1
|
Boman J, Nolen ZJ, Backström N. On the origin of an insular hybrid butterfly lineage. Evolution 2025; 79:510-524. [PMID: 39869437 DOI: 10.1093/evolut/qpaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
A new species can form through hybridization between species. Hybrid speciation in animals has been intensely debated, partly because hard evidence for the process has been difficult to obtain. Here, we report the discovery of a European hybrid butterfly lineage, a finding that can be considered surprising given the intense and long-term study of European butterflies. The lineage we describe is mainly inhabiting an island in the Baltic Sea and was previously designated as a subspecies (horkei) of one of the parental species (Aricia artaxerxes). By analyzing whole-genome resequencing data and developing a novel cluster analysis based on historical recombination events (Fisher junctions), we determine that horkei originated by hybridization between the nonsister species A. artaxerxes and A. agestis. This hybridization event occurred approximately 54,000 years ago, predating the last glaciation of the current distribution range. Horkei must therefore have persisted long enough to be able to colonize its current range, despite that this area lies between the current distributions of the parental species. The hybrid origin, the maintenance of genomic integrity across times of dramatic climate change, and the expression of a combination of parental traits suggest that horkei could be in the process of hybrid speciation.
Collapse
Affiliation(s)
- Jesper Boman
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | | | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Long KM, Rivera-Colón AG, Bennett KFP, Catchen JM, Braun MJ, Brawn JD. Ongoing introgression of a secondary sexual plumage trait in a stable avian hybrid zone. Evolution 2024; 78:1539-1553. [PMID: 38753474 DOI: 10.1093/evolut/qpae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Hybrid zones are dynamic systems where natural selection, sexual selection, and other evolutionary forces can act on reshuffled combinations of distinct genomes. The movement of hybrid zones, individual traits, or both are of particular interest for understanding the interplay between selective processes. In a hybrid zone involving two lek-breeding birds, secondary sexual plumage traits of Manacus vitellinus, including bright yellow collar and olive belly color, have introgressed ~50 km asymmetrically across the genomic center of the zone into populations more genetically similar to Manacus candei. Males with yellow collars are preferred by females and are more aggressive than parental M. candei, suggesting that sexual selection was responsible for the introgression of male traits. We assessed the spatial and temporal dynamics of this hybrid zone using historical (1989-1994) and contemporary (2017-2020) transect samples to survey both morphological and genetic variation. Genome-wide single nucleotide polymorphism data and several male phenotypic traits show that the genomic center of the zone has remained spatially stable, whereas the olive belly color of male M. vitellinus has continued to introgress over this time period. Our data suggest that sexual selection can continue to shape phenotypes dynamically, independent of a stable genomic transition between species.
Collapse
Affiliation(s)
- Kira M Long
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, United States
| | - Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, United States
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Julian M Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, United States
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Jeffrey D Brawn
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
3
|
Feng X, Merilä J, Löytynoja A. Secondary Contact, Introgressive Hybridization, and Genome Stabilization in Sticklebacks. Mol Biol Evol 2024; 41:msae031. [PMID: 38366566 PMCID: PMC10903534 DOI: 10.1093/molbev/msae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
Advances in genomic studies have revealed that hybridization in nature is pervasive and raised questions about the dynamics of different genetic and evolutionary factors following the initial hybridization event. While recent research has proposed that the genomic outcomes of hybridization might be predictable to some extent, many uncertainties remain. With comprehensive whole-genome sequence data, we investigated the genetic introgression between 2 divergent lineages of 9-spined sticklebacks (Pungitius pungitius) in the Baltic Sea. We found that the intensity and direction of selection on the introgressed variation has varied across different genomic elements: while functionally important regions displayed reduced rates of introgression, promoter regions showed enrichment. Despite the general trend of negative selection, we identified specific genomic regions that were enriched for introgressed variants, and within these regions, we detected footprints of selection, indicating adaptive introgression. Geographically, we found the selection against the functional changes to be strongest in the vicinity of the secondary contact zone and weaken as a function of distance from the initial contact. Altogether, the results suggest that the stabilization of introgressed variation in the genomes is a complex, multistage process involving both negative and positive selection. In spite of the predominance of negative selection against introgressed variants, we also found evidence for adaptive introgression variants likely associated with adaptation to Baltic Sea environmental conditions.
