1
|
García Antón A, Müller W, García-Campa J, Cuervo JJ, Mayor-Fidalgo L, Cubas N, Lopez-Arrabe J, Morales J. Forecasting the future? Differential allocation of maternal hormones under different social contexts in the blue tit Cyanistes caeruleus. ROYAL SOCIETY OPEN SCIENCE 2025; 12:250150. [PMID: 40177103 PMCID: PMC11961257 DOI: 10.1098/rsos.250150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Sociability, i.e. the tendency to interact with other individuals, varies significantly within populations, with some individuals being consistently more sociable than others. Variation may be maintained because the balance between costs (e.g. increase in aggressive disputes, infection risk) and benefits (e.g. information exchange, cooperation) of sociability varies with the environmental context. At the proximate level, apart from genes, mothers transfer non-genetic compounds to their offspring that can influence the development of social skills. In this context, they may adjust their offspring's sociability to match the social environment they will experience after birth, for example, via prenatal hormones. To test this, we experimentally manipulated the social density as perceived by blue tit females before egg laying. We subsequently measured yolk testosterone concentrations and social interactions among family members post-hatching. Females that were exposed to a simulated high social density transferred less testosterone to their eggs than control females. Network average degree (i.e. the number of social interactions of the brood) was not affected by the social density treatment, but broods with lower yolk testosterone concentrations showed a higher network average degree. This suggests that mothers experiencing an environment with high social density (but not increased resource competition) deposit less yolk testosterone to produce offspring that are probably less aggressive but more sociable.
Collapse
Affiliation(s)
- Alejandro García Antón
- Universiteit Antwerpen, Antwerpen, Belgium
- National Museum of Natural Sciences, Madrid, Spain
| | - Wendt Müller
- Department of biology, Universiteit Antwerpen, Antwerpen, Belgium
| | - Jorge García-Campa
- Department of Evolutionary Ecology, National Museum of Natural Sciences, Madrid, Spain
- CIBIO-InBIO, Universidade do Porto, Vairão, Portugal
| | - José Javier Cuervo
- Department of Evolutionary Ecology, National Museum of Natural Sciences, Madrid, Spain
| | - Lucía Mayor-Fidalgo
- Department of Evolutionary Ecology, National Museum of Natural Sciences, Madrid, Spain
| | - Nazaret Cubas
- Department of Evolutionary Ecology, National Museum of Natural Sciences, Madrid, Spain
| | - Jimena Lopez-Arrabe
- Department of Physiology, Complutense University of Madrid Faculty of Veterinary, Madrid, Spain
| | - Judith Morales
- Department of Evolutionary Ecology, National Museum of Natural Sciences, Madrid, Spain
| |
Collapse
|
2
|
Domínguez-Castanedo O, Valdez-Carbajal S. Developmental ecology in embryos of an estuarine pupfish endemic of the Yucatan peninsula: Survival out of water, metabolic depression, and asynchronous hatching. Dev Dyn 2025; 254:61-73. [PMID: 39166847 DOI: 10.1002/dvdy.732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Theory predicts that drought-resistant embryos with extended incubations are evolutionarily favored in environments with high mortality of larvae but safe for eggs. Here, we experimentally test, under common garden conditions, the effect of three incubation temperatures and media on embryonic developmental length, extended incubation out of the water, survival, metabolic rate, and hatching dynamics in the estuarine pupfish Garmanella pulchra. We also described the morphological changes of embryonic cortical structures related to air exposure. RESULTS We found that embryos incubated out of water in low and medium temperatures present an extended incubation period beyond their hatching capability with a deep metabolic depression. Also, these embryos exhibited a hatching asynchrony not related to water availability. Embryos incubated at high temperatures did not show extended incubation, with decreased probability of survival out of water. Our morphological observations of the embryonic cortical structures reveal that the perivitelline space and hair-like filaments buffer the deleterious drought effects. CONCLUSIONS Our results reveal that G. pulchra possesses life-history traits typical of two separate phenomena: delay hatching and diapause; supporting a true continuum between them, rather than a dichotomy. The evolution of these traits may respond to aerial exposure during low tides in the estuaries of Yucatán they inhabit.
Collapse
Affiliation(s)
- Omar Domínguez-Castanedo
- Asociación Mexicana para el Estudio y Conservación de Cyprinodontiformes, Ciudad de Mexico, Mexico
| | - Sharon Valdez-Carbajal
- Maestría en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
3
|
Spence-Jones HC, Pein CM, Shama LNS. Intergenerational effects of ocean temperature variation: Early life benefits are short-lived in threespine stickleback. PLoS One 2024; 19:e0307030. [PMID: 39093894 PMCID: PMC11296643 DOI: 10.1371/journal.pone.0307030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Current climate change models predict an increase in temperature variability and extreme events such as heatwaves, and organisms need to cope with consequent changes to environmental variation. Non-genetic inheritance mechanisms can enable parental generations to prime their offspring's abilities to acclimate to environmental change-but they may also be deleterious. When parents are exposed to predictable environments, intergenerational plasticity can lead to better offspring trait performance in matching environments. Alternatively, parents exposed to variable or unpredictable environments may use plastic bet-hedging strategies to adjust the phenotypic variance among offspring. Here, we used a model species, the threespine stickleback (Gasterosteus aculeatus), to test whether putatively adaptive intergenerational effects can occur in response to shifts in environmental variation as well as to shifts in environmental mean, and whether parents employ plastic bet-hedging strategies in response to increasing environmental variation. We used a full-factorial, split-clutch experiment with parents and offspring exposed to three temperature regimes: constant, natural variation, and increased variation. We show that within-generation exposure to increased temperature variation reduces growth of offspring, but having parents that were exposed to natural temperature variation during gametogenesis may offset some early-life negative growth effects. However, these mitigating intergenerational effects do not appear to persist later in life. We found no indication that stickleback mothers plastically altered offspring phenotypic variance (egg size or clutch size) in response to temperature variation. However, lower inter-individual variance of juvenile fish morphology in offspring of increased variation parents may imply the presence of conservative bet-hedging strategies in natural populations. Overall, in our experiment, parental exposure to temperature variation had limited effects on offspring fitness-related traits. Natural levels of environmental variation promoted a potentially adaptive intergenerational response in early life development, but under more challenging conditions associated with increased environmental variation, the effect was lost.
Collapse
Affiliation(s)
- Helen Clare Spence-Jones
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, List, Germany
| | - Carla M. Pein
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, List, Germany
| | - Lisa N. S. Shama
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, List, Germany
| |
Collapse
|
4
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
5
|
Walsh MR, Christian A, Feder M, Korte M, Tran K. Are parental condition transfer effects more widespread than is currently appreciated? J Exp Biol 2024; 227:jeb246094. [PMID: 38449326 DOI: 10.1242/jeb.246094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
It has long been recognized that the environment experienced by parents can influence the traits of offspring (i.e. 'parental effects'). Much research has explored whether mothers respond to predictable shifts in environmental signals by modifying offspring phenotypes to best match future conditions. Many organisms experience conditions that theory predicts should favor the evolution of such 'anticipatory parental effects', but such predictions have received limited empirical support. 'Condition transfer effects' are an alternative to anticipatory effects that occur when the environment experienced by parents during development influences offspring fitness. Condition transfer effects occur when parents that experience high-quality conditions produce offspring that exhibit higher fitness irrespective of the environmental conditions in the offspring generation. Condition transfer effects are not driven by external signals but are instead a byproduct of past environmental quality. They are also likely adaptive but have received far less attention than anticipatory effects. Here, we review the generality of condition transfer effects and show that they are much more widespread than is currently appreciated. Condition transfer effects are observed across taxa and are commonly associated with experimental manipulations of resource conditions experienced by parents. Our Review calls for increased research into condition transfer effects when considering the role of parental effects in ecology and evolution.
Collapse
Affiliation(s)
- Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Anne Christian
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mikaela Feder
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Meghan Korte
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kevin Tran
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
6
|
Göpel T, Burggren WW. Temperature and hypoxia trigger developmental phenotypic plasticity of cardiorespiratory physiology and growth in the parthenogenetic marbled crayfish, Procambarus virginalis Lyko, 2017. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111562. [PMID: 38113959 DOI: 10.1016/j.cbpa.2023.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Attempting to differentiate phenotypic variation caused by environmentally-induced alterations in gene expression from that caused by actual allelic differences can be experimentally difficult. Environmental variables must be carefully controlled and then interindividual genetic differences ruled out as sources of phenotypic variation. We investigated phenotypic variability of cardiorespiratory physiology as well as biometric traits in the parthenogenetically-reproducing marbled crayfish Procambarus virginalis Lyko, 2017, all offspring being genetically identical clones. Populations of P. virginalis were reared from eggs tank-bred at four different temperatures (16, 19, 22 and 25 °C) or two different oxygen levels (9.5 and 20 kPa). Then, at Stage 3 and 4 juvenile stages, physiological (heart rate, oxygen consumption) and morphological (carapace length, body mass) variables were measured. Heart rate and oxygen consumption measured at 23 °C showed only small effects of rearing temperature in Stage 3 juveniles, with larger effects evident in older, Stage 4 juveniles. Additionally, coefficients of variation were calculated to compare our data to previously published data on P. virginalis as well as sexually-reproducing crayfish. Comparison revealed that carapace length, body mass and heart rate (but not oxygen consumption) indeed showed lower, yet notable coefficients of variation in clonal crayfish. Yet, despite being genetically identical, significant variation in their morphology and physiology in response to different rearing conditions nonetheless occurred in marbled crayfish. This suggests that epigenetically induced phenotypic variation might play a significant role in asexual but also sexually reproducing species.
Collapse
Affiliation(s)
- Torben Göpel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA; Multiscale Biology, Georg-August-Universität Göttingen, Göttingen, Germany.
