1
|
Wiens JJ, Emberts Z. How life became colourful: colour vision, aposematism, sexual selection, flowers, and fruits. Biol Rev Camb Philos Soc 2025; 100:308-326. [PMID: 39279365 DOI: 10.1111/brv.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/18/2024]
Abstract
Plants and animals are often adorned with potentially conspicuous colours (e.g. red, yellow, orange, blue, purple). These include the dazzling colours of fruits and flowers, the brilliant warning colours of frogs, snakes, and invertebrates, and the spectacular sexually selected colours of insects, fish, birds, and lizards. Such signals are often thought to utilize pre-existing sensitivities in the receiver's visual systems. This raises the question: what was the initial function of conspicuous colouration and colour vision? Here, we review the origins of colour vision, fruit, flowers, and aposematic and sexually selected colouration. We find that aposematic colouration is widely distributed across animals but relatively young, evolving only in the last ~150 million years (Myr). Sexually selected colouration in animals appears confined to arthropods and chordates, and is also relatively young (generally <100 Myr). Colourful flowers likely evolved ~200 million years ago (Mya), whereas colourful fruits/seeds likely evolved ~300 Mya. Colour vision (sensu lato) appears to be substantially older, and likely originated ~400-500 Mya in both arthropods and chordates. Thus, colour vision may have evolved long before extant lineages with fruit, flowers, aposematism, and sexual colour signals. We also find that there appears to have been an explosion of colour within the last ~100 Myr, including >200 origins of aposematic colouration across nine animal phyla and >100 origins of sexually selected colouration among arthropods and chordates.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721-0088, USA
| | - Zachary Emberts
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| |
Collapse
|
2
|
Liu C, Zhou X, Li Y, Hittinger CT, Pan R, Huang J, Chen XX, Rokas A, Chen Y, Shen XX. The Influence of the Number of Tree Searches on Maximum Likelihood Inference in Phylogenomics. Syst Biol 2024; 73:807-822. [PMID: 38940001 DOI: 10.1093/sysbio/syae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024] Open
Abstract
Maximum likelihood (ML) phylogenetic inference is widely used in phylogenomics. As heuristic searches most likely find suboptimal trees, it is recommended to conduct multiple (e.g., 10) tree searches in phylogenetic analyses. However, beyond its positive role, how and to what extent multiple tree searches aid ML phylogenetic inference remains poorly explored. Here, we found that a random starting tree was not as effective as the BioNJ and parsimony starting trees in inferring the ML gene tree and that RAxML-NG and PhyML were less sensitive to different starting trees than IQ-TREE. We then examined the effect of the number of tree searches on ML tree inference with IQ-TREE and RAxML-NG, by running 100 tree searches on 19,414 gene alignments from 15 animal, plant, and fungal phylogenomic datasets. We found that the number of tree searches substantially impacted the recovery of the best-of-100 ML gene tree topology among 100 searches for a given ML program. In addition, all of the concatenation-based trees were topologically identical if the number of tree searches was ≥10. Quartet-based ASTRAL trees inferred from 1 to 80 tree searches differed topologically from those inferred from 100 tree searches for 6/15 phylogenomic datasets. Finally, our simulations showed that gene alignments with lower difficulty scores had a higher chance of finding the best-of-100 gene tree topology and were more likely to yield the correct trees.
