1
|
Quintero I, Lartillot N, Morlon H. Imbalanced speciation pulses sustain the radiation of mammals. Science 2024; 384:1007-1012. [PMID: 38815022 DOI: 10.1126/science.adj2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
The evolutionary histories of major clades, including mammals, often comprise changes in their diversification dynamics, but how these changes occur remains debated. We combined comprehensive phylogenetic and fossil information in a new "birth-death diffusion" model that provides a detailed characterization of variation in diversification rates in mammals. We found an early rising and sustained diversification scenario, wherein speciation rates increased before and during the Cretaceous-Paleogene (K-Pg) boundary. The K-Pg mass extinction event filtered out more slowly speciating lineages and was followed by a subsequent slowing in speciation rates rather than rebounds. These dynamics arose from an imbalanced speciation process, with separate lineages giving rise to many, less speciation-prone descendants. Diversity seems to have been brought about by these isolated, fast-speciating lineages, rather than by a few punctuated innovations.
Collapse
Affiliation(s)
- Ignacio Quintero
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nicolas Lartillot
- Université Claude Bernard Lyon 1, CNRS, VetAgroSup, LBBE, UMR 5558, F-69100 Villeurbanne, France
| | - Hélène Morlon
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
2
|
Scott JE. Variation in macroevolutionary dynamics among extant primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:405-416. [PMCID: PMC9826261 DOI: 10.1002/ajpa.24622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 09/03/2022] [Indexed: 09/25/2023]
Abstract
Objectives This study examines how speciation and extinction rates vary across primates, with a focus on the recent macroevolutionary dynamics that have shaped extant primate biodiversity. Materials and methods Lineage‐specific macroevolutionary rates were estimated for each tip in a tree containing 307 species using a hidden‐state likelihood model. Differences in tip rates among major clades were evaluated using phylogenetic ANOVA. Differences among diurnal, nocturnal, and cathemeral lineages were also evaluated, based on previous work indicating that activity pattern influences primate diversification. Results Rate variation in extant primates is low within clades and high between clades. As in previous studies, cercopithecoids stand out in having high net diversification rates, driven by high speciation rates and very low extinction rates. Platyrrhines combine high speciation and high extinction rates, giving them high rates of lineage turnover. Strepsirrhines and tarsiids have low rates of speciation, extinction, turnover, and net diversification. Hominoids are intermediate between platyrrhines and the strepsirrhine‐tarsiid group, and there is evidence for differentiation between hominids and hylobatids. Diurnal lineages have significantly higher speciation rates than nocturnal lineages. Conclusions Recent anthropoid macroevolution has been characterized by marked variation in diversification dynamics among clades. Strepsirrhines and tarsiids are more uniform, despite divergent evolutionary and biogeographic histories. Higher speciation rates in diurnal lineages may be driven by greater ecological opportunity or reliance on visual signals for mate recognition. However, the differences among anthropoids indicate that factors other than activity pattern (e.g., clade competition, historical contingency) have had a more influential role in shaping recent primate diversification.
Collapse
Affiliation(s)
- Jeremiah E. Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the PacificWestern University of Health SciencesPomonaCaliforniaUSA
| |
Collapse
|
3
|
Louca S, Pennell MW. Why extinction estimates from extant phylogenies are so often zero. Curr Biol 2021; 31:3168-3173.e4. [PMID: 34019824 DOI: 10.1016/j.cub.2021.04.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/11/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Time-calibrated phylogenies of extant species ("extant timetrees") are widely used to estimate historical speciation and extinction rates by fitting stochastic birth-death models.1 These approaches have long been controversial, as many phylogenetic studies report zero extinction in many taxa, contradicting the high extinction rates seen in the fossil record and the fact that the majority of species ever to have existed are now extinct.2-9 To date, the causes of this discrepancy remain unresolved. Here, we provide a novel and simple explanation for these "zero-inflated" extinction estimates, based on the recent discovery that there exist many alternative "congruent" diversification scenarios that cannot be distinguished based solely on extant timetrees.10 Due to such congruencies, estimation methods tend to converge to some scenario congruent to (i.e., statistically indistinguishable from) the true diversification scenario, but not necessarily to the true diversification scenario itself. This congruent scenario may exhibit negative extinction rates, a biologically meaningless but mathematically feasible situation, in which case estimators will tend to stick to the boundary of zero extinction. Based on this explanation, we make multiple testable predictions, which we confirm using analyses of simulated trees and 121 empirical trees. In contrast to other proposed mechanisms for erroneous extinction rate estimates,5,11-14 our proposed mechanism specifically explains the zero inflation of previous extinction rate estimates in the absence of detectable model violations, even for large trees. Not only do our results likely resolve a long-standing mystery in phylogenetics, they demonstrate that model congruencies can have severe consequences in practice.