Collapse
Affiliation(s)
- Xueyun Feng
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
- Area of Ecology and Biodiversity, The School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
4
|
Suh YH, Ligon RA, Rohwer VG. Revisiting the Baltimore-Bullock's Oriole hybrid zone reveals changing plumage colour in Bullock's Orioles. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221211. [PMID: 36533198 PMCID: PMC9748506 DOI: 10.1098/rsos.221211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Hybrid zones are dynamic areas where populations of two or more interbreeding species may change through an influx of novel genetic material resulting from hybridization or selection on standing genetic variation. Documenting changes in populations through time, however, is challenging because repeated samples are often missing or because long-term storage can affect trait morphologies, especially colour traits that may fade through time. We document a change in carotenoid-based orange breast feathers of Bullock's Orioles (Icterus bullockii) from the Great Plains hybrid zone, USA. Contemporary Bullock's Orioles are more orange than historic individuals from the same location sampled approximately 60 years ago. Spectrophotometry revealed that contemporary Bullock's Orioles resemble orange colour profiles of Baltimore Orioles (I. galbula), the species with which they hybridize. Fading or changes in diet hypotheses do not appear to explain the shift in colour we report for Bullock's Orioles. We propose that these changes in colour are facilitated through introgression with Baltimore Orioles, and favoured by females that choose brighter, more orange males. Our study highlights the long memory of natural history collections and how they offer new insights to the dynamic roll of hybrid zones in trait evolution between interacting species.
Collapse
Affiliation(s)
- Young Ha Suh
- Department of Ecology and Evolutionary Biology, Cornell University Museum of Vertebrates, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | | | - Vanya G. Rohwer
- Department of Ecology and Evolutionary Biology, Cornell University Museum of Vertebrates, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Belokon MM, Belokon YS, Petrova EA, Vasilyeva GV, Efimova AP, Zakharov ES, Goroshkevich SN, Politov DV. Ancient and Modern Hybridization of Siberian Stone Pine and Dwarf Siberian Pine in the South of Yakutia. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Hodel RGJ, Massatti R, Knowles LL. Hybrid enrichment of adaptive variation revealed by genotype-environment associations in montane sedges. Mol Ecol 2022; 31:3722-3737. [PMID: 35560840 PMCID: PMC9327521 DOI: 10.1111/mec.16502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
The role of hybridization in diversification is complex and may result in many possible outcomes. Not only can hybridization produce new lineages, but those lineages may contain unique combinations of adaptive genetic variation derived from parental taxa that allow hybrid‐origin lineages to occupy unique environmental space relative to one (or both) parent(s). We document such a case of hybridization between two sedge species, Carex nova and Carex nelsonii (Cyperaceae), that occupy partially overlapping environmental space in the southern Rocky Mountains, USA. In the region hypothesized to be the origin of the hybrid lineage, one parental taxon (C. nelsonii) is at the edge of its environmental tolerance. Hybrid‐origin individuals display mixed ancestry between the parental taxa—of nearly 7000 unlinked loci sampled, almost 30% showed evidence of excess ancestry from one parental lineage—approximately half displayed a genomic background skewed towards one parent, and half skewed towards the other. To test whether excess ancestry loci may have conferred an adaptive advantage to the hybrid‐origin lineage, we conducted genotype–environment association analyses on different combinations of loci—with and without excess ancestry—and with multiple contrasts between the hybrids and parental taxa. Loci with skewed ancestry showed significant environmental associations distinguishing the hybrid lineage from one parent (C. nelsonii), whereas loci with relatively equal representation of parental ancestries showed no such environmental associations. Moreover, the overwhelming majority of candidate adaptive loci with respect to environmental gradients also had excess ancestry from a parental lineage, implying these loci have facilitated the persistence of the hybrid lineage in an environment unsuitable to at least one parent.