Collapse
Affiliation(s)
- Chao Liu
- Department of Plant Protection, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ronghui Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Jinyan Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China
| | - Xue-Xin Chen
- Department of Plant Protection, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Yun Chen
- Department of Plant Protection, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xing-Xing Shen
- Department of Plant Protection, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Sless TJL, Branstetter MG, Mikát M, Odanaka KA, Tobin KB, Rehan SM. Phylogenomics and biogeography of the small carpenter bees (Apidae: Xylocopinae: Ceratina). Mol Phylogenet Evol 2024; 198:108133. [PMID: 38897426 DOI: 10.1016/j.ympev.2024.108133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Small carpenter bees in the genus Ceratina are behaviourally diverse, species-rich, and cosmopolitan, with over 370 species and a range including all continents except Antarctica. Here, we present the first comprehensive phylogeny of the genus based on ultraconserved element (UCE) phylogenomic data, covering a total of 185 ingroup specimens representing 22 of the 25 current subgenera. Our results support most recognized subgenera as natural groups, but we also highlight several groups in need of taxonomic revision - particularly the nominate subgenus Ceratina sensu stricto - and several clades that likely need to be described as new subgenera. In addition to phylogeny, we explore the evolutionary history of Ceratina through divergence time estimation and biogeographic reconstruction. Our findings suggest that Ceratinini split from its sister tribe Allodapini about 72 million years ago. The common ancestor of Ceratina emerged in the Afrotropical realm approximately 42 million years ago, near the Middle Eocene Climatic Optimum. Multiple subsequent dispersal events led to the present cosmopolitan distribution of Ceratina, with the majority of transitions occurring between the Afrotropics, Indomalaya, and the Palearctic. Additional movements also led to the arrival of Ceratina in Madagascar, Australasia, and a single colonization of the Americas. Dispersal events were asymmetrical overall, with temperate regions primarily acting as destinations for migrations from tropical source regions.
Collapse
Affiliation(s)
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Logan, UT, USA
| | - Michael Mikát
- Department of Biology, York University, Toronto, ON, Canada; Department of General Zoology, Martin Luther University, Halle, Germany; Department of Zoology, Charles University, Prague, Czech Republic
| | | | - Kerrigan B Tobin
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Logan, UT, USA; Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
4
|
Almeida EAB, Bossert S, Danforth BN, Porto DS, Freitas FV, Davis CC, Murray EA, Blaimer BB, Spasojevic T, Ströher PR, Orr MC, Packer L, Brady SG, Kuhlmann M, Branstetter MG, Pie MR. The evolutionary history of bees in time and space. Curr Biol 2023; 33:3409-3422.e6. [PMID: 37506702 DOI: 10.1016/j.cub.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Bees are the most significant pollinators of flowering plants. This partnership began ca. 120 million years ago, but the uncertainty of how and when bees spread across the planet has greatly obscured investigations of this key mutualism. We present a novel analysis of bee biogeography using extensive new genomic and fossil data to demonstrate that bees originated in Western Gondwana (Africa and South America). Bees likely originated in the Early Cretaceous, shortly before the breakup of Western Gondwana, and the early evolution of any major bee lineage is associated with either the South American or African land masses. Subsequently, bees colonized northern continents via a complex history of vicariance and dispersal. The notable early absences from large landmasses, particularly in Australia and India, have important implications for understanding the assembly of local floras and diverse modes of pollination. How bees spread around the world from their hypothesized Southern Hemisphere origin parallels the histories of numerous flowering plant clades, providing an essential step to studying the evolution of angiosperm pollination syndromes in space and time.
Collapse
Affiliation(s)
- Eduardo A B Almeida
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Silas Bossert
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, Ithaca, NY 14853, USA
| | - Diego S Porto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil; Finnish Museum of Natural History - LUOMUS, University of Helsinki, Helsinki 00014, Finland
| | - Felipe V Freitas
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil; Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Elizabeth A Murray
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Bonnie B Blaimer
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Tamara Spasojevic
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Life Sciences, Natural History Museum Basel, 4051 Basel, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Patrícia R Ströher
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná 81531-990, Brazil; Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael C Orr
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, 70191 Stuttgart, Germany; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Laurence Packer
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Michael Kuhlmann
- Zoological Museum, University of Kiel, Hegewischstr. 3, 24105 Kiel, Germany
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Marcio R Pie
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná 81531-990, Brazil; Department of Biology, Edge Hill University, St Helens Rd, Ormskirk, Lancashire L39 4QP, UK
| |
Collapse
|
5
|
Sless T, Rehan S. Phylogeny of the carpenter bees (Apidae: Xylocopinae) highlights repeated evolution of sociality. Biol Lett 2023; 19:20230252. [PMID: 37643643 PMCID: PMC10465191 DOI: 10.1098/rsbl.2023.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Many groups of animals have evolved social behaviours in different forms, from intimate familial associations to the complex eusocial colonies of some insects. The subfamily Xylocopinae, including carpenter bees and their relatives, is a diverse clade exhibiting a wide range of social behaviours, from solitary to obligate eusociality with distinct morphological castes, making them ideal focal taxa in studying the evolution of sociality. We used ultraconserved element data to generate a broadly sampled phylogeny of the Xylocopinae, including several newly sequenced species. We then conducted ancestral state reconstructions on the evolutionary history of sociality in this group under multiple coding models. Our results indicate solitary origins for the Xylocopinae with multiple transitions to sociality across the tree and subsequent reversals to solitary life, demonstrating the lability and dynamic nature of social evolution in carpenter bees. Ultimately, this work clarifies the evolutionary history of the Xylocopinae, and expands our understanding of independent origins and gains and losses of social complexity.