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
7
|
Sánchez de Pedro R, Fernández AN, Melero-Jiménez IJ, García-Sánchez MJ, Flores-Moya A, Bañares-España E. Temporal and spatial variability in population traits of an intertidal fucoid reveals local-scale climatic refugia. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106006. [PMID: 37182324 DOI: 10.1016/j.marenvres.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Global change is imposing significant losses in the functional traits of marine organisms. Although areas of climatic refugia ameliorate local conditions and help them to persist, the extent to which mesoscale effects contribute for intraregional variability on population traits and conservation is uncertain. Here we assess patterns of conservation status of Fucus guiryi, the main intertidal habitat-forming seaweed in the Strait of Gibraltar (southern Spain and northern Morocco). We investigated the demography, reproductive phenology, and morphology at northern and southern side populations. Population traits were compared seasonally within populations from each side, and at spatial scale in early summer 2019. In the last decade three populations became extinct; two marginal populations had dispersed individuals with a narrower fertility season and miniaturized individuals below 3 cm; and five populations showed variable density and cover with more than 20% of reproductive individuals over the seasons. Highest density, cover, morphology, and reproductive potential was detected at one population from each side, suggesting local-scale climatic refugia in upwelling areas located inside marine protected areas. Southern recruits were more warm-tolerant but grew less at colder conditions than northern ones, revealing a mesoscale heterogeneity in thermal affinities. This study evidenced functional losses and distinct reproductive strategies experienced by F. guiryi at peripheral locations and urges to prioritize its conservation and restoration at contemporary climatic refugia.
Collapse
Affiliation(s)
- Raquel Sánchez de Pedro
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain.
| | - Andrea N Fernández
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain
| | - Ignacio José Melero-Jiménez
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain; Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - María Jesús García-Sánchez
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain
| | - Antonio Flores-Moya
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain
| | - Elena Bañares-España
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain
| |
Collapse
|
8
|
Usinowicz J, O'Connor MI. The fitness value of ecological information in a variable world. Ecol Lett 2023; 26:621-639. [PMID: 36849871 DOI: 10.1111/ele.14166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 03/01/2023]
Abstract
Information processing is increasingly recognized as a fundamental component of life in variable environments, including the evolved use of environmental cues, biomolecular networks, and social learning. Despite this, ecology lacks a quantitative framework for understanding how population, community, and ecosystem dynamics depend on information processing. Here, we review the rationale and evidence for 'fitness value of information' (FVOI), and synthesize theoretical work in ecology, information theory, and probability behind this general mathematical framework. The FVOI quantifies how species' per capita population growth rates can depend on the use of information in their environment. FVOI is a breakthrough approach to linking information processing and ecological and evolutionary outcomes in a changing environment, addressing longstanding questions about how information mediates the effects of environmental change and species interactions.
Collapse
Affiliation(s)
- Jacob Usinowicz
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Mary I O'Connor
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Ruiz-Raya F, Noguera JC, Velando A. Light received by embryos promotes postnatal junior phenotypes in a seabird. Behav Ecol 2022. [DOI: 10.1093/beheco/arac079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Light is a salient and variable ecological factor that can impact developmental trajectories of vertebrate embryos, yet whether prenatal light environment can act as an anticipatory cue preparing organisms to cope with postnatal conditions is still unclear. In asynchronous birds, last-laid eggs are particularly exposed to sunlight as parental incubation behavior becomes intermittent after the hatching of senior chicks. Here, we explore whether natural variations in prenatal light exposure shape the distinctive phenotype showed by last-hatched chicks of a semi-precocial seabird, the yellow-legged gull (Larus michahellis), potentially preparing them to cope with the postnatal competitive context. To do this, we manipulated the amount of light received by last-laid eggs (within a natural range) during last stages of embryonic development. Prenatal exposure to light cues promoted the development of the resilient “junior phenotype” exhibited by last-hatched gull chicks, characterized by accelerated hatching, increased begging behavior and a slower growth rate. These developmental and behavioral adjustments were accompanied by down-regulation of genes involved in metabolism and development regulation (SOD2 and TRalpha), as well as changes in the HPA-axis functioning (lower baseline corticosterone and robust adrenocortical response). Junior chicks exposed to light cues during the embryonic development showed longer telomeres during the early postnatal period, suggesting that light-induced adjustments could allow them to buffer the competitive disadvantages associated with hatching asynchrony. Our study provides evidence that postnatal junior phenotypes are, at least in part, prenatally shaped by light cues that act during a critical temporal window of developmental sensitivity.
Collapse
Affiliation(s)
- Francisco Ruiz-Raya
- Centro de Investigación Mariña, Universidade de Vigo, Grupo de Ecoloxía Animal , Vigo 36310 , Spain
| | - Jose C Noguera
- Centro de Investigación Mariña, Universidade de Vigo, Grupo de Ecoloxía Animal , Vigo 36310 , Spain
| | - Alberto Velando
- Centro de Investigación Mariña, Universidade de Vigo, Grupo de Ecoloxía Animal , Vigo 36310 , Spain
| |
Collapse
|
10
|
Omar DC, Sharon VC, Alejandra MB, M Muñoz-Campos T. How maternal age and environmental cues influence embryonic developmental pathways and diapause dynamics in a North American annual killifish. Dev Dyn 2022; 251:1848-1861. [PMID: 35766167 DOI: 10.1002/dvdy.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/26/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Temporary pools are variable environments with seasonal drought/flood phases. Annual killifish have adapted to life in temporary pools by producing embryos that undergo diapause to traverse the dry phase. To fill existing knowledge gaps about embryo diapause regulation and evolution in annual killifishes, we test the effect of maternal age, incubation temperature, and incubation medium on diapause induction and length in Millerichthys robustus, the only North American fish species that has evolved an annual life history. RESULTS All embryos at extreme temperatures follow a defined developmental pathway: skipping diapause at 30°C, and entering diapause at 18°C, both regardless of maternal age, and incubation medium. However, maternal age, and incubation medium influenced whether diapause is entered, and time arrested in diapause for embryos incubated at 25°C. At 25°C, five-week-old, and 52-week-old females produced more embryos that entered diapause than 26-week-old females. Also, embryos incubated in aqueous medium skipped diapause more frequently at this intermediate temperature. CONCLUSIONS Millerichthys developmental dynamics associated with maternal age under intermediate range of temperatures are likely adapted to the particular patterns of flood/drought in North American temporary pools. Millerichthys also exhibits developmental patterns largely comparable with other annual fishes, probably due to common seasonal patterns in temporary pools.
Collapse
Affiliation(s)
| | - Valdez-Carbajal Sharon
- Licenciatura en Biología, Universidad Autónoma Metropolitana, unidad Xochimilco, CDMX, Mexico
| | - Martínez-Blancas Alejandra
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Tessy M Muñoz-Campos
- Licenciatura en Biología, Universidad Autónoma Metropolitana, unidad Xochimilco, CDMX, Mexico
| |
Collapse
|
11
|
Protogynous functional hermaphroditism in the North American annual killifish, Millerichthys robustus. Sci Rep 2022; 12:9230. [PMID: 35654924 PMCID: PMC9163151 DOI: 10.1038/s41598-022-12947-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/19/2022] [Indexed: 11/09/2022] Open
Abstract
Sex change (sequential hermaphroditism) has evolved repeatedly in teleost fishes when demographic conditions mediate fundamentally different sex-specific returns for individuals of particular age and size. We investigated the conditions for potential sex change in an annual killifish (Millerichthys robustus) from temporary pools in Mexico. In natural populations, we detected adults with intersex colouration and gonads. Therefore, we experimentally tested whether this apparent sex change can be generated by manipulation of ecological and social conditions, rather than being caused by environmental disturbance. We demonstrated functional protogynous (female-to-male) sex change in 60% replicates, when groups of five females interacted and had a visual and olfactory cue of a male. Only one female changed sex in any given replicate. The sex change never occurred in isolated females. Protandrous (male-to-female) hermaphroditism was not recorded. We characterized gradual changes in behaviour, colouration and gonad structure during the sex change process. The first behavioural signs of sex change were observed after 23 days. Secondary males spawned successfully after 75 days. We discuss the adaptive potential of sex change in short-lived annual fishes through the seasonal decline of males, and during colonization of new habitats. This is the first observation of functional hermaphroditism in an annual killifish.
Collapse
|
12
|
Valladares MA, Fabres AA, Collado GA, Sáez PA, Méndez MA. Coping With Dynamism: Phylogenetics and Phylogeographic Analyses Reveal Cryptic Diversity in Heleobia Snails of Atacama Saltpan, Chile. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.869626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The species that inhabit systems highly affected by anthropic activities usually exhibit this external influence in their gene pool. In this study, we investigated the genetic patterns of populations of Heleobia atacamensis, a freshwater microgastropod endemic to the Atacama Saltpan, a system historically exposed to environmental changes, and currently subjected to conditions associated with metallic and non-metallic mining and other anthropic activities. Molecular analyses based on nuclear and mitochondrial sequences indicate that the saltpan populations are highly fragmented and that the genetic structure is mainly explained by historical geographic isolation, with little influence of contemporary factors. The microsatellite results suggest a moderate genetic diversity and sharp differentiation mediated by isolation by distance. Additionally, despite the high environmental heterogeneity detected and the marked historical dynamism of the region, our data reveal no signs of demographic instability. The patterns of contemporary gene flow suggest a change in the current genetic structure, based on the geographic proximity and specific environmental conditions for each population. Our results, highlight the role of fragmentation as a modulator of genetic diversity, but also suggest that the historical persistence of isolated populations in naturally dynamic environments could explain the apparent demographic stability detected.