Collapse
Affiliation(s)
- Richard G J Hodel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, USA
| | - Rob Massatti
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Banker SE, Bonhomme F, Nachman MW. Bidirectional introgression between Mus musculus domesticus and Mus spretus. Genome Biol Evol 2022; 14:6509516. [PMID: 35038727 PMCID: PMC8784167 DOI: 10.1093/gbe/evab288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles—including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Collapse
Affiliation(s)
- Sarah E Banker
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - François Bonhomme
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
8
|
Termignoni-Garcia F, Kirchman JJ, Clark J, Edwards SV. Comparative Population Genomics of Cryptic Speciation and Adaptive Divergence in Bicknell's and Gray-Cheeked Thrushes (Aves: Catharus bicknelli and Catharus minimus). Genome Biol Evol 2022; 14:evab255. [PMID: 34999784 PMCID: PMC8743040 DOI: 10.1093/gbe/evab255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Cryptic speciation may occur when reproductive isolation is recent or the accumulation of morphological differences between sister lineages is slowed by stabilizing selection preventing phenotypic differentiation. In North America, Bicknell's Thrush (Catharus bicknelli) and its sister species, the Gray-cheeked Thrush (Catharus minimus), are parapatrically breeding migratory songbirds, distinguishable in nature only by subtle differences in song and coloration, and were recognized as distinct species only in the 1990s. Previous molecular studies have estimated that the species diverged approximately 120,000-420,000 YBP and found very low levels of introgression despite their similarity and sympatry in the spring (prebreeding) migration. To further clarify the history, genetic divergence, genomic structure, and adaptive processes in C. bicknelli and C. minimus, we sequenced and assembled high-coverage reference genomes of both species and resequenced genomes from population samples of C. bicknelli, C. minimus, and two individuals of the Swainson's Thrush (Catharus ustulatus). The genome of C. bicknelli exhibits markedly higher abundances of transposable elements compared with other Catharus and chicken. Demographic and admixture analyses confirm moderate genome-wide differentiation (Fst ≈ 0.10) and limited gene flow between C. bicknelli and C. minimus, but suggest a more recent divergence than estimates based on mtDNA. We find evidence of rapid evolution of the Z-chromosome and elevated divergence consistent with natural selection on genomic regions near genes involved with neuronal processes in C. bicknelli. These genomes are a useful resource for future investigations of speciation, migration, and adaptation in Catharus thrushes.
Collapse
Affiliation(s)
- Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Johnathan Clark
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Abstract
Alleles that introgress between species can influence the evolutionary and ecological fate of species exposed to novel environments. Hybrid offspring of different species are often unfit, and yet it has long been argued that introgression can be a potent force in evolution, especially in plants. Over the last two decades, genomic data have increasingly provided evidence that introgression is a critically important source of genetic variation and that this additional variation can be useful in adaptive evolution of both animals and plants. Here, we review factors that influence the probability that foreign genetic variants provide long-term benefits (so-called adaptive introgression) and discuss their potential benefits. We find that introgression plays an important role in adaptive evolution, particularly when a species is far from its fitness optimum, such as when they expand their range or are subject to changing environments.
Collapse
Affiliation(s)
- Nathaniel B Edelman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Current affiliation: Yale Institute for Biospheric Studies and Yale School of the Environment, Yale University, New Haven, Connecticut 06511, USA;
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
10
|
Cramer ERA, Grønstøl G, Maxwell L, Kovach AI, Lifjeld JT. Sperm length divergence as a potential prezygotic barrier in a passerine hybrid zone. Ecol Evol 2021; 11:9489-9497. [PMID: 34306637 PMCID: PMC8293778 DOI: 10.1002/ece3.7768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
The saltmarsh sparrow Ammospiza caudacuta and Nelson's sparrow A. nelsoni differ in ecological niche, mating behavior, and plumage, but they hybridize where their breeding distributions overlap. In this advanced hybrid zone, past interbreeding and current backcrossing result in substantial genomic introgression in both directions, although few hybrids are currently produced in most locations. However, because both species are nonterritorial and have only brief male-female interactions, it is difficult to determine to what extent assortative mating explains the low frequency of hybrid offspring. Since females often copulate with multiple males, a role of sperm as a postcopulatory prezygotic barrier appears plausible. Here, we show that sperm length differs between the two species in the hybrid zone, with low among-male variation consistent with strong postcopulatory sexual selection on sperm cells. We hypothesize that divergence in sperm length may constitute a reproductive barrier between species, as sperm length co-evolves with the size of specialized female sperm storage tubules. Sperm does not appear to act as a postzygotic barrier, as sperm from hybrids was unexceptional.