Collapse
Affiliation(s)
- Trevor Sless
- Department of Biology, York University, Toronto, Canada M3J 1P3
| | - Sandra Rehan
- Department of Biology, York University, Toronto, Canada M3J 1P3
| |
Collapse
|
6
|
Chatelain P, Elias M, Fontaine C, Villemant C, Dajoz I, Perrard A. Müllerian mimicry among bees and wasps: a review of current knowledge and future avenues of research. Biol Rev Camb Philos Soc 2023; 98:1310-1328. [PMID: 36994698 DOI: 10.1111/brv.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Many bees and stinging wasps, or aculeates, exhibit striking colour patterns or conspicuous coloration, such as black and yellow stripes. Such coloration is often interpreted as an aposematic signal advertising aculeate defences: the venomous sting. Aposematism can lead to Müllerian mimicry, the convergence of signals among different species unpalatable to predators. Müllerian mimicry has been extensively studied, notably on Neotropical butterflies and poison frogs. However, although a very high number of aculeate species harbour putative aposematic signals, aculeates are under-represented in mimicry studies. Here, we review the literature on mimicry rings that include bee and stinging wasp species. We report over a hundred described mimicry rings, involving a thousand species that belong to 19 aculeate families. These mimicry rings are found all throughout the world. Most importantly, we identify remaining knowledge gaps and unanswered questions related to the study of Müllerian mimicry in aculeates. Some of these questions are specific to aculeate models, such as the impact of sociality and of sexual dimorphism in defence levels on mimicry dynamics. Our review shows that aculeates may be one of the most diverse groups of organisms engaging in Müllerian mimicry and that the diversity of aculeate Müllerian mimetic interactions is currently under-explored. Thus, aculeates represent a new and major model system to study the evolution of Müllerian mimicry. Finally, aculeates are important pollinators and the global decline of pollinating insects raises considerable concern. In this context, a better understanding of the impact of Müllerian mimicry on aculeate communities may help design strategies for pollinator conservation, thereby providing future directions for evolutionary research.
Collapse
Affiliation(s)
- Paul Chatelain
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Cité, UPEC, 4 Place Jussieu, Paris, 75005, France
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
| | - Marianne Elias
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la conservation, CESCO UMR 7204, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, 43 rue Cuvier, Paris, 75005, France
| | - Claire Villemant
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
| | - Isabelle Dajoz
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Cité, UPEC, 4 Place Jussieu, Paris, 75005, France
- Université Paris Cité, 45 Rue des Saints-Pères, Paris, F-75006, France
| | - Adrien Perrard
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Cité, UPEC, 4 Place Jussieu, Paris, 75005, France
- Université Paris Cité, 45 Rue des Saints-Pères, Paris, F-75006, France
| |
Collapse
|
7
|
Stavenga DG. Pigmentary colouration of hairy carpenter bees, genus Xylocopa. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:22. [PMID: 37219688 DOI: 10.1007/s00114-023-01854-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Carpenter bees can display distinct colouration patterns due to structural coloured wings and/or coloured hairs on their bodies. Females of the sexually dichromatic Xylocopa caerulea are marked by strongly blue-pigmented hairs on the head, thorax and abdomen. The thorax of female X. confusa is covered by yellow-pigmented hairs. The diffuse pigmentary colouration of the blue and yellow hairs is effectively enhanced by strongly scattering granules. The absorption spectrum of the blue pigment of X. caerulea has a maximum at 605 nm and is probably a bilin (a bile pigment). The absorption spectrum of the yellow pigment of X. confusa has a maximum at 445 nm and may be a pterin. The thoracic hairs of female X. confusa contain also a minor amount of the bilin. The reflectance spectra of the pigmented hairs suggest that the pigments are tuned to the spectral sensitivity of the bees' photoreceptors and provide spectral contrast with a green background.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, NL-9747 AG, Groningen, The Netherlands.
