1
|
Simpson KM, Spalink D. Niche comparisons reveal significant divergence despite narrow endemism in Leavenworthia, a genus of rare plants. ANNALS OF BOTANY 2025; 135:935-948. [PMID: 39774488 PMCID: PMC12064430 DOI: 10.1093/aob/mcae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND AIMS Quantifying niche similarity among closely related species offers myriad insights into evolutionary history and ecology. In this study, our aim was to explore the interplay of geographical and niche space for rare, endemic plant species and to determine whether endemic habitats were environmentally similar or unique. METHODS We characterized the niche of all Leavenworthia species, a genus of rare plants endemic to rocky glades in the eastern USA, using WorldClim data, surface geology, elevation and slope. We calculated the area of range overlap and estimated niche similarity between pairs of species in their total occupied niche space and the subset of niche space shared by both species. We used linear discriminant analyses to determine which niche dimensions differed the most between species. We used niche dimensions with consistently high discriminatory power to perform a random forest classification analysis and principal component analysis. Using a linear model, we related geographical distance to distance in niche space. KEY RESULTS Most species comparisons concluded that species niches had diverged, with niche similarity increasing linearly with range overlap. Temperature variation, precipitation amount and seasonality, and surface geology were the most divergent niche dimensions among all species comparisons. Geographical distance explained 42 % of the variation in niche space distance. Sites that were closer in niche space than expected were oriented east-west owing to the strong correlation between latitude and scores on the first principal component. CONCLUSIONS Despite being endemic seemingly to very similar habitat, niche similarity is low among Leavenworthia species. Low niche similarity, combined with low geographical overlap, suggests that this lineage of rare plants potentially diversified in isolation but across a very small geographical area. The correlation between geographical space and niche space has received considerable attention, but our results suggest that geographical distance is a weak predictor of distance in niche space.
Collapse
Affiliation(s)
- Kyle M Simpson
- Ecology and Evolutionary Biology Interdisciplinary Degree Program, Texas A&M University2258, College Station, TX 77843-2258, USA
- Department of Ecology and Conservation Biology, Texas A&M University 2258, College Station, TX 77843-2258, USA
| | - Daniel Spalink
- Ecology and Evolutionary Biology Interdisciplinary Degree Program, Texas A&M University2258, College Station, TX 77843-2258, USA
- Department of Ecology and Conservation Biology, Texas A&M University 2258, College Station, TX 77843-2258, USA
| |
Collapse
|
2
|
Weng Y, Li H, Yang J, Zhang Z. The past, present, and future of ecogeographic isolation between closely related Aquilegia plants. Ecol Evol 2023; 13:e10098. [PMID: 37250449 PMCID: PMC10212700 DOI: 10.1002/ece3.10098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Quantifying the strength of the ecogeographic barrier is an important aspect of plant speciation research, and serves as a practical step to understanding the evolutionary trajectory of plants under climate change. Here, we quantified the extent of ecogeographic isolation in four closely related Aquilegia species that radiated in the Mountains of SW China and adjacent regions, often lacking intrinsic barriers. We used environmental niche models to predict past, present, and future species potential distributions and compared them to determine the degree of overlap and ecogeographic isolation. Our investigation found significant ecological differentiation in all studied species pairs except A. kansuensis and A. ecalacarata. The current strengths of ecogeographic isolation are above 0.5 in most cases. Compared with current climates, most species had an expanding range in the Last Glacial Maximum, the Mid Holocene, and under four future climate scenarios. Our results suggested that ecogeographic isolation contributes to the diversification and maintenance of Aquilegia species in the Mountains of northern and SW China and would act as an essential reproductive barrier in the future.