Collapse
Affiliation(s)
| | | | - Logan Maxwell
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Adrienne I. Kovach
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | | |
Collapse
|
11
|
Abstract
The detection of introgression from genomic data is transforming our view of species and the origins of adaptive variation. Among the most widely used approaches to detect introgression is the so-called ABBA-BABA test or D-statistic, which identifies excess allele sharing between nonsister taxa. Part of the appeal of D is its simplicity, but this also limits its informativeness, particularly about the timing and direction of introgression. Here we present a simple extension, D frequency spectrum or DFS, in which D is partitioned according to the frequencies of derived alleles. We use simulations over a large parameter space to show how DFS carries information about various factors. In particular, recent introgression reliably leads to a peak in DFS among low-frequency derived alleles, whereas violation of model assumptions can lead to a lack of signal at low frequencies. We also reanalyze published empirical data from six different animal and plant taxa, and interpret the results in the light of our simulations, showing how DFS provides novel insights. We currently see DFS as a descriptive tool that will augment both simple and sophisticated tests for introgression, but in the future it may be usefully incorporated into probabilistic inference frameworks.
Collapse
Affiliation(s)
- Simon H Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - William Amos
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Sillo F, Garbelotto M, Giordano L, Gonthier P. Genic introgression from an invasive exotic fungal forest pathogen increases the establishment potential of a sibling native pathogen. NEOBIOTA 2021. [DOI: 10.3897/neobiota.65.64031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant hybridization between the invasive North American fungal plant pathogen Heterobasidion irregulare and its Eurasian sister species H. annosum is ongoing in Italy. Whole genomes of nine natural hybrids were sequenced, assembled and compared with those of three genotypes each of the two parental species. Genetic relationships among hybrids and their level of admixture were determined. A multi-approach pipeline was used to assign introgressed genomic blocks to each of the two species. Alleles that introgressed from H. irregulare to H. annosum were associated with pathways putatively related to saprobic processes, while alleles that introgressed from the native to the invasive species were mainly linked to gene regulation. There was no overlap of allele categories introgressed in the two directions. Phenotypic experiments documented a fitness increase in H. annosum genotypes characterized by introgression of alleles from the invasive species, supporting the hypothesis that hybridization results in putatively adaptive introgression. Conversely, introgression from the native into the exotic species appeared to be driven by selection on genes favoring genome stability. Since the introgression of specific alleles from the exotic H. irregulare into the native H. annosum increased the invasiveness of the latter species, we propose that two invasions may be co-occurring: the first one by genotypes of the exotic species, and the second one by alleles belonging to the exotic species. Given that H. irregulare represents a threat to European forests, monitoring programs need to track not only exotic genotypes in native forest stands, but also exotic alleles introgressed in native genotypes.
Collapse
|
13
|
Maxwell LM, Walsh J, Olsen BJ, Kovach AI. Patterns of introgression vary within an avian hybrid zone. BMC Ecol Evol 2021; 21:14. [PMID: 33509089 PMCID: PMC7853311 DOI: 10.1186/s12862-021-01749-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
Background Exploring hybrid zone dynamics at different spatial scales allows for better understanding of local factors that influence hybrid zone structure. In this study, we tested hypotheses about drivers of introgression at two spatial scales within the Saltmarsh Sparrow (Ammospiza caudacuta) and Nelson’s Sparrow (A. nelsoni) hybrid zone. Specifically, we evaluated the influence of neutral demographic processes (relative species abundance), natural selection (exogenous environmental factors and genetic incompatibilities), and sexual selection (assortative mating) in this mosaic hybrid zone. By intensively sampling adults (n = 218) and chicks (n = 326) at two geographically proximate locations in the center of the hybrid zone, we determined patterns of introgression on a fine scale across sites of differing habitat. We made broadscale comparisons of patterns from the center with those of prior studies in the southern edge of the hybrid zone. Results A panel of fixed SNPs (135) identified from ddRAD sequencing was used to calculate a hybrid index and determine genotypic composition/admixture level of the populations. Another panel of polymorphic SNPs (589) was used to assign paternity and reconstruct mating pairs to test for sexual selection. On a broad-scale, patterns of introgression were not explained by random mating within marshes. We found high rates of back-crossing and similarly low rates of recent-generation (F1/F2) hybrids in the center and south of the zone. Offspring genotypic proportions did not meet those expected from random mating within the parental genotypic distribution. Additionally, we observed half as many F1/F2 hybrid female adults than nestlings, while respective male groups showed no difference, in support of Haldane’s Rule. The observed proportion of interspecific mating was lower than expected when accounting for mate availability, indicating assortative mating was limiting widespread hybridization. On a fine spatial scale, we found variation in the relative influence of neutral and selective forces between inland and coastal habitats, with the smaller, inland marsh influenced primarily by neutral demographic processes, and the expansive, coastal marsh experiencing higher selective pressures in the form of natural (exogenous and endogenous) and sexual selection. Conclusions Multiple drivers of introgression, including neutral and selective pressures (exogenous, endogenous, and sexual selection), are structuring this hybrid zone, and their relative influence is site and context-dependent.
