1
|
Sultanova Z, Downing PA, Carazo P. Genetic sex determination, sex chromosome size and sex-specific lifespans across tetrapods. J Evol Biol 2023; 36:480-494. [PMID: 36537352 PMCID: PMC10107984 DOI: 10.1111/jeb.14130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Sex differences in lifespan are ubiquitous across the tree of life and exhibit broad taxonomic patterns that remain a puzzle, such as males living longer than females in birds and vice versa in mammals. The prevailing unguarded X hypothesis explains sex differences in lifespan by differential expression of recessive mutations on the X or Z chromosome of the heterogametic sex, but has only received indirect support to date. An alternative hypothesis is that the accumulation of deleterious mutations and repetitive elements on the Y or W chromosome might lower the survival of the heterogametic sex ('toxic Y' hypothesis). Here, we use a new database to report lower survival of the heterogametic relative to the homogametic sex across 136 species of birds, mammals, reptiles and amphibians, as expected if sex chromosomes shape sex-specific lifespans, and consistent with previous findings. We also found that the relative sizes of both the X and the Y chromosomes in mammals (but not the Z or the W chromosomes in birds) are associated with sex differences in lifespan, as predicted by the unguarded X and the 'toxic Y'. Furthermore, we report that the relative size of the Y is negatively associated with male lifespan in mammals, so that small Y size correlates with increased male lifespan. In theory, toxic Y effects are expected to be particularly strong in mammals, and we did not find similar effects in birds. Our results confirm the role of sex chromosomes in explaining sex differences in lifespan across tetrapods and further suggest that, at least in mammals, 'toxic Y' effects may play an important part in this role.
Collapse
Affiliation(s)
- Zahida Sultanova
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Philip A Downing
- Department of Biology, Lund University, Lund, Sweden.,Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Pau Carazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Connallon T, Beasley IJ, McDonough Y, Ruzicka F. How much does the unguarded X contribute to sex differences in life span? Evol Lett 2022; 6:319-329. [PMID: 35937469 PMCID: PMC9346086 DOI: 10.1002/evl3.292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 06/12/2022] [Indexed: 11/09/2022] Open
Abstract
Females and males often have markedly different mortality rates and life spans, but it is unclear why these forms of sexual dimorphism evolve. The unguarded X hypothesis contends that dimorphic life spans arise from sex differences in X or Z chromosome copy number (i.e., one copy in the "heterogametic" sex; two copies in the "homogametic" sex), which leads to a disproportionate expression of deleterious mutations by the heterogametic sex (e.g., mammalian males; avian females). Although data on adult sex ratios and sex-specific longevity are consistent with predictions of the unguarded X hypothesis, direct experimental evidence remains scant, and alternative explanations are difficult to rule out. Using a simple population genetic model, we show that the unguarded X effect on sex differential mortality is a function of several reasonably well-studied evolutionary parameters, including the proportion of the genome that is sex linked, the genomic deleterious mutation rate, the mean dominance of deleterious mutations, the relative rates of mutation and strengths of selection in each sex, and the average effect of mutations on survival and longevity relative to their effects on fitness. We review published estimates of these parameters, parameterize our model with them, and show that unguarded X effects are too small to explain observed sex differences in life span across species. For example, sex differences in mean life span are known to often exceed 20% (e.g., in mammals), whereas our parameterized models predict unguarded X effects of a few percent (e.g., 1-3% in Drosophila and mammals). Indeed, these predicted unguarded X effects fall below statistical thresholds of detectability in most experiments, potentially explaining why direct tests of the hypothesis have generated little support for it. Our results suggest that evolution of sexually dimorphic life spans is predominantly attributable to other mechanisms, potentially including "toxic Y" effects and sexual dimorphism for optimal investment in survival versus reproduction.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological SciencesMonash UniversityClaytonVIC3800Australia