Collapse
Affiliation(s)
- Yulin Weng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Institute of BiodiversityYunnan UniversityKunmingChina
- College of Environment and EcologyXiamen UniversityXiamenChina
| | - Huiqiong Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Institute of BiodiversityYunnan UniversityKunmingChina
| | - Jiqin Yang
- Gansu Liancheng National Nature ReserveLanzhouChina
| | - Zhi‐Qiang Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Institute of BiodiversityYunnan UniversityKunmingChina
| |
Collapse
|
3
|
Berardi AE, Betancourt Morejón AC, Hopkins R. Convergence without divergence in North American red-flowering Silene. FRONTIERS IN PLANT SCIENCE 2022; 13:945806. [PMID: 36147235 PMCID: PMC9485837 DOI: 10.3389/fpls.2022.945806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Combinations of correlated floral traits have arisen repeatedly across angiosperms through convergent evolution in response to pollinator selection to optimize reproduction. While some plant groups exhibit very distinct combinations of traits adapted to specific pollinators (so-called pollination syndromes), others do not. Determining how floral traits diverge across clades and whether floral traits show predictable correlations in diverse groups of flowering plants is key to determining the extent to which pollinator-mediated selection drives diversification. The North American Silene section Physolychnis is an ideal group to investigate patterns of floral evolution because it is characterized by the evolution of novel red floral color, extensive floral morphological variation, polyploidy, and exposure to a novel group of pollinators (hummingbirds). We test for correlated patterns of trait evolution that would be consistent with convergent responses to selection in the key floral traits of color and morphology. We also consider both the role of phylogenic distance and geographic overlap in explaining patterns of floral trait variation. Inconsistent with phenotypically divergent pollination syndromes, we find very little clustering of North American Silene into distinct floral morphospace. We also find little evidence that phylogenetic history or geographic overlap explains patterns of floral diversity in this group. White- and pink-flowering species show extensive phenotypic diversity but are entirely overlapping in morphological variation. However, red-flowering species have much less phenotypic disparity and cluster tightly in floral morphospace. We find that red-flowering species have evolved floral traits that align with a traditional hummingbird syndrome, but that these trait values overlap with several white and pink species as well. Our findings support the hypothesis that convergent evolution does not always proceed through comparative phenotypic divergence, but possibly through sorting of standing ancestral variation.
Collapse
Affiliation(s)
- Andrea E. Berardi
- Harvard University Herbaria, Cambridge, MA, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- The Arnold Arboretum, Boston, MA, United States
| | - Ana C. Betancourt Morejón
- Department of Biology, University of Puerto Rico - Rio Piedras Campus, San Juan, Puerto Rico
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- The Arnold Arboretum, Boston, MA, United States
| |
Collapse
|
4
|
Hamilton AM, Wessinger CA. Adaptation to lower latitudes and lower elevations precedes the evolution of hummingbird pollination in western North American Penstemon. AMERICAN JOURNAL OF BOTANY 2022; 109:1047-1055. [PMID: 35471733 DOI: 10.1002/ajb2.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
PREMISE A switch in pollinator can occur when a plant lineage enters a new habitat where the ancestral pollinator is less common, and a novel pollinator is more common. Because pollinator communities vary according to environmental tolerances and availability of resources, there may be consistent associations between pollination mode and specific regions and habitats. Such associations can be studied in lineages that have experienced multiple pollinator transitions, representing evolutionary replicates. METHODS Our study focused on a large clade of Penstemon wildflower species in western North America, which has repeatedly evolved hummingbird-adapted flowers from ancestral bee-adapted flowers. For each species, we estimated geographic ranges from occurrence data and inferred environmental niches from climate, topographical, and soil data. Using a phylogenetic comparative approach, we investigated whether hummingbird-adapted species occupy distinct geographic regions or habitats relative to bee-adapted species. RESULTS Hummingbird-adapted species occur at lower latitudes and lower elevations than bee-adapted species, resulting in a difference in their environmental niche. Bee-adapted species sister to hummingbird-adapted species are also found in relatively low elevations and latitudes, similar to their hummingbird-adapted sister species, suggesting ecogeographic shifts precede pollinator divergence. Sister species pairs-regardless of whether they differ in pollinator-show relatively little geographic range overlap. CONCLUSIONS Adaptation to a novel pollinator may often occur in geographic and ecological isolation from ancestral populations. The ability of a given lineage to adapt to novel pollinators may critically depend on its ability to colonize regions and habitats associated with novel pollinator communities.
Collapse
Affiliation(s)
- Ashley M Hamilton
- Department of Biological Sciences, University of South Carolina, 715 Sumter St, Columbia, SC 29208, USA
| | - Carolyn A Wessinger
- Department of Biological Sciences, University of South Carolina, 715 Sumter St, Columbia, SC 29208, USA
| |
Collapse
|
5
|
The role of climatic niche divergence in the speciation of the genus Neurergus: An inter-and intraspecific survey. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Maxent Modeling for Identifying the Nature Reserve of Cistanche deserticola Ma under Effects of the Host (Haloxylon Bunge) Forest and Climate Changes in Xinjiang, China. FORESTS 2022. [DOI: 10.3390/f13020189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cistanche deserticola Ma is a traditional Chinese medicinal plant exclusively parasitizing on the roots of Haloxylon ammodendron (C. A. Mey.) Bunge and H. Persicum Bunge ex Boiss and the primary cultivated crop of the desert economy. Its wild resources became scarce due to over-exploitation and poaching for economic benefits. To protect the biological diversity of the desert Haloxylon–Cistanche community forest, the optimal combination of desert ecology and economy industry, and their future survival, this paper examines the conservation areas of wild C. deserticola from the perspective of hosts’ effects and climate changes. To identify conservation areas, the potential distributions generated by MaxEnt in two strategies (AH: abiotic and hosts factors; HO: hosts factors only) compare the model’s performance, the niche range overlap, and the changing trend in climate changes. The results show the following: (1) The HO strategy is more suitable for prediction and identifying the core conservation areas in hosts and climate changes (indirectly affected by host distributions) for C. deserticola. (2) The low-suitable habitat and the medium-suitable habitat are both sensitive to the climate changes; the reduction reaches 48.2% (SSP585, 2081–2100) and 26.6%(SSP370, 2081–2100), respectively. The highly suitable habitat is always in growth, with growth reaching 27.3% (SSP585, 2081–2100). (3) Core conservation areas and agriculture and education areas are 317,315.118 km2 and 319,489.874 km2, respectively. This study developed a predictive model for Maxent under climate change scenarios by limiting host and abiotic factors and inverted the natural habitat of C. deserticola to provide scientific zoning for biodiversity conservation in desert Haloxylon–Cistanche community forests systems, providing an effective reference for decision makers.