Collapse
|
13
|
Plaisir CA, King WJ, Forsyth DM, Festa-Bianchet M. Effects of rainfall, forage biomass, and population density, on survival and growth of juvenile kangaroos. J Mammal 2022. [DOI: 10.1093/jmammal/gyab132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
A central goal of ecology is to understand how environmental variation affects populations. Long-term studies of marked individuals can quantify the effects of environmental variation on key life-history traits. We monitored the survival and growth of 336 individually marked juvenile eastern grey kangaroos (Macropus giganteus), a large herbivore living in a seasonal but unpredictable environment. During our 12-year study, the population experienced substantial variation in rainfall, forage biomass, and density. We used structural equation modeling to determine how variation in temperature and rainfall affected juvenile survival and growth through its effect on forage biomass and population density. Independently of population density, forage biomass had strong positive effects on survival from 10 to 21 months. At low population density, forage biomass also had a positive effect on skeletal growth to 26 months. Increasing maternal body condition improved rearing success for daughters but not for sons. High population density reduced skeletal growth to 26 months for both sexes. Rainfall had an increasingly positive effect on forage biomass at high temperatures, indicating a seasonal effect on food availability. Our study reveals interacting effects of environmental variation on juvenile survival and growth for a large mammal with a conservative reproductive strategy that experiences substantial stochasticity in food availability.
Collapse
Affiliation(s)
- Charles-Alexandre Plaisir
- Département de Biologie, Université de Sherbrooke, 2500, Boulevard de l’Université, Sherbrooke, QC J1K 2R1, Canada
| | - Wendy J King
- Département de Biologie, Université de Sherbrooke, 2500, Boulevard de l’Université, Sherbrooke, QC J1K 2R1, Canada
- Research School of Biology, Australian National University, 134, Linnaeus Way, Acton, ACT 2601, Australia
| | - David M Forsyth
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, 1447 Forest Road, Orange, NSW 2800, Australia
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Marco Festa-Bianchet
- Département de Biologie, Université de Sherbrooke, 2500, Boulevard de l’Université, Sherbrooke, QC J1K 2R1, Canada
- Research School of Biology, Australian National University, 134, Linnaeus Way, Acton, ACT 2601, Australia
| |
Collapse
|
14
|
Gould J, Clulow J, Clulow S. High clutch failure rate due to unpredictable rainfall for an ephemeral pool-breeding frog. Oecologia 2022; 198:699-710. [PMID: 35247072 PMCID: PMC8956532 DOI: 10.1007/s00442-022-05139-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/15/2022] [Indexed: 12/04/2022]
Abstract
Animals that reproduce in temporary aquatic systems expose their offspring to a heightened risk of desiccation, as they must race to complete development and escape before water levels recede. Adults must therefore synchronise reproduction with the changing availability of water, yet the conditions they experience to trigger such an event may not relate to those offspring face throughout development, potentially leading to clutch failure. The sandpaper frog (Lechriodus fletcheri) breeds in ephemeral pools that dry within days to weeks after rainfall has ceased. We examined whether spawning frequency and offspring survival differed across two consecutive breeding seasons based on (1) rainfall at the moment of oviposition and throughout offspring development, and (2) pool volume, given their combined effect on hydroperiod. Reproduction was triggered by rainfall, with more spawn laid during periods of greater rainfall and in larger pools. While pool size was a predictor of offspring survival, rainfall during oviposition was not. Rather, follow-up rain events were required to prevent pools drying prior to metamorphosis, with rainfall evenness during development the strongest predictor of reproductive success. High clutch failure rates recorded in both seasons suggest that adults do not have the capability to predict rainfall frequency post-oviposition. We thus conclude that unpredictable rainfall leading to premature desiccation of spawning sites is the primary source of pre-metamorphic mortality for this species. Understanding the influence of rainfall predictability on offspring survival could be critical in predicting the effects of altered hydroperiod regimes due to climate change for species that exploit temporary waters.
Collapse
Affiliation(s)
- John Gould
- Conservation Biology Research Group, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | - John Clulow
- Conservation Biology Research Group, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, 2617, Australia
| |
Collapse
|
15
|
Domínguez-Castanedo O. Perceived mate competition risk influences the female mate choice and increases the reproductive effort in the annual killifish Millerichthys robustus. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2021.1893827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Omar Domínguez-Castanedo
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso No. 1100, Col. Villa Quietud, 04906 Coyoacán, CDMX, México
| |
Collapse
|
16
|
Godoy RS, Weber V, Lanés LEK, Reichard M, Gemelli T, Hohendorff RV, Maltchik L. Recognizing the enemy: do predator cues influence hatching in Neotropical annual killifish? JOURNAL OF FISH BIOLOGY 2021; 99:1476-1484. [PMID: 34287870 DOI: 10.1111/jfb.14856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Annual fish species have evolved complex adaptations to survive in temporary wetlands. The main adaptation of these fish is the ability to produce embryos that survive dry periods. Embryo development of this fish can show variation at multiple levels influenced by many environmental factors, such as photoperiod and temperature. Predator cues are another factor that can influence the embryonic stage. One way in which annual fish could adapt to predators is by using risk-spreading strategies (through bet-hedging). Nonetheless, this strategy depends on the coevolutionary history between predators and preys and on the degree of environmental unpredictability, resulting in different responses across different species. This study investigated the influence of predator cues on the embryonic development and hatching of two Austrolebias species that inhabit ponds that present differences in hydroperiod and the risk of predator presence. The results confirmed a differentiated response between the two annual fish species tested, corroborating the modulation of hatching against the risk of predation by native predatory fish. The authors further showed that development times varied between the two annual fish species, regardless of the presence of predators. They highlight that the variation in embryonic development is strongly affected by different levels of hydroperiod unpredictability faced by the two species. To unravel finer-scale local adaptations in the annual fish embryo development, future studies should focus on a region with greater spatial gradient.
Collapse
Affiliation(s)
- Robson S Godoy
- Laboratory of Ecology and Conservation of Aquatic Ecosystems, UNISINOS University, São Leopoldo, Brazil
| | - Vinicius Weber
- Laboratory of Ecology and Conservation of Aquatic Ecosystems, UNISINOS University, São Leopoldo, Brazil
| | - Luis Esteban Krause Lanés
- Conservation Physiology Laboratory, Faculty of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tanise Gemelli
- Nutrition and Food, UNISINOS University, São Leopoldo, Brazil
| | | | - Leonardo Maltchik
- Postgraduate Program in Biology of Continental Aquatic Environments, Federal University of Rio Grande, FURG, Rio Grande, Brazil
| |
Collapse
|
17
|
Nikiforov-Nikishin DL, Irkha VA, Kochetkov NI, Kalita TL, Nikiforov-Nikishin AL, Blokhin EE, Antipov SS, Makarenkov DA, Zhavnerov AN, Glebova IA, Smorodinskaya SV, Chebotarev SN. Some Aspects of Development and Histological Structure of the Visual System of Nothobranchius Guentheri. Animals (Basel) 2021; 11:2755. [PMID: 34573720 PMCID: PMC8470241 DOI: 10.3390/ani11092755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/04/2022] Open
Abstract
In this, work some aspects of the development of the visual system of Nothobranchius guentheri at the main stages of ontogenesis were described for the first time. It was possible to establish that the formation of the visual system occurs similarly to other representatives of the order Cyprinodontiformes, but significantly differs in terms of the individual stages of embryogenesis due to the presence of diapause. In the postembryonic period, there is a further increase in the size of the fish's eyes and head, to the proportions characteristic of adult fish. The histological structure of the eye in adult N. guentheri practically does not differ from most teleost fish living in the same environmental conditions. The study of the structure of the retina showed the heterogeneity of the thickness of the temporal and nasal areas, which indicates the predominant role of peripheral vision. Morphoanatomical measurements of the body and eyes of N. guentheri showed that their correlation was conservative. This indicates an important role of the visual system for the survival of fish in natural conditions, both for the young and adults. In individuals of the older age group, a decrease in the amount of sodium (Na) and an increase in magnesium (Mg) and calcium (Ca) were found in the eye lens. Such changes in the elemental composition of the lens can be a sign of the initial stage of cataractogenesis and disturbances in the metabolism of lens fibers as a result of aging. This allows us to propose N. guentheri as a model for studying the structure, formation, and aging of the visual and nervous systems.
Collapse
Affiliation(s)
- Dmitry L. Nikiforov-Nikishin
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Vladimir A. Irkha
- Scientific Department, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (V.A.I.); (S.S.A.)
| | - Nikita I. Kochetkov
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Tatyana L. Kalita
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Alexei L. Nikiforov-Nikishin
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Eduard E. Blokhin
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Science, Chekhova Ave., 41, 344006 Rostov-on-Don, Russia;
| | - Sergei S. Antipov
- Scientific Department, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (V.A.I.); (S.S.A.)
- Department of Biophysics and Biotechnology, Voronezh State University, 1, University Square, 394063 Voronezh, Russia
| | - Dmitry A. Makarenkov
- Institute of Chemical Reagents and High Purity Chemical Substances of the National Research Centre “Kurchatov Institute”, Str. Bogorodsky Val, 3, 107076 Moscow, Russia;
| | - Alexey N. Zhavnerov
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Irina A. Glebova
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Svetlana V. Smorodinskaya
- Institute of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia; (D.L.N.-N.); (T.L.K.); (A.L.N.-N.); (A.N.Z.); (I.A.G.); (S.V.S.)
| | - Sergei N. Chebotarev
- Management Department, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| |
Collapse
|
18
|
High degree of non-genetic phenotypic variation in the vascular system of crayfish: a discussion of possible causes and implications. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractIn this study, the hemolymph vascular system (HVS) in two cambarid crayfishes, i.e. the Marbled Crayfish, Procambarus virginalis Lyko, 2017 and the Spiny Cheek Crayfish, Faxonius limosus (Rafinesque, 1817), is investigated in regard of areas of non-genetic phenotypic variation. Despite their genetic identity, specimens of P. virginalis show variability in certain features of the HVS. Thus, we describe varying branching patterns, sporadic anastomoses, and different symmetry states in the vascular system of the marbled crayfish. We visualize our findings by application of classical and modern morphological methods, e.g. injection of casting resin, micro-computed tomography and scanning electron microscopy. By comparing our findings for P. virginalis to the vasculature in sexually reproducing crayfishes, i.e. F. limosus and Astacus astacus, we discuss phenotypic variation of the HVS in arthropods in general. We conclude that constant features of the HVS are hereditary, whereas varying states identified by study of the clonal P. virginalis must be caused by non-genetic factors and, that congruent variations in sexually reproducing F. limosus and A. astacus are likely also non-genetic phenotypic variations. Both common causal factors for non-genetic phenotypic variation, i.e., phenotypic plasticity and stochastic developmental variation are discussed along our findings regarding the vascular systems. Further aspects, such as the significance of non-genetic phenotypic variation for phylogenetic interpretations are discussed.
