1
|
Tetrault E, Swenson J, Aaronson B, Marcho C, Albertson RC. The transcriptional state and chromatin landscape of cichlid jaw shape variation across species and environments. Mol Ecol 2023; 32:3922-3941. [PMID: 37160741 PMCID: PMC10524807 DOI: 10.1111/mec.16975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Adaptive phenotypes are shaped by a combination of genetic and environmental forces, but how they interact remains poorly understood. Here, we utilize the cichlid oral jaw apparatus to better understand these gene-by-environment effects. First, we employed RNA-seq in bony and ligamentous tissues important for jaw opening to identify differentially expressed genes between species and across foraging environments. We used two Lake Malawi species adapted to different foraging habitats along the pelagic-benthic ecomorphological axis. Our foraging treatments were designed to force animals to employ either suction or biting/scraping, which broadly mimic pelagic or benthic modes of feeding. We found a large number of differentially expressed genes between species, and while we identified relatively few differences between environments, species differences were far more pronounced when they were challenged with a pelagic versus benthic foraging mode. Expression data carried the signature of genetic assimilation, and implicated cell cycle regulation in shaping the jaw across species and environments. Next, we repeated the foraging experiment and performed ATAC-seq procedures on nuclei harvested from the same tissues. Cross-referencing results from both analyses revealed subsets of genes that were both differentially expressed and differentially accessible. This reduced dataset implicated notable candidate genes including the Hedgehog effector, KIAA0586 and the ETS transcription factor, etv4, which connects environmental stress and craniofacial morphogenesis. Taken together, these data provide novel insights into the epigenetic, genetic and cellular bases of species- and environment-specific bone shapes.
Collapse
Affiliation(s)
- Emily Tetrault
- Graduate Program in Molecular and Cell Biology, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - John Swenson
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - Ben Aaronson
- Biology Department, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - Chelsea Marcho
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - R. Craig Albertson
- Biology Department, University of Massachusetts, Amherst MA, 01003, U.S.A
| |
Collapse
|
2
|
de la Mata R, Zas R, Bustingorri G, Sampedro L, Rust M, Hernandez‐Serrano A, Sala A. Drivers of population differentiation in phenotypic plasticity in a temperate conifer: A 27-year study. Evol Appl 2022; 15:1945-1962. [PMID: 36426125 PMCID: PMC9679231 DOI: 10.1111/eva.13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022] Open
Abstract
Phenotypic plasticity is a main mechanism for organisms to cope with changing environments and broaden their ecological range. Plasticity is genetically based and can evolve under natural selection, such that populations within a species show distinct phenotypic responses to the environment if evolved under different conditions. Understanding how intraspecific variation in phenotypic plasticity arises is critical to assess potential adaptation to ongoing climate change. Theory predicts that plasticity is favored in more favorable but variable environments. Yet, many theoretical predictions about benefits, costs, and selection on plasticity remain untested. To test these predictions, we took advantage of three genetic trials in the northern Rocky Mountains, USA, which assessed 23 closely located Pinus ponderosa populations over 27 years. Mean environmental conditions and their spatial patterns of variation at the seed source populations were characterized based on six basic climate parameters. Despite the small area of origin, there was significant genetic variation in phenotypic plasticity for tree growth among populations. We found a significant negative correlation between phenotypic plasticity and the patch size of environmental heterogeneity at the seed source populations, but not with total environmental spatial variance. These results show that populations exposed to high microhabitat heterogeneity have evolved higher phenotypic plasticity and that the trigger was the grain rather than the total magnitude of spatial heterogeneity. Contrary to theoretical predictions, we also found a positive relationship between population plasticity and summer drought at the seed source, indicating that drought can act as a trigger of plasticity. Finally, we found a negative correlation between the quantitative genetic variance within populations and their phenotypic plasticity, suggesting compensatory adaptive mechanisms for the lack of genetic diversity. These results improve our understanding of the microevolutionary drivers of phenotypic plasticity, a critical process for resilience of long-lived species under climate change, and support decision-making in tree genetic improvement programs and seed transfer strategies.