Collapse
Affiliation(s)
- Stilianos Louca
- Department of Biology, University of Oregon, 1210 University of Oregon, Eugene, OR 97403, USA; Institute of Ecology and Evolution, University of Oregon, 5289 University of Oregon, Eugene, OR 97403, USA.
| | - Matthew W Pennell
- Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC V6T1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T1Z4, Canada.
| |
Collapse
|
4
|
Heads M, Grehan JR. The Galápagos Islands: biogeographic patterns and geology. Biol Rev Camb Philos Soc 2021; 96:1160-1185. [PMID: 33749122 DOI: 10.1111/brv.12696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
In the traditional biogeographic model, the Galápagos Islands appeared a few million years ago in a sea where no other islands existed and were colonized from areas outside the region. However, recent work has shown that the Galápagos hotspot is 139 million years old (Early Cretaceous), and so groups are likely to have survived at the hotspot by dispersal of populations onto new islands from older ones. This process of metapopulation dynamics means that species can persist indefinitely in an oceanic region, as long as new islands are being produced. Metapopulations can also undergo vicariance into two metapopulations, for example at active island arcs that are rifted by transform faults. We reviewed the geographic relationships of Galápagos groups and found 10 biogeographic patterns that are shared by at least two groups. Each of the patterns coincides spatially with a major tectonic structure; these structures include: the East Pacific Rise; west Pacific and American subduction zones; large igneous plateaus in the Pacific; Alisitos terrane (Baja California), Guerrero terrane (western Mexico); rifting of North and South America; formation of the Caribbean Plateau by the Galápagos hotspot, and its eastward movement; accretion of Galápagos hotspot tracks; Andean uplift; and displacement on the Romeral fault system. All these geological features were active in the Cretaceous, suggesting that geological change at that time caused vicariance in widespread ancestors. The present distributions are explicable if ancestors survived as metapopulations occupying both the Galápagos hotspot and other regions before differentiating, more or less in situ.
Collapse
Affiliation(s)
- Michael Heads
- Buffalo Museum of Science, 1020 Humboldt Parkway, Buffalo, NY, 14211-1293, U.S.A
| | - John R Grehan
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, 3215 Hull Rd, Gainesville, FL, 32611, U.S.A
| |
Collapse
|
5
|
Couvreur TL, Dauby G, Blach‐Overgaard A, Deblauwe V, Dessein S, Droissart V, Hardy OJ, Harris DJ, Janssens SB, Ley AC, Mackinder BA, Sonké B, Sosef MS, Stévart T, Svenning J, Wieringa JJ, Faye A, Missoup AD, Tolley KA, Nicolas V, Ntie S, Fluteau F, Robin C, Guillocheau F, Barboni D, Sepulchre P. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol Rev Camb Philos Soc 2021; 96:16-51. [PMID: 32924323 PMCID: PMC7821006 DOI: 10.1111/brv.12644] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022]
Abstract
Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel, extended geological and palaeoclimatic records together with detailed numerical simulations have refined our understanding of past geological and climatic changes in Africa. To date, these important advances have not been reviewed within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences. We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing 89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant clades and discuss three major models of speciation: (i) geographic speciation via vicariance (allopatry); (ii) ecological speciation impacted by climate and geological changes, and (iii) genomic speciation via genome duplication. Geographic speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We conclude with four important challenges faced by tropical African biodiversity research: (i) to increase knowledge by gathering basic and fundamental biodiversity information; (ii) to improve modelling of African geophysical evolution throughout the Cenozoic via better constraints and downscaling approaches; (iii) to increase the precision of phylogenetic reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together with better fossil calibrations; (iv) finally, as done here, to integrate data better from Earth and life sciences by focusing on the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.