| | - Isobel J. Beasley
- School of BioSciencesThe University of MelbourneParkvilleVIC3010Australia
- Melbourne Integrative GenomicsThe University of MelbourneParkvilleVIC3010Australia
- St. Vincent's Institute of Medical ResearchFitzroyVIC3065Australia
| | - Yasmine McDonough
- School of Biological SciencesMonash UniversityClaytonVIC3800Australia
| | - Filip Ruzicka
- School of Biological SciencesMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
3
|
Marais GAB, Lemaître JF. Sex chromosomes, sex ratios and sex gaps in longevity in plants. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210219. [PMID: 35306888 PMCID: PMC8935291 DOI: 10.1098/rstb.2021.0219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022] Open
Abstract
In animals, males and females can display markedly different longevity (also called sex gaps in longevity, SGL). Sex chromosomes contribute to establishing these SGLs. X-hemizygosity and toxicity of the Y chromosomes are two mechanisms that have been suggested to reduce male longevity (Z-hemizygosity and W toxicity in females in ZW systems). In plants, SGLs are known to exist, but the role of sex chromosomes remains to be established. Here, by using adult sex ratio as a proxy for measuring SGLs, we explored the relationship between sex chromosomes and SGLs across 43 plant species. Based on the knowledge accumulated in animals, we specifically asked whether: (i) species with XY systems tend to have female-biased sex ratios (reduced male longevity) and species with ZW ones tend to have male-biased sex ratios (reduced female longevity); and (ii) this pattern was stronger in heteromorphic systems compared to homomorphic ones. Our results tend to support these predictions although we lack statistical power because of a small number of ZW systems and the absence of any heteromorphic ZW system in the dataset. We discuss the implications of these findings, which we hope will stimulate further research on sex differences in lifespan and ageing across plants. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Gabriel A. B. Marais
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- LBBE, CNRS/Univ. Lyon 1, Campus de la Doua, Villeurbanne, France
| | - J-F. Lemaître
- LBBE, CNRS/Univ. Lyon 1, Campus de la Doua, Villeurbanne, France
| |
Collapse
|
4
|
Narayan VP, Wilson AJ, Chenoweth SF. Genetic and social contributions to sex differences in lifespan in Drosophila serrata. J Evol Biol 2022; 35:657-663. [PMID: 35290690 PMCID: PMC9314142 DOI: 10.1111/jeb.13992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/01/2023]
Abstract
Sex differences in lifespan remain an intriguing puzzle in evolutionary biology. While explanations range from sex differences in selection to sex differences in the expression of recessive lifespan‐altering mutations (via X‐linkage), little consensus has been reached. One unresolved issue is the extent to which genetic influences on lifespan dimorphism are modulated by the environment. For example, studies have shown that sex differences in lifespan can either increase or decrease depending upon the social environment. Here, we took an experimental approach, manipulating multiple axes of the social environment across inbred long‐ and short‐lived genotypes and their reciprocal F1s in the fly Drosophila serrata. Our results reveal strong genetic effects and subtle yet significant genotype‐by‐environment interactions for male and female lifespan, specifically due to both population density and mating status. Further, our data do not support the idea that unconditional expression of deleterious X‐linked recessive alleles in heterogametic males accounts for lower male lifespan.
Collapse
Affiliation(s)
- Vikram P Narayan
- The School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia.,College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Alastair J Wilson
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Stephen F Chenoweth
- The School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
5
|
Bronikowski AM, Meisel RP, Biga PR, Walters J, Mank JE, Larschan E, Wilkinson GS, Valenzuela N, Conard AM, de Magalhães JP, Duan J, Elias AE, Gamble T, Graze R, Gribble KE, Kreiling JA, Riddle NC. Sex-specific aging in animals: Perspective and future directions. Aging Cell 2022; 21:e13542. [PMID: 35072344 PMCID: PMC8844111 DOI: 10.1111/acel.13542] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022] Open
Abstract
Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.