Collapse
|
19
|
Hočevar S, Hutchings JA, Kuparinen A. Multiple-batch spawning as a bet-hedging strategy in highly stochastic environments: An exploratory analysis of Atlantic cod. Evol Appl 2021; 14:1980-1992. [PMID: 34429743 PMCID: PMC8372085 DOI: 10.1111/eva.13251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/28/2022] Open
Abstract
Stochastic environments shape life-history traits and can promote selection for risk-spreading strategies, such as bet-hedging. Although the strategy has often been hypothesized to exist for various species, empirical tests providing firm evidence have been rare, mainly due to the challenge in tracking fitness across generations. Here, we take a 'proof of principle' approach to explore whether the reproductive strategy of multiple-batch spawning constitutes a bet-hedging. We used Atlantic cod (Gadus morhua) as the study species and parameterized an eco-evolutionary model, using empirical data on size-related reproductive and survival traits. To evaluate the fitness benefits of multiple-batch spawning (within a single breeding period), the mechanistic model separately simulated multiple-batch and single-batch spawning populations under temporally varying environments. We followed the arithmetic and geometric mean fitness associated with both strategies and quantified the mean changes in fitness under several environmental stochasticity levels. We found that, by spreading the environmental risk among batches, multiple-batch spawning increases fitness under fluctuating environmental conditions. The multiple-batch spawning trait is, thus, advantageous and acts as a bet-hedging strategy when the environment is exceptionally unpredictable. Our research identifies an analytically flexible, stochastic, life-history modelling approach to explore the fitness consequences of a risk-spreading strategy and elucidates the importance of evolutionary applications to life-history diversity.
Collapse
Affiliation(s)
- Sara Hočevar
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Jeffrey A. Hutchings
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- Department of BiologyDalhousie UniversityHalifaxNSCanada
- Institute of Marine ResearchFlødevigen Marine Research StationHisNorway
- Department of Natural SciencesUniversity of AgderKristiansandNorway
| | - Anna Kuparinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
20
|
Bond MN, Piertney SB, Benton TG, Cameron TC. Plasticity is a locally adapted trait with consequences for ecological dynamics in novel environments. Ecol Evol 2021; 11:10868-10879. [PMID: 34429886 PMCID: PMC8366859 DOI: 10.1002/ece3.7813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Phenotypic plasticity is predicted to evolve in more variable environments, conferring an advantage on individual lifetime fitness. It is less clear what the potential consequences of that plasticity will have on ecological population dynamics. Here, we use an invertebrate model system to examine the effects of environmental variation (resource availability) on the evolution of phenotypic plasticity in two life history traits-age and size at maturation-in long-running, experimental density-dependent environments. Specifically, we then explore the feedback from evolution of life history plasticity to subsequent ecological dynamics in novel conditions. Plasticity in both traits initially declined in all microcosm environments, but then evolved increased plasticity for age-at-maturation, significantly so in more environmentally variable environments. We also demonstrate how plasticity affects ecological dynamics by creating founder populations of different plastic phenotypes into new microcosms that had either familiar or novel environments. Populations originating from periodically variable environments that had evolved greatest plasticity had lowest variability in population size when introduced to novel environments than those from constant or random environments. This suggests that while plasticity may be costly it can confer benefits by reducing the likelihood that offspring will experience low survival through competitive bottlenecks in variable environments. In this study, we demonstrate how plasticity evolves in response to environmental variation and can alter population dynamics-demonstrating an eco-evolutionary feedback loop in a complex animal moderated by plasticity in growth.
Collapse
Affiliation(s)
| | | | - Tim G. Benton
- Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | | |
Collapse
|
21
|
Bagnoli S, Terzibasi Tozzini E. Age-Dependent Regulation of Notch Family Members in the Neuronal Stem Cell Niches of the Short-Lived Killifish Nothobranchius furzeri. Front Cell Dev Biol 2021; 9:640958. [PMID: 34307342 PMCID: PMC8299727 DOI: 10.3389/fcell.2021.640958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background: The annual killifish Nothobranchius furzeri is a new experimental model organism in biology, since it represents the vertebrate species with the shortest captive life span and also shows the fastest maturation and senescence recorded in the laboratory. Here, we use this model to investigate the age-dependent decay of neurogenesis in the telencephalon (brain region sharing the same embryonic origin with the mammalian adult niches), focusing on the expression of the Notch pathway genes. Results: We observed that the major ligands/receptors of the pathway showed a negative correlation with age, indicating age-dependent downregulation of the Notch pathway. Moreover, expression of notch1a was clearly limited to active neurogenic niches and declined during aging, without changing its regional patterning. Expression of notch3 is not visibly influenced by aging. Conclusion: Both expression pattern and regulation differ between notch1a and notch3, with the former being limited to mitotically active regions and reduced by aging and the latter being present in all cells with a neurogenic potential, regardless of the level of their actual mitotic activity, and so is less influenced by age. This finally suggests a possible differential role of the two receptors in the regulation of the niche proliferative potential throughout the entire fish life.
Collapse
Affiliation(s)
- Sara Bagnoli
- Laboratory of Biology (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | - Eva Terzibasi Tozzini
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
22
|
Rowiński PK, Sowersby W, Näslund J, Eckerström-Liedholm S, Gotthard K, Rogell B. Variation in developmental rates is not linked to environmental unpredictability in annual killifishes. Ecol Evol 2021; 11:8027-8037. [PMID: 34188869 PMCID: PMC8216982 DOI: 10.1002/ece3.7632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022] Open
Abstract
Comparative evidence suggests that adaptive plasticity may evolve as a response to predictable environmental variation. However, less attention has been placed on unpredictable environmental variation, which is considered to affect evolutionary trajectories by increasing phenotypic variation (or bet hedging). Here, we examine the occurrence of bet hedging in egg developmental rates in seven species of annual killifish that originate from a gradient of variation in precipitation rates, under three treatment incubation temperatures (21, 23, and 25°C). In the wild, these species survive regular and seasonal habitat desiccation, as dormant eggs buried in the soil. At the onset of the rainy season, embryos must be sufficiently developed in order to hatch and complete their life cycle. We found substantial differences among species in both the mean and variation of egg development rates, as well as species-specific plastic responses to incubation temperature. Yet, there was no clear relationship between variation in egg development time and variation in precipitation rate (environmental predictability). The exact cause of these differences therefore remains enigmatic, possibly depending on differences in other natural environmental conditions in addition to precipitation predictability. Hence, if species-specific variances are adaptive, the relationship between development and variation in precipitation is complex and does not diverge in accordance with simple linear relationships.
Collapse
Affiliation(s)
| | - Will Sowersby
- Department of Zoology Stockholm University Stockholm Sweden
- Department of Biology Faculty of Science Osaka City University Osaka Japan
| | - Joacim Näslund
- Department of Zoology Stockholm University Stockholm Sweden
- Department of Aquatic Resources Institute of Freshwater Research Swedish University of Agricultural Sciences Drottningholm Sweden
| | | | - Karl Gotthard
- Department of Zoology Stockholm University Stockholm Sweden
| | - Björn Rogell
- Department of Zoology Stockholm University Stockholm Sweden
- Department of Aquatic Resources Institute of Freshwater Research Swedish University of Agricultural Sciences Drottningholm Sweden
| |
Collapse
|
23
|
Haaland TR, Wright J, Ratikainen II. Individual reversible plasticity as a genotype-level bet-hedging strategy. J Evol Biol 2021; 34:1022-1033. [PMID: 33844340 DOI: 10.1111/jeb.13788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Reversible plasticity in phenotypic traits allows organisms to cope with environmental variation within lifetimes, but costs of plasticity may limit just how well the phenotype matches the environmental optimum. An additional adaptive advantage of plasticity might be to reduce fitness variance, in other words: bet-hedging to maximize geometric (rather than simply arithmetic) mean fitness. Here, we model the evolution of plasticity in the form of reaction norm slopes, with increasing costs as the slope or degree of plasticity increases. We find that greater investment in plasticity (i.e. a steeper reaction norm slope) is favoured in scenarios promoting bet-hedging as a response to multiplicative fitness accumulation (i.e. coarser environmental grains and fewer time steps prior to reproduction), because plasticity lowers fitness variance across environmental conditions. In contrast, in scenarios with finer environmental grain and many time steps prior to reproduction, bet-hedging plays less of a role and individual-level optimization favours evolution of shallower reaction norm slopes. However, the opposite pattern holds if plasticity costs themselves result in increased fitness variation, as might be the case for production costs of plasticity that depend on how much change is made to the phenotype each time step. We discuss these contrasting predictions from this partitioning of adaptive plasticity into short-term individual benefits versus long-term genotypic (bet-hedging) benefits, and how this approach enhances our understanding of the evolution of optimum levels of plasticity in examples from thermal physiology to advances in avian lay dates.