Collapse
Affiliation(s)
| | - Gilles Dauby
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - Anne Blach‐Overgaard
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Vincent Deblauwe
- Center for Tropical Research (CTR), Institute of the Environment and SustainabilityUniversity of California, Los Angeles (UCLA)Los AngelesCA90095U.S.A.
- International Institute of Tropical Agriculture (IITA)YaoundéCameroon
| | | | - Vincent Droissart
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Oliver J. Hardy
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - David J. Harris
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghU.K.
| | | | - Alexandra C. Ley
- Institut für Geobotanik und Botanischer GartenUniversity Halle‐WittenbergNeuwerk 21Halle06108Germany
| | | | - Bonaventure Sonké
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
| | | | - Tariq Stévart
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Jens‐Christian Svenning
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Jan J. Wieringa
- Naturalis Biodiversity CenterDarwinweg 2Leiden2333 CRThe Netherlands
| | - Adama Faye
- Laboratoire National de Recherches sur les Productions Végétales (LNRPV)Institut Sénégalais de Recherches Agricoles (ISRA)Route des Hydrocarbures, Bel Air BP 1386‐ CP18524DakarSenegal
| | - Alain D. Missoup
- Zoology Unit, Laboratory of Biology and Physiology of Animal Organisms, Faculty of ScienceUniversity of DoualaPO Box 24157DoualaCameroon
| | - Krystal A. Tolley
- South African National Biodiversity InstituteKirstenbosch Research CentrePrivate Bag X7, ClaremontCape Town7735South Africa
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandPrivate Bag 3Wits2050South Africa
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHEUniversité des AntillesCP51, 57 rue CuvierParis75005France
| | - Stéphan Ntie
- Département de Biologie, Faculté des SciencesUniversité des Sciences et Techniques de MasukuFrancevilleBP 941Gabon
| | - Frédiéric Fluteau
- Institut de Physique du Globe de Paris, CNRSUniversité de ParisParisF‐75005France
| | - Cécile Robin
- CNRS, Géosciences Rennes, UMR6118University of RennesRennes35042France
| | | | - Doris Barboni
- CEREGE, Aix‐Marseille University, CNRS, IRD, Collège de France, INRA, Technopole Arbois MéditerranéeBP80Aix‐en‐Provence cedex413545France
| | - Pierre Sepulchre
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteF‐91191France
| |
Collapse
|
6
|
Comparing Rates of Linage Diversification with Rates of Size and Shape Evolution in Catarrhine Crania. Evol Biol 2020. [DOI: 10.1007/s11692-020-09500-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Melchionna M, Mondanaro A, Serio C, Castiglione S, Di Febbraro M, Rook L, Diniz-Filho JAF, Manzi G, Profico A, Sansalone G, Raia P. Macroevolutionary trends of brain mass in Primates. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
A distinctive trait in primate evolution is the expansion in brain mass. The potential drivers of this trend and how and whether encephalization influenced diversification dynamics in this group are hotly debated. We assembled a phylogeny accounting for 317 primate species, including both extant and extinct taxa, to identify macroevolutionary trends in brain mass evolution. Our findings show that Primates as a whole follow a macroevolutionary trend for an increase in body mass, relative brain mass and speciation rate over time. Although the trend for increased encephalization (brain mass) applies to all Primates, hominins stand out for their distinctly higher rates. Within hominins, this unique trend applies linearly over time and starts with Australopithecus africanus. The increases in both speciation rate and encephalization begin in the Oligocene, suggesting the two variables are causally associated. The substitution of early, stem Primates belonging to plesiadapiforms with crown Primates seems to be responsible for these macroevolutionary trends. However, our findings also suggest that cognitive capacities favoured speciation in hominins.