Collapse
Affiliation(s)
- Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Richard P. Meisel
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Peggy R. Biga
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - James R. Walters
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKansasUSA
| | - Judith E. Mank
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BioscienceUniversity of ExeterPenrynUK
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | | | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Ashley Mae Conard
- Department of Computer ScienceCenter for Computational and Molecular BiologyBrown UniversityProvidenceRhode IslandUSA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | | | - Amy E. Elias
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Tony Gamble
- Department of Biological SciencesMarquette UniversityMilwaukeeWisconsinUSA
- Milwaukee Public MuseumMilwaukeeWisconsinUSA
- Bell Museum of Natural HistoryUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Rita M. Graze
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusettsUSA
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Nicole C. Riddle
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
6
|
Vega‐Trejo R, Boer RA, Fitzpatrick JL, Kotrschal A. Sex‐specific inbreeding depression: A meta‐analysis. Ecol Lett 2022; 25:1009-1026. [PMID: 35064612 PMCID: PMC9304238 DOI: 10.1111/ele.13961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Regina Vega‐Trejo
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
- Department of Zoology Edward Grey Institute University of Oxford Oxford UK
| | - Raïssa A. Boer
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
| | | | - Alexander Kotrschal
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
- Behavioural Ecology Group Wageningen University & Research Wageningen The Netherlands
| |
Collapse
|
7
|
Ruzicka F, Connallon T, Reuter M. Sex differences in deleterious mutational effects in Drosophila melanogaster: combining quantitative and population genetic insights. Genetics 2021; 219:6362879. [PMID: 34740242 DOI: 10.1093/genetics/iyab143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Fitness effects of deleterious mutations can differ between females and males due to: (i) sex differences in the strength of purifying selection; and (ii) sex differences in ploidy. Although sex differences in fitness effects have important broader implications (e.g., for the evolution of sex and lifespan), few studies have quantified their scope. Those that have belong to one of two distinct empirical traditions: (i) quantitative genetics, which focusses on multi-locus genetic variances in each sex, but is largely agnostic about their genetic basis; and (ii) molecular population genetics, which focusses on comparing autosomal and X-linked polymorphism, but is poorly suited for inferring contemporary sex differences. Here, we combine both traditions to present a comprehensive analysis of female and male adult reproductive fitness among 202 outbred, laboratory-adapted, hemiclonal genomes of Drosophila melanogaster. While we find no clear evidence for sex differences in the strength of purifying selection, sex differences in ploidy generate multiple signals of enhanced purifying selection for X-linked loci. These signals are present in quantitative genetic metrics-i.e., a disproportionate contribution of the X to male (but not female) fitness variation-and population genetic metrics-i.e., steeper regressions of an allele's average fitness effect on its frequency, and proportionally less nonsynonymous polymorphism on the X than autosomes. Fitting our data to models for both sets of metrics, we infer that deleterious alleles are partially recessive. Given the often-large gap between quantitative and population genetic estimates of evolutionary parameters, our study showcases the benefits of combining genomic and fitness data when estimating such parameters.
Collapse
Affiliation(s)
- Filip Ruzicka
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton 3800, VIC, Australia.,Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Tim Connallon
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton 3800, VIC, Australia
| | - Max Reuter
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,Centre for Life's Origins and Evolution, University College London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Peona V, Palacios-Gimenez OM, Blommaert J, Liu J, Haryoko T, Jønsson KA, Irestedt M, Zhou Q, Jern P, Suh A. The avian W chromosome is a refugium for endogenous retroviruses with likely effects on female-biased mutational load and genetic incompatibilities. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200186. [PMID: 34304594 PMCID: PMC8310711 DOI: 10.1098/rstb.2020.0186] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
It is a broadly observed pattern that the non-recombining regions of sex-limited chromosomes (Y and W) accumulate more repeats than the rest of the genome, even in species like birds with a low genome-wide repeat content. Here, we show that in birds with highly heteromorphic sex chromosomes, the W chromosome has a transposable element (TE) density of greater than 55% compared to the genome-wide density of less than 10%, and contains over half of all full-length (thus potentially active) endogenous retroviruses (ERVs) of the entire genome. Using RNA-seq and protein mass spectrometry data, we were able to detect signatures of female-specific ERV expression. We hypothesize that the avian W chromosome acts as a refugium for active ERVs, probably leading to female-biased mutational load that may influence female physiology similar to the 'toxic-Y' effect in Drosophila males. Furthermore, Haldane's rule predicts that the heterogametic sex has reduced fertility in hybrids. We propose that the excess of W-linked active ERVs over the rest of the genome may be an additional explanatory variable for Haldane's rule, with consequences for genetic incompatibilities between species through TE/repressor mismatches in hybrids. Together, our results suggest that the sequence content of female-specific W chromosomes can have effects far beyond sex determination and gene dosage. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Organismal Biology—Systematic Biology, Uppsala University, Uppsala, Sweden