Collapse
Affiliation(s)
- Thomas R Haaland
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonathan Wright
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Irja I Ratikainen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
24
|
Polačik M, Vrtílek M, Reichard M, Žák J, Blažek R, Podrabsky J. Embryo ecology: Developmental synchrony and asynchrony in the embryonic development of wild annual fish populations. Ecol Evol 2021; 11:4945-4956. [PMID: 33976861 PMCID: PMC8093744 DOI: 10.1002/ece3.7402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
Embryo-environment interactions are of paramount importance during the development of all organisms, and impacts during this period can echo far into later stages of ontogeny. African annual fish of the genus Nothobranchius live in temporary pools and their eggs survive the dry season in the dry bottom substrate of the pools by entering a facultative developmental arrest termed diapause. Uniquely among animals, the embryos (encased in eggs) may enter diapause at three different developmental stages. Such a system allows for the potential to employ different regulation mechanisms for each diapause. We sampled multiple Nothobranchius embryo banks across the progressing season, species, and populations. We present important baseline field data and examine the role of environmental regulation in the embryonic development of this unique system. We describe the course of embryo development in the wild and find it to be very different from the typical development under laboratory conditions. Development across the embryo banks was synchronized within and across the sampled populations with all embryos entering diapause I during the rainy season and diapause II during the dry season. Asynchrony occurred at transient phases of the habitat, during the process of habitat desiccation, and at the end of the dry season. Our findings reveal the significance of environmental conditions in the serial character of the annual fish diapauses.
Collapse
Affiliation(s)
- Matej Polačik
- Institute of Vertebrate BiologyThe Czech Academy of SciencesBrnoCzech Republic
| | - Milan Vrtílek
- Institute of Vertebrate BiologyThe Czech Academy of SciencesBrnoCzech Republic
| | - Martin Reichard
- Institute of Vertebrate BiologyThe Czech Academy of SciencesBrnoCzech Republic
| | - Jakub Žák
- Institute of Vertebrate BiologyThe Czech Academy of SciencesBrnoCzech Republic
- Department of ZoologyCharles UniversityPragueCzech Republic
| | - Radim Blažek
- Institute of Vertebrate BiologyThe Czech Academy of SciencesBrnoCzech Republic
| | - Jason Podrabsky
- Center for Life in Extreme EnvironmentsPortland State UniversityPortlandORUSA
| |
Collapse
|
25
|
Riddle MR, Hu CK. Fish models for investigating nutritional regulation of embryonic development. Dev Biol 2021; 476:101-111. [PMID: 33831748 DOI: 10.1016/j.ydbio.2021.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023]
Abstract
In recent decades, biologist have focused on the spatiotemporal regulation and function of genes to understand embryogenesis. It is clear that maternal diet impacts fetal development but how nutrients, like lipids and vitamins, modify developmental programs is not completely understood. Fish are useful research organisms for such investigations. Most species of fish produce eggs that develop outside the mother, dependent on a finite amount of yolk to form and grow. The developing embryo is a closed system that can be readily biochemically analyzed, easily visualized, and manipulated to understand the role of nutrients in tissue specification, organogenesis, and growth. Natural variation in yolk composition observed across fish species may be related to unique developmental strategies. In this review, we discuss the reasons that teleost fishes are powerful models to understand nutritional control of development and highlight three species that are particularly valuable for future investigations: the zebrafish, Danio rerio, the African Killifish, Nothobranchius furzeri, and the Mexican tetra, Astyanax mexicanus. This review is a part of a special issue on nutritional, hormonal, and metabolic drivers of development.
Collapse
Affiliation(s)
- Misty R Riddle
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
| | - Chi-Kuo Hu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
26
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. WITHDRAWN: Utilizing comparative models in biomedical research. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110938. [PMID: 33737041 DOI: 10.1016/j.cbpa.2021.110938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 255, 2021, 110593, https://doi.org/10.1016/j.cbpb.2021.110593. The duplicate article has therefore been withdrawn.
The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA.
| | | |
Collapse
|
27
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. Utilizing comparative models in biomedical research. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110593. [PMID: 33779562 DOI: 10.1016/j.cbpb.2021.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review serves as an introduction to a Special Issue of Comparative Biochemistry and Physiology, focused on using non-human models to study biomedical physiology. The concept of a model differs across disciplines. For example, several models are used primarily to gain an understanding of specific human pathologies and disease states, whereas other models may be focused on gaining insight into developmental or evolutionary mechanisms. It is often the case that animals initially used to gain knowledge of some unique biochemical or physiological process finds foothold in the biomedical community and becomes an established model. The choice of a particular model for biomedical research is an ongoing process and model validation must keep pace with existing and emerging technologies. While the importance of non-mammalian models, such as Caenorhabditis elegans, Drosophila melanogaster, Danio rerio and Xenopus laevis, is well known, we also seek to bring attention to emerging alternative models of both invertebrates and vertebrates, which are less established but of interest to the comparative biochemistry and physiology community.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | | |
Collapse
|
28
|
Joschinski J, Bonte D. Transgenerational Plasticity and Bet-Hedging: A Framework for Reaction Norm Evolution. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.517183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Decision-making under uncertain conditions favors bet-hedging (avoidance of fitness variance), whereas predictable environments favor phenotypic plasticity. However, entirely predictable or entirely unpredictable conditions are rarely found in nature. Intermediate strategies are required when the time lag between information sensing and phenotype induction is large (e.g., transgenerational plasticity) and when cues are only partially predictive of future conditions. Nevertheless, current theory regards plasticity and bet-hedging as distinct entities. We here develop a unifying framework: based on traits with binary outcomes like seed germination or diapause incidence we clarify that diversified bet-hedging (risk-spreading among one’s offspring) and transgenerational plasticity are mutually exclusive strategies, arising from opposing changes in reaction norms (allocating phenotypic variance among or within environments). We further explain the relationship of this continuum with arithmetic mean maximization vs. conservative bet-hedging (a risk-avoidance strategy), and canalization vs. phenotypic variance in a three-dimensional continuum of reaction norm evolution. We discuss under which scenarios costs and limits may constrain the evolution of reaction norm shapes.
Collapse
|
29
|
Morris RS, Compton ME, Simons AM. Birth order as a source of within-genotype diversification in the clonal duckweed, Spirodela polyrhiza (Araceae: Lemnoideae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Organismal persistence attests to adaptive responses to environmental variation. Diversification bet hedging, in which risk is reduced at the cost of expected fitness, is increasingly recognized as an adaptive response, yet mechanisms by which a single genotype generates diversification remain obscure. The clonal greater duckweed, Spirodela polyrhiza (L.), facultatively expresses a seed-like but vegetative form, the ‘turion’, that allows survival through otherwise lethal conditions. Turion reactivation phenology is a key fitness component, yet little is known about turion reactivation phenology in the field, or sources of variation. Here, using floating traps deployed in the field, we found a remarkable extent of variation in natural reactivation phenology that could not be explained solely by spring cues, occurring over a period of ≥ 200 days. In controlled laboratory conditions, we found support for the hypothesis that turion phenology is influenced jointly by phenotypic plasticity to temperature and diversification within clones. Turion ‘birth order’ consistently accounted for a difference in reactivation time of 46 days at temperatures between 10 and 18 °C, with turions early in birth order reactivating more rapidly than turions late in birth order. These results should motivate future work to evaluate the variance in turion phenology formally as a bet-hedging trait.
Collapse
Affiliation(s)
- Riley S Morris
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Mary E Compton
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andrew M Simons
- Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
30
|
Cao J, Chen L, Wang J, Xing J, Lv X, Maimaitijiang T, Lan H. Effects of genetic and environmental factors on variations of seed heteromorphism in Suaeda aralocaspica. AOB PLANTS 2020; 12:plaa044. [PMID: 33072248 PMCID: PMC7546916 DOI: 10.1093/aobpla/plaa044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 05/12/2023]
Abstract
Seed heteromorphism is an adaptive strategy towards adversity in many halophytes. However, the underlying mechanisms and ecological significance of seed heteromorphism have not been deeply explored. Using Suaeda aralocaspica, a typical C4 annual halophyte without Kranz anatomy, we studied seed morphology, differentiation of morphs and fruit-setting patterns, and correlated these traits with germination responses, seed characteristics and heteromorphic seed ratio. To elucidate the genetic basis of seed heteromorphism, we analysed correlated patterns of gene expression for seed development-related genes as well. We observed that S. aralocaspica produced three types of seed morph: brown, large black and small black with differences in colour, size, mass and germination behaviour; the latter two were further distinguished by their origin in female or bisexual flowers, respectively. Further analysis revealed that seed heteromorphism was associated with genetic aspects including seed positioning, seed coat differentiation and seed developmental gene expression, while variations in seed heteromorphism may be associated with environmental conditions, e.g. annual precipitation, temperature, daylight and their monthly distribution in different calendar years. Seed heteromorphism and its variations in S. aralocaspica show multilevel regulation of the bet-hedging strategy that influences phenotypic plasticity, which is a consequence of internal genetic and external environmental factor interaction. Our findings contribute to the understanding of seed heteromorphism as a potential adaptive trait of desert plant species.
Collapse
Affiliation(s)
- Jing Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Ling Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Juan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jiajia Xing
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiuyun Lv
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tayier Maimaitijiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Corresponding author’s e-mail address:
| |
Collapse
|
31
|
Zajic DE, Nicholson JP, Podrabsky JE. No water, no problem: stage-specific metabolic responses to dehydration stress in annual killifish embryos. J Exp Biol 2020; 223:jeb231985. [PMID: 32778566 DOI: 10.1242/jeb.231985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/29/2020] [Indexed: 08/26/2023]
Abstract
Annual killifish survive in temporary ponds by producing drought-tolerant embryos that can enter metabolic dormancy (diapause). Survival of dehydration stress is achieved through severe reduction of evaporative water loss. We assessed dehydration stress tolerance in diapausing and developing Austrofundulus limnaeus embryos. We measured oxygen consumption rates under aquatic and aerial conditions to test the hypothesis that there is a trade-off between water retention and oxygen permeability. Diapausing embryos survive dehydrating conditions for over 1.5 years, and post-diapause stages can survive for over 100 days. Diapausing embryos respond to dehydration stress by increasing oxygen consumption rates while post-diapause embryos exhibit the same or reduced rates compared with aquatic embryos. Thus, water retention does not always limit oxygen diffusion. Aerial incubation coupled with hypoxia causes some embryos to arrest development. The observed stage-specific responses are consistent with an intrinsic bet-hedging strategy in embryos that would increase developmental variation in a potentially adaptive manner.