Collapse
Affiliation(s)
- M Melchionna
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
| | - A Mondanaro
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
- Department of Earth Sciences, University of Florence, Italy
| | - C Serio
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
| | - S Castiglione
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
| | - M Di Febbraro
- Dipartimento di Bioscienze e Territorio, University of Molise, C. da Fonte Lappone, 15, 86090 Pesche, IS, Italy
| | - L Rook
- Department of Earth Sciences, University of Florence, Italy
| | - J A F Diniz-Filho
- Departamento de Ecologia, ICB, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - G Manzi
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | - A Profico
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | - G Sansalone
- Department of Environmental and Rural Sciences, FEARlab, University of New England, Armidale, 2351, NSW, Australia
| | - P Raia
- Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Italy
| |
Collapse
|
8
|
Silvestro D, Tejedor MF, Serrano-Serrano ML, Loiseau O, Rossier V, Rolland J, Zizka A, Höhna S, Antonelli A, Salamin N. Early Arrival and Climatically-Linked Geographic Expansion of New World Monkeys from Tiny African Ancestors. Syst Biol 2018; 68:78-92. [PMID: 29931325 PMCID: PMC6292484 DOI: 10.1093/sysbio/syy046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
New World Monkeys (NWM) (platyrrhines) are one of the most diverse groups of primates, occupying today a wide range of ecosystems in the American tropics and exhibiting large variations in ecology, morphology, and behavior. Although the relationships among the almost 200 living species are relatively well understood, we lack robust estimates of the timing of origin, ancestral morphology, and geographic range evolution of the clade. Herein, we integrate paleontological and molecular evidence to assess the evolutionary dynamics of extinct and extant platyrrhines. We develop novel analytical frameworks to infer the evolution of body mass, changes in latitudinal ranges through time, and species diversification rates using a phylogenetic tree of living and fossil taxa. Our results show that platyrrhines originated 5–10 million years earlier than previously assumed, dating back to the Middle Eocene. The estimated ancestral platyrrhine was small—weighing 0.4 kg—and matched the size of their presumed African ancestors. As the three platyrrhine families diverged, we recover a rapid change in body mass range. During the Miocene Climatic Optimum, fossil diversity peaked and platyrrhines reached their widest latitudinal range, expanding as far South as Patagonia, favored by warm and humid climate and the lower elevation of the Andes. Finally, global cooling and aridification after the middle Miocene triggered a geographic contraction of NWM and increased their extinction rates. These results unveil the full evolutionary trajectory of an iconic and ecologically important radiation of monkeys and showcase the necessity of integrating fossil and molecular data for reliably estimating evolutionary rates and trends.
Collapse
Affiliation(s)
- Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Gothenburg Global Biodiversity Center, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland.,These authors contributed equally to this work
| | - Marcelo F Tejedor
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Gothenburg Global Biodiversity Center, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland.,Instituto Patagónico de Geología y Paleontología (CCT CONICET-CENPAT), Boulevard Almirante Brown 2915, 9120 Puerto Madryn, Chubut, Argentina.,Facultad de Ciencias Naturales, Sede Trelew, Universidad Nacional de la Patagonia 'San Juan Bosco', 9100 Trelew, Chubut, Argentina.,These authors contributed equally to this work
| | | | - Oriane Loiseau
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Victor Rossier
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Jonathan Rolland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Department of Zoology, University of British Columbia, 2212 Main Mall, Vancouver, BC Canada
| | - Alexander Zizka
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Gothenburg Global Biodiversity Center, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden
| | - Sebastian Höhna
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Munich, Germany
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Gothenburg Global Biodiversity Center, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.,Gothenburg Botanical Garden, Carl Skottsbergs gata 22A, 413 19 Gothenburg, Sweden.,Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA.,These authors are severs as a co-last authorship
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland.,These authors are severs as a co-last authorship
| |
Collapse
|
9
|