Collapse
Affiliation(s)
- Raul de la Mata
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
- Estación Biológica de DoñanaConsejo Superior de Investigaciones Científicas (EBD‐CSIC)SevillaSpain
| | - Rafael Zas
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (MBG‐CSIC)PontevedraSpain
| | - Gloria Bustingorri
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (MBG‐CSIC)PontevedraSpain
| | - Luis Sampedro
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (MBG‐CSIC)PontevedraSpain
| | - Marc Rust
- Inland Empire Tree Improvement CooperativeUniversity of IdahoMoscowIdahoUSA
| | - Ana Hernandez‐Serrano
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF)Cerdanyola del VallèsSpain
| | - Anna Sala
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
3
|
Whiting MJ, Holland BS, Keogh JS, Noble DWA, Rankin KJ, Stuart-Fox D. Invasive chameleons released from predation display more conspicuous colors. SCIENCE ADVANCES 2022; 8:eabn2415. [PMID: 35544573 PMCID: PMC9094656 DOI: 10.1126/sciadv.abn2415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Conspicuous social and sexual signals are predicted to experience pronounced character release when natural selection via predation is relaxed. However, we have few good examples of this phenomenon in the wild and none in species with dynamic color change. Here, we show that Jackson's chameleons inadvertently introduced from Kenya to Hawaii (Oahu), where there are no coevolved, native lizard predators, experienced pronounced character release of color signals. Hawaiian chameleons displayed more conspicuous social color signals than Kenyan chameleons during male contests and courtship, were less cryptic in response to bird and snake predators, and showed greater change between display and antipredator color states. Hawaiian chameleon display colors were also more conspicuous in their local than ancestral habitats, consistent with local adaptation of social signals. These results demonstrate that relaxed predation pressure can result in character release of dynamic social signals in introduced species experiencing strong sexual selection.
Collapse
Affiliation(s)
- Martin J. Whiting
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Brenden S. Holland
- Department of Natural Science, Hawaii Pacific University, Honolulu, HI, USA
| | - J. Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2602, Australia
| | - Daniel W. A. Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2602, Australia
| | - Katrina J. Rankin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Tolvanen J, Kivelä SM, Doligez B, Morinay J, Gustafsson L, Bijma P, Pakanen VM, Forsman JT. Quantitative genetics of the use of conspecific and heterospecific social cues for breeding site choice. Evolution 2020; 74:2332-2347. [PMID: 32725635 PMCID: PMC7589285 DOI: 10.1111/evo.14071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2020] [Accepted: 07/23/2020] [Indexed: 12/03/2022]
Abstract
Social information use for decision‐making is common and affects ecological and evolutionary processes, including social aggregation, species coexistence, and cultural evolution. Despite increasing ecological knowledge on social information use, very little is known about its genetic basis and therefore its evolutionary potential. Genetic variation in a trait affecting an individual's social and nonsocial environment may have important implications for population dynamics, interspecific interactions, and, for expression of other, environmentally plastic traits. We estimated repeatability, additive genetic variance, and heritability of the use of conspecific and heterospecific social cues (abundance and breeding success) for breeding site choice in a population of wild collared flycatchers Ficedula albicollis. Repeatability was found for two social cues: previous year conspecific breeding success and previous year heterospecific abundance. Yet, additive genetic variances for these two social cues, and thus heritabilities, were low. This suggests that most of the phenotypic variation in the use of social cues and resulting conspecific and heterospecific social environment experienced by individuals in this population stems from phenotypic plasticity. Given the important role of social information use on ecological and evolutionary processes, more studies on genetic versus environmental determinism of social information use are needed.