| |
Collapse
|
8
|
Loeffler-Henry K, Kang C, Sherratt TN. Evolutionary transitions from camouflage to aposematism: Hidden signals play a pivotal role. Science 2023; 379:1136-1140. [PMID: 36927015 DOI: 10.1126/science.ade5156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The initial evolution of warning signals in unprofitable prey, termed aposematism, is often seen as a paradox because any new conspicuous mutant would be easier to detect than its cryptic conspecifics and not readily recognized by naïve predators as defended. One possibility is that permanent aposematism first evolved through species using hidden warning signals, which are only exposed to would-be predators on encounter. Here, we present a large-scale analysis of evolutionary transitions in amphibian antipredation coloration and demonstrate that the evolutionary transition from camouflage to aposematism is rarely direct but tends to involve an intermediary stage, namely cryptic species that facultatively reveal conspicuous coloration. Accounting for this intermediate step can resolve the paradox and thereby advance our understanding of the evolution of aposematism.
Collapse
Affiliation(s)
| | - Changku Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Thomas N Sherratt
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
9
|
Abstract
Aposematism and mimicry are complex phenomena which have been studied extensively; however, much of our knowledge comes from just a few focal groups, especially butterflies. Aposematic species combine a warning signal with a secondary defense that reduces their profitability as prey. Aculeate hymenopterans are an extremely diverse lineage defined by the modification of the ovipositor into a stinger which represents a potent defense against predators. Aculeates are often brightly colored and broadly mimicked by members of other arthropod groups including Diptera, Lepidoptera, Coleoptera, and Araneae. However, aculeates are surprisingly understudied as aposematic and mimetic model organisms. Recent studies have described novel pigments contributing to warning coloration in insects and identified changes in cis-regulatory elements as potential drivers of color pattern evolution. Many biotic and abiotic factors contribute to the evolution and maintenance of conspicuous color patterns. Predator distribution and diversity seem to influence the phenotypic diversity of aposematic velvet ants while studies on bumble bees underscore the importance of intermediate mimetic phenotypes in transition zones between putative mimicry rings. Aculeate hymenopterans are attractive models for studying sex-based intraspecific mimicry as male aculeates lack the defense conferred by the females’ stinger. In some species, evolution of male and female color patterns appears to be decoupled. Future studies on aposematic aculeates and their associated mimics hold great promise for unraveling outstanding questions about the evolution of conspicuous color patterns and the factors which determine the composition and distribution of mimetic communities.