Collapse
Affiliation(s)
- Logan M Maxwell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Jennifer Walsh
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA.,Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Ithaca, NY, 14850, USA
| | - Brian J Olsen
- School of Biology & Ecology, University of Maine, Orono, ME, USA
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
14
|
Akopyan M, Gompert Z, Klonoski K, Vega A, Kaiser K, Mackelprang R, Rosenblum EB, Robertson JM. Genetic and phenotypic evidence of a contact zone between divergent colour morphs of the iconic red-eyed treefrog. Mol Ecol 2020; 29:4442-4456. [PMID: 32945036 DOI: 10.1111/mec.15639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022]
Abstract
Hybrid zones act as natural laboratories where divergent genomes interact, providing powerful systems for examining the evolutionary processes underlying biological diversity. In this study, we characterized patterns of genomic and phenotypic variation resulting from hybridization between divergent intraspecific lineages of the Neotropical red-eyed treefrog (Agalychnis callidryas). We found genetic evidence of a newly discovered contact zone and phenotypic novelty in leg colour-a trait suspected to play a role in mediating assortative mating in this species. Analysis of hybrid ancestry revealed an abundance of later-generation Fn individuals, suggesting persistence of hybrids in the contact zone. Hybrids are predominantly of southern ancestry but are phenotypically more similar to northern populations. Genome-wide association mapping revealed QTL with measurable effects on leg-colour variation, but further work is required to dissect the architecture of this trait and establish causal links. Further, genomic cline analyses indicated substantial variation in patterns of introgression across the genome. Directional introgression of loci associated with different aspects of leg colour are inherited from each parental lineage, creating a distinct hybrid colour pattern. We show that hybridization can generate new phenotypes, revealing the evolutionary processes that potentially underlie patterns of phenotypic diversity in this iconic polytypic frog. Our study is consistent with a role of hybridization and sexual selection in lineage diversification, evolutionary processes that have been implicated in accelerating divergence in the most phenotypically diverse species.
Collapse
Affiliation(s)
- Maria Akopyan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Biology, California State University, Northridge, CA, USA
| | | | - Karina Klonoski
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | | | - Kristine Kaiser
- Department of Biology, California State University, Northridge, CA, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | | |
Collapse
|
15
|
Valencia-Montoya WA, Elfekih S, North HL, Meier JI, Warren IA, Tay WT, Gordon KHJ, Specht A, Paula-Moraes SV, Rane R, Walsh TK, Jiggins CD. Adaptive Introgression across Semipermeable Species Boundaries between Local Helicoverpa zea and Invasive Helicoverpa armigera Moths. Mol Biol Evol 2020; 37:2568-2583. [PMID: 32348505 PMCID: PMC7475041 DOI: 10.1093/molbev/msaa108] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hybridization between invasive and native species has raised global concern, given the dramatic increase in species range shifts and pest outbreaks due to anthropogenic dispersal. Nevertheless, secondary contact between sister lineages of local and invasive species provides a natural laboratory to understand the factors that determine introgression and the maintenance or loss of species barriers. Here, we characterize the early evolutionary outcomes following secondary contact between invasive Helicoverpa armigera and native H. zea in Brazil. We carried out whole-genome resequencing of Helicoverpa moths from Brazil in two temporal samples: during the outbreak of H. armigera in 2013 and 2017. There is evidence for a burst of hybridization and widespread introgression from local H. zea into invasive H. armigera coinciding with H. armigera expansion in 2013. However, in H. armigera, the admixture proportion and the length of introgressed blocks were significantly reduced between 2013 and 2017, suggesting selection against admixture. In contrast to the genome-wide pattern, there was striking evidence for adaptive introgression of a single region from the invasive H. armigera into local H. zea, including an insecticide resistance allele that increased in frequency over time. In summary, despite extensive gene flow after secondary contact, the species boundaries are largely maintained except for the single introgressed region containing the insecticide-resistant locus. We document the worst-case scenario for an invasive species, in which there are now two pest species instead of one, and the native species has acquired resistance to pyrethroid insecticides through introgression.