Heads M. Recent advances in New Caledonian biogeography. Biol Rev Camb Philos Soc 2018; 94:957-980. [PMID: 30523662 DOI: 10.1111/brv.12485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023]
Abstract
The biota of New Caledonia is one of the most unusual in the world. It displays high diversity and endemism, many peculiar absences, and far-flung biogeographic affinities. For example, New Caledonia is the only place on Earth with both main clades of flowering plants - the endemic Amborella and 'all the rest', and it also has the highest concentration of diversity in conifers. The discovery of Amborella's phylogenetic position led to a surge of interest in New Caledonian biogeography, and new studies are appearing at a rapid rate. This paper reviews work on the topic (mainly molecular studies) published since 2013. One current debate is focused on whether any biota survived the marine transgressions of the Paleocene and Eocene. Total submersion would imply that the entire fauna was derived by long-distance dispersal from continental areas since the Eocene, but only if no other islands (now submerged) were emergent. A review of the literature suggests there is little actual evidence in geology for complete submersion. An alternative explanation for New Caledonia's diversity is that the archipelago acted as a refugium, and that the biota avoided the extinctions that occurred in Australia. However, this is contradicted by the many groups that are anomalously absent or depauperate in New Caledonia, although represented there by a sister group. The anomalous absences, together with the unusual levels of endemism, can both be explained by vicariance at breaks in and around New Caledonia. New Caledonia has always been situated at or near a plate boundary, and its complex geological history includes the addition of new terranes (by accretion), orogeny, and rifting. New Caledonia comprises 'basement' terranes that were part of Gondwana, as well as island arc and forearc terranes that accreted to the basement after it separated from Gondwana. The regional tectonic history helps explain the regional biogeography, as well as distribution patterns within New Caledonia. These include endemics on the basement terranes (for example, the basal angiosperm, Amborella), disjunctions at the West Caledonian fault zone, and great biotic differences between Grande Terre and the Loyalty Islands.
Collapse
Affiliation(s)
- Michael Heads
- Buffalo Museum of Science, Buffalo, NY 14211-1293, U.S.A
| |
Collapse
|
10
|
Silvestro D, Warnock RCM, Gavryushkina A, Stadler T. Closing the gap between palaeontological and neontological speciation and extinction rate estimates. Nat Commun 2018; 9:5237. [PMID: 30532040 PMCID: PMC6286320 DOI: 10.1038/s41467-018-07622-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 11/13/2018] [Indexed: 11/09/2022] Open
Abstract
Measuring the pace at which speciation and extinction occur is fundamental to understanding the origin and evolution of biodiversity. Both the fossil record and molecular phylogenies of living species can provide independent estimates of speciation and extinction rates, but often produce strikingly divergent results. Despite its implications, the theoretical reasons for this discrepancy remain unknown. Here, we reveal a conceptual and methodological basis able to reconcile palaeontological and molecular evidence: discrepancies are driven by different implicit assumptions about the processes of speciation and species evolution in palaeontological and neontological analyses. We present the "birth-death chronospecies" model that clarifies the definition of speciation and extinction processes allowing for a coherent joint analysis of fossil and phylogenetic data. Using simulations and empirical analyses we demonstrate not only that this model explains much of the apparent incongruence between fossils and phylogenies, but that differences in rate estimates are actually informative about the prevalence of different speciation modes.
Collapse
Affiliation(s)
- Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, 41319, Gothenburg, Sweden.
- Global Gothenburg Biodiversity Centre, 41319, Gothenburg, Sweden.
- Department of Computational Biology, University of Lausanne, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland.
| | - Rachel C M Warnock
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, 4058, Basel, Switzerland
| | | | - Tanja Stadler
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, 4058, Basel, Switzerland
| |
Collapse
|
11
|
Scott JE. Reevaluating cases of trait-dependent diversification in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:244-256. [DOI: 10.1002/ajpa.23621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/23/2018] [Accepted: 05/12/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jeremiah E. Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific; Western University of Health Sciences; Pomona California 91766
| |
Collapse
|