Collapse
|
10
|
Jiang X, Edwards SV, Liu L. The Multispecies Coalescent Model Outperforms Concatenation Across Diverse Phylogenomic Data Sets. Syst Biol 2021; 69:795-812. [PMID: 32011711 PMCID: PMC7302055 DOI: 10.1093/sysbio/syaa008] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 11/30/2022] Open
Abstract
A statistical framework of model comparison and model validation is essential to resolving the debates over concatenation and coalescent models in phylogenomic data analysis. A set of statistical tests are here applied and developed to evaluate and compare the adequacy of substitution, concatenation, and multispecies coalescent (MSC) models across 47 phylogenomic data sets collected across tree of life. Tests for substitution models and the concatenation assumption of topologically congruent gene trees suggest that a poor fit of substitution models, rejected by 44% of loci, and concatenation models, rejected by 38% of loci, is widespread. Logistic regression shows that the proportions of GC content and informative sites are both negatively correlated with the fit of substitution models across loci. Moreover, a substantial violation of the concatenation assumption of congruent gene trees is consistently observed across six major groups (birds, mammals, fish, insects, reptiles, and others, including other invertebrates). In contrast, among those loci adequately described by a given substitution model, the proportion of loci rejecting the MSC model is 11%, significantly lower than those rejecting the substitution and concatenation models. Although conducted on reduced data sets due to computational constraints, Bayesian model validation and comparison both strongly favor the MSC over concatenation across all data sets; the concatenation assumption of congruent gene trees rarely holds for phylogenomic data sets with more than 10 loci. Thus, for large phylogenomic data sets, model comparisons are expected to consistently and more strongly favor the coalescent model over the concatenation model. We also found that loci rejecting the MSC have little effect on species tree estimation. Our study reveals the value of model validation and comparison in phylogenomic data analysis, as well as the need for further improvements of multilocus models and computational tools for phylogenetic inference. [Bayes factor; Bayesian model validation; coalescent prior; congruent gene trees; independent prior; Metazoa; posterior predictive simulation.]
Collapse
Affiliation(s)
- Xiaodong Jiang
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Liang Liu
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA.,Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA 30602, USA
| |
Collapse
|
11
|
Portik DM, Bell RC, Blackburn DC, Bauer AM, Barratt CD, Branch WR, Burger M, Channing A, Colston TJ, Conradie W, Dehling JM, Drewes RC, Ernst R, Greenbaum E, Gvoždík V, Harvey J, Hillers A, Hirschfeld M, Jongsma GFM, Kielgast J, Kouete MT, Lawson LP, Leaché AD, Loader SP, Lötters S, Meijden AVD, Menegon M, Müller S, Nagy ZT, Ofori-Boateng C, Ohler A, Papenfuss TJ, Rößler D, Sinsch U, Rödel MO, Veith M, Vindum J, Zassi-Boulou AG, McGuire JA. Sexual Dichromatism Drives Diversification within a Major Radiation of African Amphibians. Syst Biol 2020; 68:859-875. [PMID: 31140573 DOI: 10.1093/sysbio/syz023] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/15/2019] [Accepted: 04/09/2019] [Indexed: 01/11/2023] Open
Abstract
Theory predicts that sexually dimorphic traits under strong sexual selection, particularly those involved with intersexual signaling, can accelerate speciation and produce bursts of diversification. Sexual dichromatism (sexual dimorphism in color) is widely used as a proxy for sexual selection and is associated with rapid diversification in several animal groups, yet studies using phylogenetic comparative methods to explicitly test for an association between sexual dichromatism and diversification have produced conflicting results. Sexual dichromatism is rare in frogs, but it is both striking and prevalent in African reed frogs, a major component of the diverse frog radiation termed Afrobatrachia. In contrast to most other vertebrates, reed frogs display female-biased dichromatism in which females undergo color transformation, often resulting in more ornate coloration in females than in males. We produce a robust phylogeny of Afrobatrachia to investigate the evolutionary origins of sexual dichromatism in this radiation and examine whether the presence of dichromatism is associated with increased rates of net diversification. We find that sexual dichromatism evolved once within hyperoliids and was followed by numerous independent reversals to monochromatism. We detect significant diversification rate heterogeneity in Afrobatrachia and find that sexually dichromatic lineages have double the average net diversification rate of monochromatic lineages. By conducting trait simulations on our empirical phylogeny, we demonstrate that our inference of trait-dependent diversification is robust. Although sexual dichromatism in hyperoliid frogs is linked to their rapid diversification and supports macroevolutionary predictions of speciation by sexual selection, the function of dichromatism in reed frogs remains unclear. We propose that reed frogs are a compelling system for studying the roles of natural and sexual selection on the evolution of sexual dichromatism across micro- and macroevolutionary timescales.