Collapse
Affiliation(s)
- Wendy A Valencia-Montoya
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Samia Elfekih
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Henry L North
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Joana I Meier
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Ian A Warren
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Wee Tek Tay
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, ACT, Australia
| | - Karl H J Gordon
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, ACT, Australia
| | | | | | - Rahul Rane
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Tom K Walsh
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, ACT, Australia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Wagner DN, Curry RL, Chen N, Lovette IJ, Taylor SA. Genomic regions underlying metabolic and neuronal signaling pathways are temporally consistent in a moving avian hybrid zone. Evolution 2020; 74:1498-1513. [PMID: 32243568 DOI: 10.1111/evo.13970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
The study of hybrid zones can provide insight into the genetic basis of species differences that are relevant for the maintenance of reproductive isolation. Hybrid zones can also provide insight into climate change, species distributions, and evolution. The hybrid zone between black-capped chickadees (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis) is shifting northward in response to increasing winter temperatures but is not increasing in width. This pattern indicates strong selection against chickadees with admixed genomes. Using high-resolution genomic data, we identified regions of the genomes that are outliers in both time points and do not introgress between the species; these regions may be involved in the maintenance of reproductive isolation. Genes involved in metabolic regulation processes were overrepresented in this dataset. Several gene ontology categories were also temporally consistent-including glutamate signaling, synaptic transmission, and catabolic processes-but the nucleotide variants leading to this pattern were not. Our results support recent findings that hybrids between black-capped and Carolina chickadees have higher basal metabolic rates than either parental species and suffer spatial memory and problem-solving deficits. Metabolic breakdown, as well as spatial memory and problem-solving, in hybrid chickadees may act as strong postzygotic isolation mechanisms in this moving hybrid zone.
Collapse
Affiliation(s)
- Dominique N Wagner
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80309
| | - Robert L Curry
- Department of Biology, Villanova University, Villanova, Pennsylvania, 19085
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, New York, 14627
| | - Irby J Lovette
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, 14850
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80309
| |
Collapse
|
17
|
Svardal H, Quah FX, Malinsky M, Ngatunga BP, Miska EA, Salzburger W, Genner MJ, Turner GF, Durbin R. Ancestral Hybridization Facilitated Species Diversification in the Lake Malawi Cichlid Fish Adaptive Radiation. Mol Biol Evol 2020; 37:1100-1113. [PMID: 31821500 PMCID: PMC7086168 DOI: 10.1093/molbev/msz294] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The adaptive radiation of cichlid fishes in East African Lake Malawi encompasses over 500 species that are believed to have evolved within the last 800,000 years from a common founder population. It has been proposed that hybridization between ancestral lineages can provide the genetic raw material to fuel such exceptionally high diversification rates, and evidence for this has recently been presented for the Lake Victoria region cichlid superflock. Here, we report that Lake Malawi cichlid genomes also show evidence of hybridization between two lineages that split 3-4 Ma, today represented by Lake Victoria cichlids and the riverine Astatotilapia sp. "ruaha blue." The two ancestries in Malawi cichlid genomes are present in large blocks of several kilobases, but there is little variation in this pattern between Malawi cichlid species, suggesting that the large-scale mosaic structure of the genomes was largely established prior to the radiation. Nevertheless, tens of thousands of polymorphic variants apparently derived from the hybridization are interspersed in the genomes. These loci show a striking excess of differentiation across ecological subgroups in the Lake Malawi cichlid assemblage, and parental alleles sort differentially into benthic and pelagic Malawi cichlid lineages, consistent with strong differential selection on these loci during species divergence. Furthermore, these loci are enriched for genes involved in immune response and vision, including opsin genes previously identified as important for speciation. Our results reinforce the role of ancestral hybridization in explosive diversification by demonstrating its significance in one of the largest recent vertebrate adaptive radiations.