| | | | - Julie Blommaert
- Department of Organismal Biology—Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Jing Liu
- MOE Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, People's Republic of China
- Department of Neuroscience and Development, University of Vienna, Vienna, Austria
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Knud A. Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, People's Republic of China
- Department of Neuroscience and Development, University of Vienna, Vienna, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, People's Republic of China
| | - Patric Jern
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alexander Suh
- Department of Organismal Biology—Systematic Biology, Uppsala University, Uppsala, Sweden
- School of Biological Sciences—Organisms and the Environment, University of East Anglia, Norwich, UK
| |
Collapse
|
9
|
Brengdahl MI, Kimber CM, Elias P, Thompson J, Friberg U. Deleterious mutations show increasing negative effects with age in Drosophila melanogaster. BMC Biol 2020; 18:128. [PMID: 32993647 PMCID: PMC7526172 DOI: 10.1186/s12915-020-00858-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In order for aging to evolve in response to a declining strength of selection with age, a genetic architecture that allows for mutations with age-specific effects on organismal performance is required. Our understanding of how selective effects of individual mutations are distributed across ages is however poor. Established evolutionary theories assume that mutations causing aging have negative late-life effects, coupled to either positive or neutral effects early in life. New theory now suggests evolution of aging may also result from deleterious mutations with increasing negative effects with age, a possibility that has not yet been empirically explored. RESULTS To directly test how the effects of deleterious mutations are distributed across ages, we separately measure age-specific effects on fecundity for each of 20 mutations in Drosophila melanogaster. We find that deleterious mutations in general have a negative effect that increases with age and that the rate of increase depends on how deleterious a mutation is early in life. CONCLUSIONS Our findings suggest that aging does not exclusively depend on genetic variants assumed by the established evolutionary theories of aging. Instead, aging can result from deleterious mutations with negative effects that amplify with age. If increasing negative effect with age is a general property of deleterious mutations, the proportion of mutations with the capacity to contribute towards aging may be considerably larger than previously believed.
Collapse
Affiliation(s)
| | | | - Phoebe Elias
- IFM Biology, Linköping University, Linköping, Sweden
| | | | - Urban Friberg
- IFM Biology, Linköping University, Linköping, Sweden.
| |
Collapse
|
10
|
Hsu SK, Jakšić AM, Nolte V, Lirakis M, Kofler R, Barghi N, Versace E, Schlötterer C. Rapid sex-specific adaptation to high temperature in Drosophila. eLife 2020; 9:e53237. [PMID: 32083552 PMCID: PMC7034977 DOI: 10.7554/elife.53237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
The pervasive occurrence of sexual dimorphism demonstrates different adaptive strategies of males and females. While different reproductive strategies of the two sexes are well-characterized, very little is known about differential functional requirements of males and females in their natural habitats. Here, we study the impact environmental change on the selection response in both sexes. Exposing replicated Drosophila populations to a novel temperature regime, we demonstrate sex-specific changes in gene expression, metabolic and behavioral phenotypes in less than 100 generations. This indicates not only different functional requirements of both sexes in the new environment but also rapid sex-specific adaptation. Supported by computer simulations we propose that altered sex-biased gene regulation from standing genetic variation, rather than new mutations, is the driver of rapid sex-specific adaptation. Our discovery of environmentally driven divergent functional requirements of males and females has important implications-possibly even for gender aware medical treatments.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
- Vienna Graduate School of Population Genetics, Vetmeduni ViennaViennaAustria
| | - Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
- Vienna Graduate School of Population Genetics, Vetmeduni ViennaViennaAustria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
| | - Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
- Vienna Graduate School of Population Genetics, Vetmeduni ViennaViennaAustria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
| | - Neda Barghi
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
| | - Elisabetta Versace
- Department of Biological and Experimental Psychology, Queen Mary University of LondonLondonUnited Kingdom
| | | |
Collapse
|
11
|
Brengdahl M, Kimber CM, Maguire-Baxter J, Malacrinò A, Friberg U. Genetic Quality Affects the Rate of Male and Female Reproductive Aging Differently in Drosophila melanogaster. Am Nat 2018; 192:761-772. [DOI: 10.1086/700117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|