Collapse
Affiliation(s)
- Jere Tolvanen
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland
| | - Sami M Kivelä
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland.,Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51014, Estonia.,Current Address: Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland
| | - Blandine Doligez
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université de Lyon - Université Claude Bernard Lyon 1, Villeurbanne, 69622, France
| | - Jennifer Morinay
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université de Lyon - Université Claude Bernard Lyon 1, Villeurbanne, 69622, France.,Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, SE-75236, Sweden
| | - Lars Gustafsson
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, SE-75236, Sweden
| | - Piter Bijma
- Animal Breeding and Genomics, Wageningen University, Wageningen, 6700AH, The Netherlands
| | - Veli-Matti Pakanen
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-40530, Sweden.,Current Address: Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-40530, Sweden
| | - Jukka T Forsman
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland.,Current Address: Natural Resources Institute Finland, University of Oulu, Oulu, 90014, Finland
| |
Collapse
|
5
|
Flatt T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020; 214:3-48. [PMID: 31907300 PMCID: PMC6944413 DOI: 10.1534/genetics.119.300160] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700, Switzerland
| |
Collapse
|
6
|
Durmaz E, Rajpurohit S, Betancourt N, Fabian DK, Kapun M, Schmidt P, Flatt T. A clinal polymorphism in the insulin signaling transcription factor foxo contributes to life-history adaptation in Drosophila. Evolution 2019; 73:1774-1792. [PMID: 31111462 PMCID: PMC6771989 DOI: 10.1111/evo.13759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
A fundamental aim of adaptation genomics is to identify polymorphisms that underpin variation in fitness traits. In Drosophila melanogaster, latitudinal life-history clines exist on multiple continents and make an excellent system for dissecting the genetics of adaptation. We have previously identified numerous clinal single-nucleotide polymorphism in insulin/insulin-like growth factor signaling (IIS), a pathway known from mutant studies to affect life history. However, the effects of natural variants in this pathway remain poorly understood. Here we investigate how two clinal alternative alleles at foxo, a transcriptional effector of IIS, affect fitness components (viability, size, starvation resistance, fat content). We assessed this polymorphism from the North American cline by reconstituting outbred populations, fixed for either the low- or high-latitude allele, from inbred DGRP lines. Because diet and temperature modulate IIS, we phenotyped alleles across two temperatures (18°C, 25°C) and two diets differing in sugar source and content. Consistent with clinal expectations, the high-latitude allele conferred larger body size and reduced wing loading. Alleles also differed in starvation resistance and expression of insulin-like receptor, a transcriptional target of FOXO. Allelic reaction norms were mostly parallel, with few GxE interactions. Together, our results suggest that variation in IIS makes a major contribution to clinal life-history adaptation.
Collapse
Affiliation(s)
- Esra Durmaz
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Subhash Rajpurohit
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
- Division of Biological and Life SciencesAhmedabad UniversityAhmedabadIndia
| | - Nicolas Betancourt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Daniel K. Fabian
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome Campus, HinxtonCambridgeUnited Kingdom
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population, GeneticsViennaAustria
| | - Martin Kapun
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Paul Schmidt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Thomas Flatt
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
7
|
Seymour M, Räsänen K, Kristjánsson BK. Drift versus selection as drivers of phenotypic divergence at small spatial scales: The case of Belgjarskógur threespine stickleback. Ecol Evol 2019; 9:8133-8145. [PMID: 31380077 PMCID: PMC6662300 DOI: 10.1002/ece3.5381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 11/14/2022] Open
Abstract
Divergence in phenotypic traits is facilitated by a combination of natural selection, phenotypic plasticity, gene flow, and genetic drift, whereby the role of drift is expected to be particularly important in small and isolated populations. Separating the components of phenotypic divergence is notoriously difficult, particularly for multivariate phenotypes. Here, we assessed phenotypic divergence of threespine stickleback (Gasterosteus aculeatus) across 19 semi-interconnected ponds within a small geographic region (~7.5 km2) using comparisons of multivariate phenotypic divergence (PST), neutral genetic (FST), and environmental (EST) variation. We found phenotypic divergence across the ponds in a suite of functionally relevant phenotypic traits, including feeding, defense, and swimming traits, and body shape (geometric morphometric). Comparisons of PSTs with FSTs suggest that phenotypic divergence is predominantly driven by neutral processes or stabilizing selection, whereas phenotypic divergence in defensive traits is in accordance with divergent selection. Comparisons of population pairwise PSTs with ESTs suggest that phenotypic divergence in swimming traits is correlated with prey availability, whereas there were no clear associations between phenotypic divergence and environmental difference in the other phenotypic groups. Overall, our results suggest that phenotypic divergence of these small populations at small geographic scales is largely driven by neutral processes (gene flow, drift), although environmental determinants (natural selection or phenotypic plasticity) may play a role.