Collapse
Affiliation(s)
- Daniel E Zajic
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
- Health, Human Performance, and Athletics Department, Linfield University, 900 SE Baker, McMinnville, OR 97128, USA
| | - Jonathon P Nicholson
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| |
Collapse
|
32
|
Aleuy OA, Peacock S, Hoberg EP, Ruckstuhl KE, Brooks T, Aranas M, Kutz S. Phenotypic plasticity and local adaptation in freeze tolerance: Implications for parasite dynamics in a changing world. Int J Parasitol 2020; 50:161-169. [PMID: 32004511 DOI: 10.1016/j.ijpara.2019.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Marshallagia marshalli is a multi-host gastrointestinal nematode that infects a variety of artiodactyl species from temperate to Arctic latitudes. Eggs of Marshallagia are passed in host faeces and develop through three larval stages (L1, L2, and L3) in the environment. Although eggs normally hatch as L1s, they can also hatch as L3s. We hypothesised that this phenotypic plasticity in hatching behaviour may improve fitness in subzero and highly variable environments, and this may constitute an evolutionary advantage under current climate change scenarios. To test this, we first determined if the freeze tolerance of different free-living stages varied at different temperatures (-9 °C, -20 °C and -35 °C). We then investigated if there were differences in freeze tolerance of M. marshalli eggs sourced from three discrete, semi-isolated, populations of wild bighorn and thinhorn sheep living in western North America (latitudes: 40°N, 50°N, 64°N). The survival rates of eggs and L3s were significantly higher than L1s at -9 °C and -20 °C, and survival of all three stages decreased significantly with increasing freeze duration and decreasing temperature. The survival of unhatched L1s was significantly higher than the survival of hatched L1s. There was no evidence of local thermal adaptation in freeze tolerance among eggs from different locations. We conclude that developing to the L3 in the egg may result in a fitness advantage for M. marshalli, with the egg protecting the more vulnerable L1 under freezing conditions. This phenotypic plasticity in life-history traits of M. marshalli might be an important capacity, a potential exaptation capable of enhancing parasite fitness under temperature extremes.
Collapse
Affiliation(s)
- O Alejandro Aleuy
- Department of Biological Sciences, University of Calgary, Calgary, Canada.
| | - Stephanie Peacock
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Eric P Hoberg
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | | | - Taylor Brooks
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Mackenzie Aranas
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
33
|
Ten Brink H, Gremer JR, Kokko H. Optimal germination timing in unpredictable environments: the importance of dormancy for both among- and within-season variation. Ecol Lett 2020; 23:620-630. [PMID: 31994356 PMCID: PMC7079161 DOI: 10.1111/ele.13461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 12/22/2019] [Indexed: 01/19/2023]
Abstract
For organisms living in unpredictable environments, timing important life‐history events is challenging. One way to deal with uncertainty is to spread the emergence of offspring across multiple years via dormancy. However, timing of emergence is not only important among years, but also within each growing season. Here, we study the evolutionary interactions between germination strategies that deal with among‐ and within‐season uncertainty. We use a modelling approach that considers among‐season dormancy and within‐season germination phenology of annual plants as potentially independent traits and study their separate and joint evolution in a variable environment. We find that higher among‐season dormancy selects for earlier germination within the growing season. Furthermore, our results indicate that more unpredictable natural environments can counter‐intuitively select for less risk‐spreading within the season. Furthermore, strong priority effects select for earlier within‐season germination phenology which in turn increases the need for bet hedging through among‐season dormancy.
Collapse
Affiliation(s)
- Hanna Ten Brink
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Jennifer R Gremer
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
34
|
Bruijning M, Metcalf CJE, Jongejans E, Ayroles JF. The Evolution of Variance Control. Trends Ecol Evol 2020; 35:22-33. [PMID: 31519463 PMCID: PMC7482585 DOI: 10.1016/j.tree.2019.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Genetically identical individuals can be phenotypically variable, even in constant environmental conditions. The ubiquity of this phenomenon, known as 'intra-genotypic variability', is increasingly evident and the relevant mechanistic underpinnings are beginning to be understood. In parallel, theory has delineated a number of formal expectations for contexts in which such a feature would be adaptive. Here, we review empirical evidence across biological systems and theoretical expectations, including nonlinear averaging and bet hedging. We synthesize existing results to illustrate the dependence of selection outcomes both on trait characteristics, features of environmental variability, and species' demographic context. We conclude by discussing ways to bridge the gap between empirical evidence of intra-genotypic variability, studies demonstrating its genetic component, and evidence that it is adaptive.
Collapse
Affiliation(s)
- Marjolein Bruijning
- Department of Animal Ecology and Physiology, Radboud University, 6500, GL, Nijmegen, The Netherlands; Department of Ecology and Evolutionary Biology, Princeton University, 08540 Princeton, NJ, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, 08540 Princeton, NJ, USA
| | - Eelke Jongejans
- Department of Animal Ecology and Physiology, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Julien F Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, 08540 Princeton, NJ, USA.
| |
Collapse
|
35
|
George HCPH, Miles G, Bemrose J, White A, Bond MN, Cameron TC. Intergenerational effects of CO 2-induced stream acidification in the Trinidadian guppy ( Poecilia reticulata). Ecol Evol 2019; 9:12836-12845. [PMID: 31788218 PMCID: PMC6875657 DOI: 10.1002/ece3.5761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022] Open
Abstract
Rising atmospheric carbon dioxide levels are driving decreases in aquatic pH. As a result, there has been a surge in the number of studies examining the impact of acidification on aquatic fauna over the past decade. Thus far, both positive and negative impacts on the growth of fish have been reported, creating a disparity in results. Food availability and single-generation exposure have been proposed as some of the reasons for these variable results, where unrealistically high food treatments lead to fish overcoming the energetic costs associated with acclimating to decreased pH. Likewise, exposure of fish to lower pH for only one generation may not capture the likely ecological response to acidification that wild populations might experience over two or more generations. Here we compare somatic growth rates of laboratory populations of the Trinidadian guppy (Poecilia reticulata) exposed to pH levels that represent the average and lowest levels observed in streams in its native range. Specifically, we test the role of maternal acclimation and resource availability on the response of freshwater fishes to acidification. Acidification had a negative impact on growth at more natural, low food treatments. With high food availability, fish whose mothers were acclimated to the acidified treatment showed no reduction in growth, compared to controls. Compensatory growth was observed in both control-acidified (maternal-natal environment) and acidified-control groups, where fish that did not experience intergenerational effects achieved the same size in response to acidification as those that did, after an initial period of stunted growth. These results suggest that future studies on the effects of shifting mean of aquatic pH on fishes should take account of intergenerational effects and compensatory growth, as otherwise effects of acidification may be overestimated.
Collapse
Affiliation(s)
| | - George Miles
- School of Life SciencesUniversity of EssexColchesterUK
| | - James Bemrose
- School of Life SciencesUniversity of EssexColchesterUK
| | - Amelia White
- School of Life SciencesUniversity of EssexColchesterUK
| | | | | |
Collapse
|
36
|
Cheng X, Hoffmann AA, Maino JL, Umina PA. Summer diapause intensity influenced by parental and offspring environmental conditions in the pest mite, Halotydeus destructor. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:92-99. [PMID: 30802445 DOI: 10.1016/j.jinsphys.2019.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/15/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
The regulation of active and dormant stages of arthropods is critical for surviving unfavourable seasonal conditions, and for many species depends on the diapause intensity (DI). There is substantial information on diapause strategies of arthropods under winter conditions; however, most cases of summer diapause are poorly understood despite its importance in most geographic regions of the world. Here we show how complex interactions with the environment drive DI involving multiple summer diapause forms of the mite Halotydeus destructor. This invasive pest in Australia is only active in cooler months but enters diapause at the egg stage which can survive hot and dry summer conditions. Recent research points to two forms of diapause egg, a typical form with a thick chorion and a cryptic form without this chorion which is morphologically similar to non-diapause eggs. Compared with typical diapause eggs which are produced in late spring, cryptic diapause eggs could be produced together with non-diapause eggs earlier in the season with relatively cooler temperatures and shorter daylength, reflecting an advanced bet-hedging strategy. Fitness trade-offs in this strategy are investigated in this study as variability of DI of the typical and cryptic diapause forms under different environmental factors for incubating diapause eggs (temperature) and rearing parental mites (different daylength, temperature and soil moisture). With the exception of daylength, all factors impacted hatchability of diapause eggs. Higher mortality of cryptic diapause eggs indicated relatively shallower DI than typical diapause eggs, likely reflecting a fitness penalty of this bet-hedging strategy under some conditions. Hatchability of cryptic diapause eggs revealed thermal and moisture stresses have opposite and complementary effects between parental and filial generations. Although DI of filial eggs decreased in hot and dry summer conditions, parental mites reared in hotter and drier conditions increased the DI of offspring. A bet-hedging strategy involving cryptic diapause might be replaced by typical diapause under consistently stressful conditions because of higher survival, regardless of additional production costs that might be required. These findings highlight a complex set of plastic responses to summer conditions in H. destructor that undoubtedly contribute to the success of this invasive pest under a range of environments.
Collapse
Affiliation(s)
- Xuan Cheng
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia.
