversitySan DiegoCAUSA
- Department of PaleontologySan Diego Natural History MuseumSan DiegoCAUSA
| |
Collapse
|
23
|
Storz JF, Bridgham JT, Kelly SA, Garland T. Genetic approaches in comparative and evolutionary physiology. Am J Physiol Regul Integr Comp Physiol 2015; 309:R197-214. [PMID: 26041111 PMCID: PMC4525326 DOI: 10.1152/ajpregu.00100.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/23/2015] [Indexed: 01/04/2023]
Abstract
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska;
| | - Jamie T Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - Scott A Kelly
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio; and
| | - Theodore Garland
- Department of Biology, University of California, Riverside, Riverside, California
| |
Collapse
|
24
|
Wallace IJ, Pagnotti GM, Rubin-Sigler J, Naeher M, Copes LE, Judex S, Rubin CT, Demes B. Focal enhancement of the skeleton to exercise correlates with responsivity of bone marrow mesenchymal stem cells rather than peak external forces. ACTA ACUST UNITED AC 2015; 218:3002-9. [PMID: 26232415 DOI: 10.1242/jeb.118729] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 07/20/2015] [Indexed: 01/06/2023]
Abstract
Force magnitudes have been suggested to drive the structural response of bone to exercise. As importantly, the degree to which any given bone can adapt to functional challenges may be enabled, or constrained, by regional variation in the capacity of marrow progenitors to differentiate into bone-forming cells. Here, we investigate the relationship between bone adaptation and mesenchymal stem cell (MSC) responsivity in growing mice subject to exercise. First, using a force plate, we show that peak external forces generated by forelimbs during quadrupedal locomotion are significantly higher than hindlimb forces. Second, by subjecting mice to treadmill running and then measuring bone structure with μCT, we show that skeletal effects of exercise are site-specific but not defined by load magnitudes. Specifically, in the forelimb, where external forces generated by running were highest, exercise failed to augment diaphyseal structure in either the humerus or radius, nor did it affect humeral trabecular structure. In contrast, in the ulna, femur and tibia, exercise led to significant enhancements of diaphyseal bone areas and moments of area. Trabecular structure was also enhanced by running in the femur and tibia. Finally, using flow cytometry, we show that marrow-derived MSCs in the femur are more responsive to exercise-induced loads than humeral cells, such that running significantly lowered MSC populations only in the femur. Together, these data suggest that the ability of the progenitor population to differentiate toward osteoblastogenesis may correlate better with bone structural adaptation than peak external forces caused by exercise.
Collapse
Affiliation(s)
- Ian J Wallace
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Gabriel M Pagnotti
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jasper Rubin-Sigler
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Matthew Naeher
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lynn E Copes
- Department of Medical Sciences, Quinnipiac University, Hamden, CT 06518, USA
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|