Collapse
|
7
|
Russell VL, Stevens MHH, Zeisler AA, Jezkova T. Identifying regional environmental factors driving differences in climatic niche overlap in Peromyscus mice. J Mammal 2021. [DOI: 10.1093/jmammal/gyab126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Different groups of taxa exhibit varying degree of climatic niche conservatism or divergence due to evolutionary constraints imposed on taxa and distributional relationships among them. Herein, we explore to what extent regional environmental conditions that taxa occupy affect climatic niche overlap between pairs of congeneric species of Peromyscus mice exhibiting allopatric, parapatric, or sympatric distributions. We used Bayesian generalized linear mixed models to identify environmental variables that best explain differences in climatic niche overlap between species. Our results suggest that regional environmental conditions explain 13–44% of variation in climatic niche overlap. Specifically, allopatric and parapatric species pairs are more likely to occupy similar climatic niches in areas that are topographically less complex but with more complex habitats. Sympatric species are more likely to occupy similar climatic niches in areas that promote local niche partitioning (topographically less complex, warmer winter temperatures, higher precipitation, and higher habitat complexity on a local scale). By understanding the relationship between regional environmental conditions and niche overlap, we highlight how differences in geography can contribute to shaping niches of congeneric species.
Collapse
Affiliation(s)
- Vanessa L Russell
- Department of Biology, Miami University, 501 East High St, Oxford, OH 45056, USA
| | - M Henry H Stevens
- Department of Biology, Miami University, 501 East High St, Oxford, OH 45056, USA
| | - Addison A Zeisler
- Department of Biology, Miami University, 501 East High St, Oxford, OH 45056, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, 501 East High St, Oxford, OH 45056, USA
| |
Collapse
|
8
|
Skeels A, Dinnage R, Medina I, Cardillo M. Ecological interactions shape the evolution of flower color in communities across a temperate biodiversity hotspot. Evol Lett 2021; 5:277-289. [PMID: 34136275 PMCID: PMC8190448 DOI: 10.1002/evl3.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
Processes driving the divergence of floral traits may be integral to the extraordinary richness of flowering plants and the assembly of diverse plant communities. Several models of pollinator-mediated floral evolution have been proposed; floral divergence may (i) be directly involved in driving speciation or may occur after speciation driven by (ii) drift or local adaptation in allopatry or (iii) negative interactions between species in sympatry. Here, we generate predictions for patterns of trait divergence and community assembly expected under these three models, and test these predictions in Hakea (Proteaceae), a diverse genus in the Southwest Australian biodiversity hotspot. We quantified functional richness for two key floral traits (pistil length and flower color), as well as phylogenetic distances between species, across ecological communities, and compared these to patterns generated from null models of community assembly. We also estimated the statistical relationship between rates of trait evolution and lineage diversification across the phylogeny. Patterns of community assembly suggest that flower color, but not floral phenology or morphology, or phylogenetic relatedness, is more divergent in communities than expected. Rates of lineage diversification and flower color evolution were negatively correlated across the phylogeny and rates of flower colour evolution were positively related to branching times. These results support a role for diversity-dependent species interactions driving floral divergence during the Hakea radiation, contributing to the development of the extraordinary species richness of southwest Australia.
Collapse
Affiliation(s)
- Alexander Skeels
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichCH‐8092Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute for ForestSnow and Landscape WSLBirmensdorfCH‐8903Switzerland
| | - Russell Dinnage
- Institute for Applied EcologyUniversity of CanberraCanberraACT 2617Australia
| | - Iliana Medina
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
- School of BioSciencesUniversity of MelbourneMelbourneVIC 3010Australia
| | - Marcel Cardillo
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
| |
Collapse
|