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - James L Maino
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia; cesar, 293 Royal Parade, Parkville, Victoria 3052, Australia
| | - Paul A Umina
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia; cesar, 293 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
37
|
Reichard M, Polačik M. Nothobranchius furzeri, an 'instant' fish from an ephemeral habitat. eLife 2019; 8:41548. [PMID: 30616713 PMCID: PMC6324871 DOI: 10.7554/elife.41548] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
The turquoise killifish, Nothobranchius furzeri, is a promising vertebrate model in ageing research and an emerging model organism in genomics, regenerative medicine, developmental biology and ecotoxicology. Its lifestyle is adapted to the ephemeral nature of shallow pools on the African savannah. Its rapid and short active life commences when rains fill the pool: fish hatch, grow rapidly and mature in as few as two weeks, and then reproduce daily until the pool dries out. Its embryos then become inactive, encased in the dry sediment and protected from the harsh environment until the rains return. This invertebrate-like life cycle (short active phase and long developmental arrest) combined with a vertebrate body plan provide the ideal attributes for a laboratory animal.
Collapse
Affiliation(s)
- Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Matej Polačik
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
38
|
Cheng X, Hoffmann AA, Maino JL, Umina PA. A cryptic diapause strategy in Halotydeus destructor (Tucker) (Trombidiformes: Penthaleidae) induced by multiple cues. PEST MANAGEMENT SCIENCE 2018; 74:2618-2625. [PMID: 29704294 DOI: 10.1002/ps.5053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The polyphagous mite pest, Halotydeus destructor, typically has three generations during the cool moist season in Australia and produces over-summering diapause eggs in spring. Diapause eggs have a distinct thick and dark chorion and can survive heat, desiccation and the application of pesticides. Farmers suppress mites producing diapause eggs by a carefully timed spring pesticide application using Timerite® , which predicts the onset of diapause egg production based largely on day length. We investigated the association between diapause induction and other environmental factors that may complicate diapause predictions. RESULTS Diapause in H. destructor induction was influenced by three interacting environmental factors, namely day length, temperature and soil moisture. A cryptic type of diapause egg that lacked a thick chorion and was instead morphologically similar to non-diapause eggs was also discovered. Like diapause eggs, this newly discovered egg type could also survive hot and dry summer conditions. CONCLUSIONS There is an opportunity to refine the Timerite® spring spray by incorporating knowledge of other environmental factors inducing diapause in H. destructor. Compared with typical diapause eggs, the production of cryptic diapause eggs could reflect a strategy to deal with diversifying environmental stresses and/or represent a bet-hedging strategy to adapt to unpredictable environments. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuan Cheng
- School of BioSciences, The University of Melbourne, 293 Royal parade, Parkville, VIC, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, 293 Royal parade, Parkville, VIC, Australia
| | - James L Maino
- School of BioSciences, The University of Melbourne, 293 Royal parade, Parkville, VIC, Australia
- Cesar, Parkville, VIC, Australia
| | - Paul A Umina
- School of BioSciences, The University of Melbourne, 293 Royal parade, Parkville, VIC, Australia
- Cesar, Parkville, VIC, Australia
| |
Collapse
|
39
|
Van Dooren TJM, Varela‐Lasheras I. Embryonal life histories: Desiccation plasticity and diapause in the Argentinean pearlfish Austrolebias bellottii. Ecol Evol 2018; 8:11246-11260. [PMID: 30519441 PMCID: PMC6262906 DOI: 10.1002/ece3.4599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 11/07/2022] Open
Abstract
Embryos of annual killifish diapause in soil egg banks while ponds are dry. Their rates of development and survival in different developmental stages determine the numbers and stages of embryos at rewetting. In the Argentinean pearlfish Austrolebias bellottii, we investigated plasticity for desiccation in such embryonal life history components across phases of mild desiccation and rewetting and also effects of life history on hatching. In comparison with nonannuals, our data suggest that incidences of diapause have become relatively independent of the occurrence of desiccation, as if they have become genetically assimilated. We found limited survival effects of desiccation, limited developmental delays, and an acceleration of development into the prehatching stage. This response can be adaptive when desiccation informs that an opportunity to hatch approaches. Embryos arrest development in the prehatching stage (diapause DIII) or in the dispersed-cell phase (diapause DI). Parental pair variation in rates of development and survival in the earliest developmental stages affects the fraction of embryos that are in DI at rewetting and the number surviving. Given such effects on life history fitness components, rates during embryonal development seem "visible" to selection and the developmental system can thus adapt when pair variation contains a heritable component. In agreement with expectations for the presence of diversified bet-hedging, some embryos hatched and others not in over half of the clutches with several developed embryos at the moment of rewetting. Hatching probabilities increased for eggs produced later in the experiment, and they increased when embryos were rewetted a second time after two months. This response is opposite of what is expected when age-dependent hatching would be adapted to exploit opportunities for completing another generation before the dry season.
Collapse
Affiliation(s)
- Tom J. M. Van Dooren
- Centre for Biodiversity NaturalisLeidenThe Netherlands
- CNRS/UPMC/UPEC/UPD/IRD/INRA – UMR 7618, Institute for Ecological and Environmental Sciences Paris (iEES)Sorbonne UniversityParisFrance
| | | |
Collapse
|
40
|
Alcalay Y, Puzhevsky D, Tsurim I, Scharf I, Ovadia O. Interactive and sex‐specific life‐history responses of
Culex pipiens
mosquito larvae to multiple environmental factors. J Zool (1987) 2018. [DOI: 10.1111/jzo.12611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Alcalay
- Department of Life Sciences Faculty of Natural Sciences Ben‐Gurion University of the Negev Beer Sheva Israel
| | - D. Puzhevsky
- Department of Life Sciences Faculty of Natural Sciences Ben‐Gurion University of the Negev Beer Sheva Israel
| | - I. Tsurim
- Department of Life Sciences Faculty of Natural Sciences Ben‐Gurion University of the Negev Beer Sheva Israel
- Department of Life Sciences Achva Academic College Arugot Israel
| | - I. Scharf
- School of Zoology Faculty of Life Sciences Tel‐Aviv University Tel Aviv Israel
| | - O. Ovadia
- Department of Life Sciences Faculty of Natural Sciences Ben‐Gurion University of the Negev Beer Sheva Israel
| |
Collapse
|
41
|
Gerber N, Booksmythe I, Kokko H. Sex Allocation Theory for Facultatively Sexual Organisms Inhabiting Seasonal Environments: The Importance of Bet Hedging. Am Nat 2018; 192:155-170. [PMID: 30016165 DOI: 10.1086/697727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Adaptive explanations for dormancy often invoke bet hedging, where reduced mean fitness can be adaptive if it associates with reduced fitness variance. Sex allocation theory typically ignores variance effects and focuses on mean fitness. For many cyclical parthenogens, these themes become linked, as only sexually produced eggs undergo the dormancy needed to survive harsh conditions. We ask how sex allocation and the timing of sex evolve when this constraint exists in the form of a trade-off between asexual reproduction and sexual production of dormant eggs-the former being crucial for within-season success and the latter for survival across seasons. We show that male production can be temporally separated from or co-occur with sex, depending on whether direct (time) or indirect (population density) cues of the season's end are available and whether population growth is density dependent. Sex generally occurs late in the season but is induced earlier in unpredictable environments. When only indirect cues are available, the temporal spread of sex, and with it the production of dormant stages, is even larger and, given sufficient mortality, leads to endogenous population cycles in which frequent sex coincides with high densities. In all scenarios, algorithms maximizing geometric mean fitness have reduced fitness variance compared with a hypothetical non-bet hedger, confirming that the timing of male production and sex in facultative seasonal settings can be bet-hedging traits.
Collapse
|
42
|
Grégoir AF, Thoré ESJ, Philippe C, Pinceel T, Brendonck L, Vanschoenwinkel B. Squeezing out the last egg-annual fish increase reproductive efforts in response to a predation threat. Ecol Evol 2018; 8:6390-6398. [PMID: 30038743 PMCID: PMC6053551 DOI: 10.1002/ece3.3422] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/19/2017] [Accepted: 08/19/2017] [Indexed: 01/09/2023] Open
Abstract
Both constitutive and inducible antipredator strategies are ubiquitous in nature and serve to maximize fitness under a predation threat. Inducible strategies may be favored over constitutive defenses depending on their relative cost and benefit and temporal variability in predator presence. In African temporary ponds, annual killifish of the genus Nothobranchius are variably exposed to predators, depending on whether larger fish invade their habitat from nearby rivers during floods. Nonetheless, potential plastic responses to predation risk are poorly known. Here, we studied whether Nothobranchius furzeri individuals adjust their life history in response to a predation threat. For this, we monitored key life history traits in response to cues that signal the presence of predatory pumpkinseed sunfish (Lepomis gibbosus). While growth rate, adult body size, age at maturation, and initial fecundity were not affected, peak and total fecundity were higher in the predation risk treatment. This contrasts with known life history strategies of killifish from permanent waters, which tend to reduce reproduction in the presence of predators. Although our results show that N. furzeri individuals are able to detect predators and respond to their presence by modulating their reproductive output, these responses only become evident after a few clutches have been deposited. Overall our findings suggest that, in the presence of a predation risk, it can be beneficial to increase the production of life stages that can persist until the predation risk has faded.