Collapse
Affiliation(s)
- Daniel M Portik
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Rayna C Bell
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0162, USA
| | - David C Blackburn
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Aaron M Bauer
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Christopher D Barratt
- Department of Environmental Sciences, University of Basel, Basel 4056, Switzerland.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 0413, Germany.,Max Planck Institute for Evolutionary Anthropology, Leipzig 0413, Germany
| | - William R Branch
- Port Elizabeth Museum, P.O. Box 11347, Humewood 6013, South Africa.,Department of Zoology, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031, South Africa
| | - Marius Burger
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa.,Flora Fauna & Man, Ecological Services Ltd. Tortola, British Virgin, Island
| | - Alan Channing
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Timothy J Colston
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA.,Zoological Natural History Museum, Addis Ababa University, Arat Kilo, Addis Ababa, Ethiopia
| | - Werner Conradie
- Port Elizabeth Museum, P.O. Box 11347, Humewood 6013, South Africa.,School of Natural Resource Management, Nelson Mandela University, George Campus, George 6530, South Africa
| | - J Maximilian Dehling
- Department of Biology, Institute of Sciences, University of Koblenz-Landau, Universitätsstr. 1, D-56070 Koblenz, Germany
| | - Robert C Drewes
- California Academy of Sciences, San Francisco, CA 94118, USA
| | - Raffael Ernst
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, Dresden 01109, Germany.,Department of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin 12165, Germany
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Václav Gvoždík
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.,Department of Zoology, National Museum, Prague, Czech Republic
| | | | - Annika Hillers
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Biodiversity Dynamics, Invalidenstr. 43, Berlin 10115, Germany.,Across the River - A Transboundary Peace Park for Sierra Leone and Liberia, The Royal Society for the Protection of Birds, 164 Dama Road, Kenema, Sierra Leone
| | - Mareike Hirschfeld
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Biodiversity Dynamics, Invalidenstr. 43, Berlin 10115, Germany
| | - Gregory F M Jongsma
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jos Kielgast
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen 2100, Denmark
| | - Marcel T Kouete
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Lucinda P Lawson
- Department of Biological Sciences, University of Cincinnati, 614 Rieveschl Hall, Cincinnati, OH 45220, USA.,Life Sciences, Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, IL 60605, USA
| | - Adam D Leaché
- Department of Biology, Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Simon P Loader
- Life Sciences Department, Natural History Museum, London SW7 5BD, UK
| | - Stefan Lötters
- Biogeography Department, Trier University, Universitätsring 15, Trier 54296, Germany
| | - Arie Van Der Meijden
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, No. 7, 4485-661 Vairão, Vila do Conde, Portugal
| | - Michele Menegon
- Tropical Biodiversity Section, Science Museum of Trento, Corso del lavoro e della Scienza 3, Trento 38122, Italy
| | - Susanne Müller
- Biogeography Department, Trier University, Universitätsring 15, Trier 54296, Germany
| | - Zoltán T Nagy
- Royal Belgian Institute of Natural Sciences, OD Taxonomy and Phylogeny, Rue Vautier 29, B-1000 Brussels, Belgium
| | | | - Annemarie Ohler
- Département Origines et Evolution, Muséum National d'Histoire Naturelle, UMR 7205 ISYEB, 25 rue Cuvier, Paris 75005, France
| | | | - Daniela Rößler
- Biogeography Department, Trier University, Universitätsring 15, Trier 54296, Germany
| | - Ulrich Sinsch
- Department of Biology, Institute of Sciences, University of Koblenz-Landau, Universitätsstr. 1, D-56070 Koblenz, Germany
| | - Mark-Oliver Rödel
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Biodiversity Dynamics, Invalidenstr. 43, Berlin 10115, Germany
| | - Michael Veith
- Biogeography Department, Trier University, Universitätsring 15, Trier 54296, Germany
| | - Jens Vindum
- California Academy of Sciences, San Francisco, CA 94118, USA
| | - Ange-Ghislain Zassi-Boulou
- Institut National de Recherche en Sciences Exactes et Naturelles, Brazzaville BP 2400, République du Congo
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|