Collapse
Affiliation(s)
- Mathew Seymour
- Department of Aquaculture and Fish BiologyHólar UniversitySkagafjörðurIceland
- Department of Aquatic EcologyEAWAG and Institute of Integrative BiologyETH‐ZurichDübendorfSwitzerland
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological SciencesBangor UniversityBangorUK
| | - Katja Räsänen
- Department of Aquatic EcologyEAWAG and Institute of Integrative BiologyETH‐ZurichDübendorfSwitzerland
| | | |
Collapse
|
8
|
Stage-specific genotype-by-environment interactions for cold and heat hardiness in Drosophila melanogaster. Heredity (Edinb) 2019; 123:479-491. [PMID: 31164731 DOI: 10.1038/s41437-019-0236-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022] Open
Abstract
Environments often vary across a life cycle, imposing fluctuating natural selection across development. Such fluctuating selection can favor different phenotypes in different life stages, but stage-specific evolutionary responses will depend on genetic variance, covariance, and their interaction across development and across environments. Thus, quantifying how genetic architecture varies with plastic responses to the environment and across development is vital to predict whether stage-specific adaptation will occur in nature. Additionally, the interaction of genetic variation and environmental plasticity (GxE) may be stage-specific, leading to a three-way interaction between genotype, environment, and development or GxDxE. To test for these patterns, we exposed larvae and adults of Drosophila melanogaster isogenic lines derived from a natural population to extreme heat and cold stress after developmental acclimation to cool (18 °C) and warm (25 °C) conditions and measured genetic variance for thermal hardiness. We detected significant GxE that was specific to larvae and adults for cold and heat hardiness (GxDxE), but no significant genetic correlation across development for either trait at either acclimation temperature. However, cross-development phenotypic correlations for acclimation responses suggest that plasticity itself may be developmentally constrained, though rigorously testing this hypothesis requires more experimentation. These results illustrate the potential for stage-specific adaptation within a complex life cycle and demonstrate the importance of measuring traits at appropriate developmental stages and environmental conditions when predicting evolutionary responses to changing climates.
Collapse
|
9
|
Armstrong A, Anderson NW, Blackmon H. Inferring the potentially complex genetic architectures of adaptation, sexual dimorphism and genotype by environment interactions by partitioning of mean phenotypes. J Evol Biol 2019; 32:369-379. [PMID: 30698300 DOI: 10.1111/jeb.13421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/23/2018] [Accepted: 01/23/2019] [Indexed: 01/18/2023]
Abstract
Genetic architecture fundamentally affects the way that traits evolve. However, the mapping of genotype to phenotype includes complex interactions with the environment or even the sex of an organism that can modulate the expressed phenotype. Line-cross analysis is a powerful quantitative genetics method to infer genetic architecture by analysing the mean phenotype value of two diverged strains and a series of subsequent crosses and backcrosses. However, it has been difficult to account for complex interactions with the environment or sex within this framework. We have developed extensions to line-cross analysis that allow for gene by environment and gene by sex interactions. Using extensive simulation studies and reanalysis of empirical data, we show that our approach can account for both unintended environmental variation when crosses cannot be reared in a common garden and can be used to test for the presence of gene by environment or gene by sex interactions. In analyses that fail to account for environmental variation between crosses, we find that line-cross analysis has low power and high false-positive rates. However, we illustrate that accounting for environmental variation allows for the inference of adaptive divergence, and that accounting for sex differences in phenotypes allows practitioners to infer the genetic architecture of sexual dimorphism.
Collapse
Affiliation(s)
- Andrew Armstrong
- Department of Mathematics, Texas A&M University, College Station, Texas
| | - Nathan W Anderson
- Department of Mathematics, Texas A&M University, College Station, Texas
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
10
|
Lasne C, Van Heerwaarden B, Sgrò CM, Connallon T. Quantifying the relative contributions of the X chromosome, autosomes, and mitochondrial genome to local adaptation. Evolution 2018; 73:262-277. [PMID: 30417348 DOI: 10.1111/evo.13647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
During local adaptation with gene flow, some regions of the genome are inherently more responsive to selection than others. Recent theory predicts that X-linked genes should disproportionately contribute to local adaptation relative to other genomic regions, yet this prediction remains to be tested. We carried out a multigeneration crossing scheme, using two cline-end populations of Drosophila melanogaster, to estimate the relative contributions of the X chromosome, autosomes, and mitochondrial genome to divergence in four traits involved in local adaptation (wing size, resistance to heat, desiccation, and starvation stresses). We found that the mitochondrial genome and autosomes contributed significantly to clinal divergence in three of the four traits. In contrast, the X made no significant contribution to divergence in these traits. Given the small size of the mitochondrial genome, our results indicate that it plays a surprisingly large role in clinal adaptation. In contrast, the X, which represents roughly 20% of the Drosophila genome, contributes negligibly-a pattern that conflicts with theoretical predictions. These patterns reinforce recent work implying a central role of mitochondria in climatic adaptation, and suggest that different genomic regions may play fundamentally different roles in processes of divergence with gene flow.
Collapse
Affiliation(s)
- Clementine Lasne
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | | | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|