Collapse
Affiliation(s)
- Arnout Francis Grégoir
- Animal Ecology, Global Change and Sustainable DevelopmentUniversity of LeuvenLeuvenBelgium
| | | | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable DevelopmentUniversity of LeuvenLeuvenBelgium
- Systemic Physiological and Ecotoxicological ResearchUniversity of AntwerpAntwerpBelgium
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable DevelopmentUniversity of LeuvenLeuvenBelgium
- Centre for Environmental ManagementUniversity of the Free StateBloemfonteinSouth Africa
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable DevelopmentUniversity of LeuvenLeuvenBelgium
- Research Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Bram Vanschoenwinkel
- Animal Ecology, Global Change and Sustainable DevelopmentUniversity of LeuvenLeuvenBelgium
- Community Ecology LaboratoryDepartment of BiologyVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
43
|
Hu CK, Brunet A. The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell 2018; 17:e12757. [PMID: 29573324 PMCID: PMC5946070 DOI: 10.1111/acel.12757] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 02/06/2023] Open
Abstract
The African turquoise killifish has recently gained significant traction as a new research organism in the aging field. Our understanding of aging has strongly benefited from canonical research organisms—yeast, C. elegans, Drosophila, zebrafish, and mice. Many characteristics that are essential to understand aging—for example, the adaptive immune system or the hypothalamo‐pituitary axis—are only present in vertebrates (zebrafish and mice). However, zebrafish and mice live more than 3 years and their relatively long lifespans are not compatible with high‐throughput studies. Therefore, the turquoise killifish, a vertebrate with a naturally compressed lifespan of only 4–6 months, fills an essential gap to understand aging. With a recently developed genomic and genetic toolkit, the turquoise killifish not only provides practical advantages for lifespan and longitudinal experiments, but also allows more systematic characterizations of the interplay between genetics and environment during vertebrate aging. Interestingly, the turquoise killifish can also enter a long‐term dormant state during development called diapause. Killifish embryos in diapause already have some organs and tissues, and they can last in this state for years, exhibiting exceptional resistance to stress and to damages due to the passage of time. Understanding the diapause state could give new insights into strategies to prevent the damage caused by aging and to better preserve organs, tissues, and cells. Thus, the African turquoise killifish brings two interesting aspects to the aging field—a compressed lifespan and a long‐term resistant diapause state, both of which should spark new discoveries in the field.
Collapse
Affiliation(s)
- Chi-Kuo Hu
- Department of Genetics; Stanford University; Stanford CA USA
| | - Anne Brunet
- Department of Genetics; Stanford University; Stanford CA USA
- Glenn Laboratories for the Biology of Aging; Stanford CA USA
| |
Collapse
|
44
|
Burggren W. Developmental phenotypic plasticity helps bridge stochastic weather events associated with climate change. ACTA ACUST UNITED AC 2018; 221:221/9/jeb161984. [PMID: 29748332 DOI: 10.1242/jeb.161984] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The slow, inexorable rise in annual average global temperatures and acidification of the oceans are often advanced as consequences of global change. However, many environmental changes, especially those involving weather (as opposed to climate), are often stochastic, variable and extreme, particularly in temperate terrestrial or freshwater habitats. Moreover, few studies of animal and plant phenotypic plasticity employ realistic (i.e. short-term, stochastic) environmental change in their protocols. Here, I posit that the frequently abrupt environmental changes (days, weeks, months) accompanying much longer-term general climate change (e.g. global warming over decades or centuries) require consideration of the true nature of environmental change (as opposed to statistical means) coupled with an expansion of focus to consider developmental phenotypic plasticity. Such plasticity can be in multiple forms - obligatory/facultative, beneficial/deleterious - depending upon the degree and rate of environmental variability at specific points in organismal development. Essentially, adult phenotypic plasticity, as important as it is, will be irrelevant if developing offspring lack sufficient plasticity to create modified phenotypes necessary for survival.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
45
|
Furness AI, Reznick DN, Tatarenkov A, Avise JC. The evolution of diapause in Rivulus (Laimosemion). Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andrew I Furness
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - David N Reznick
- Department of Biology, University of California, Riverside, Riverside, CA, USA
| | - Andrey Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - John C Avise
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
46
|
Mejbel HS, Simons AM. Aberrant clones: Birth order generates life history diversity in Greater Duckweed, Spirodela polyrhiza. Ecol Evol 2018; 8:2021-2031. [PMID: 29468021 PMCID: PMC5817126 DOI: 10.1002/ece3.3822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/28/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022] Open
Abstract
Environmental unpredictability is known to result in the evolution of bet-hedging traits. Variable dormancy enhances survival through harsh conditions, and is widely cited as a diversification bet-hedging trait. The floating aquatic plant, Spirodela polyrhiza (Greater Duckweed), provides an opportunity to study diversification because although partially reliable seasonal cues exist, its growing season is subject to an unpredictable and literally "hard" termination when the surface water freezes, and overwinter survival depends on a switch from production of normal daughter fronds to production of dense, sinking "turions" prior to freeze-over. The problem for S. polyrhiza is that diversified dormancy behavior must be generated among clonally produced, genetically identical offspring. Variation in phenology has been observed in the field, but its sources are unknown. Here, we investigate sources of phenological variation in turion production, and test the hypothesis that diversification in turion phenology is generated within genetic lineages through effects of parental birth order. As expected, phenotypic plasticity to temperature is expressed along a thermal gradient; more interestingly, parental birth order was found to have a significant and strong effect on turion phenology: Turions are produced earlier by late birth-order parents. These results hold regardless of whether turion phenology is measured as first turion birth order, time to first turion, or turion frequency. This study addresses a question of current interest on potential mechanisms generating diversification, and suggests that consistent phenotypic differences across birth orders generate life history variation.
Collapse
|
47
|
Api M, Biondi P, Olivotto I, Terzibasi E, Cellerino A, Carnevali O. Effects of Parental Aging During Embryo Development and Adult Life: The Case of Nothobranchius furzeri. Zebrafish 2018; 15:112-123. [PMID: 29304310 DOI: 10.1089/zeb.2017.1494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies on parental aging are a very attractive field, although it is poorly understood how parental age affects embryonic development and adult traits of the offspring. In this study, we used the turquoise killifish Nothobranchius furzeri, as is the vertebrate with shortest captive lifespan and an interesting model. The embryos of N. furzeri can follow two distinct developmental pathways either entering diapause or proceeding through direct development. Thus, this embryonic plasticity allows this model to be used to study different factors that could affect their embryonic development, including parental age. The first goal of the present study was to investigate whether parental aging could affect the embryo development. To do this, we collected F1 embryos from two breeder groups (old parents and young parents). We monitored the duration of embryonic development and analyzed genes involved in dorsalization process. The second goal was to investigate if embryonic developmental plasticity could be modulated by an epigenetic process. To this end, the expression of DNMTs genes was examined. Our data support the hypothesis that diapause, occurring more frequently in embryos from old parents, is associated with increased expression of DNMT3A and DNMT3B suggesting an epigenetic control. Finally, we analyzed whether parental age could affect metabolism and growth during adult life. Morphometric results and qPCR analysis of genes from IGF system showed a slower growth in adults from old breeders. Moreover, a gender-specificity effect on growth emerged. In conclusion, these results may contribute to the better understanding of the complex mechanism of aging.
Collapse
Affiliation(s)
- Martina Api
- 1 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Piera Biondi
- 1 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Ike Olivotto
- 1 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | | | | | - Oliana Carnevali
- 1 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| |
Collapse
|
48
|
Donelson JM, Salinas S, Munday PL, Shama LNS. Transgenerational plasticity and climate change experiments: Where do we go from here? GLOBAL CHANGE BIOLOGY 2018; 24:13-34. [PMID: 29024256 DOI: 10.1111/gcb.13903] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/30/2017] [Indexed: 05/18/2023]
Abstract
Phenotypic plasticity, both within and across generations, is an important mechanism that organisms use to cope with rapid climate change. While an increasing number of studies show that plasticity across generations (transgenerational plasticity or TGP) may occur, we have limited understanding of key aspects of TGP, such as the environmental conditions that may promote it, its relationship to within-generation plasticity (WGP) and its role in evolutionary potential. In this review, we consider how the detection of TGP in climate change experiments is affected by the predictability of environmental variation, as well as the timing and magnitude of environmental change cues applied. We also discuss the need to design experiments that are able to distinguish TGP from selection and TGP from WGP in multigenerational experiments. We conclude by suggesting future research directions that build on the knowledge to date and admit the limitations that exist, which will depend on the way environmental change is simulated and the type of experimental design used. Such an approach will open up this burgeoning area of research to a wider variety of organisms and allow better predictive capacity of the role of TGP in the response of organisms to future climate change.
Collapse
Affiliation(s)
- Jennifer M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | | | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Lisa N S Shama
- Coastal Ecology Section, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Wadden Sea Station Sylt, List, Germany
| |
Collapse
|
49
|
Hertler SC. Beyond birth order: The biological logic of personality variation among siblings. COGENT PSYCHOLOGY 2017. [DOI: 10.1080/23311908.2017.1325570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Steven C. Hertler
- Department of Psychology, College of New Rochelle, New Rochelle, NY 10805, USA
| |
Collapse
|
50
|
Arezo MJ, Papa NG, Berois N, Clivio G, Montagne J, De la Piedra S. Annual killifish adaptations to ephemeral environments: Diapause i in twoaustrolebiasspecies. Dev Dyn 2017; 246:848-857. [DOI: 10.1002/dvdy.24580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- María José Arezo
- Sección Biología Celular, Facultad de Ciencias, Montevideo, Uruguay. Depto, de Biología Celular y Molecular
| | - Nicolás G. Papa
- Sección Biología Celular, Facultad de Ciencias, Montevideo, Uruguay. Depto, de Biología Celular y Molecular
| | - Nibia Berois
- Sección Biología Celular, Facultad de Ciencias, Montevideo, Uruguay. Depto, de Biología Celular y Molecular
| | - Graciela Clivio
- Sección Biología Celular, Facultad de Ciencias, Montevideo, Uruguay. Depto, de Biología Celular y Molecular
| | - Jimena Montagne
- Sección Biología Celular, Facultad de Ciencias, Montevideo, Uruguay. Depto, de Biología Celular y Molecular
| | | |
Collapse
|