Collapse
Affiliation(s)
- Hannes Svardal
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Milan Malinsky
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Eric A Miska
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - George F Turner
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
18
|
Walsh J, Clucas GV, MacManes MD, Thomas WK, Kovach AI. Divergent selection and drift shape the genomes of two avian sister species spanning a saline-freshwater ecotone. Ecol Evol 2019; 9:13477-13494. [PMID: 31871659 PMCID: PMC6912898 DOI: 10.1002/ece3.5804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
The role of species divergence due to ecologically based divergent selection-or ecological speciation-in generating and maintaining biodiversity is a central question in evolutionary biology. Comparison of the genomes of phylogenetically related taxa spanning a selective habitat gradient enables discovery of divergent signatures of selection and thereby provides valuable insight into the role of divergent ecological selection in speciation. Tidal marsh ecosystems provide tractable opportunities for studying organisms' adaptations to selective pressures that underlie ecological divergence. Sharp environmental gradients across the saline-freshwater ecotone within tidal marshes present extreme adaptive challenges to terrestrial vertebrates. Here, we sequence 20 whole genomes of two avian sister species endemic to tidal marshes-the saltmarsh sparrow (Ammospiza caudacutus) and Nelson's sparrow (A. nelsoni)-to evaluate the influence of selective and demographic processes in shaping genome-wide patterns of divergence. Genome-wide divergence between these two recently diverged sister species was notably high (genome-wide F ST = 0.32). Against a background of high genome-wide divergence, regions of elevated divergence were widespread throughout the genome, as opposed to focused within islands of differentiation. These patterns may be the result of genetic drift resulting from past tidal march colonization events in conjunction with divergent selection to different environments. We identified several candidate genes that exhibited elevated divergence between saltmarsh and Nelson's sparrows, including genes linked to osmotic regulation, circadian rhythm, and plumage melanism-all putative candidates linked to adaptation to tidal marsh environments. These findings provide new insights into the roles of divergent selection and genetic drift in generating and maintaining biodiversity.
Collapse
Affiliation(s)
- Jennifer Walsh
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
- Fuller Evolutionary Biology ProgramCornell Laboratory of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - Gemma V. Clucas
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
- Present address:
Cornell Lab of OrnithologyIthacaNYUSA
| | - Matthew D. MacManes
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesDurhamNHUSA
| | - W. Kelley Thomas
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesDurhamNHUSA
| | - Adrienne I. Kovach
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| |
Collapse
|
19
|
Lu RS, Chen Y, Tamaki I, Sakaguchi S, Ding YQ, Takahashi D, Li P, Isaji Y, Chen J, Qiu YX. Pre-quaternary diversification and glacial demographic expansions of Cardiocrinum (Liliaceae) in temperate forest biomes of Sino-Japanese Floristic Region. Mol Phylogenet Evol 2019; 143:106693. [PMID: 31778814 DOI: 10.1016/j.ympev.2019.106693] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 11/27/2022]
Abstract
The Sino-Japanese Floristic Region (SJFR) in East Asia is one of the most diverse temperate floras in the world. However, the relative influence of Neogene palaeogeographical changes and Quaternary climatic fluctuations as causal mechanisms on species diversification remains largely controversial, because most divergence time estimates were inferred from single-locus data and have limited geographic or taxonomic sampling. To evaluate these influences, we use SNP markers from restriction site-associated DNA sequencing (RAD-Seq) loci and expressed sequence tags-simple sequence repeat (EST-SSR) markers to investigate the levels of genetic variation, speciation and demographic history of the temperate-deciduous forest (TDF) endemic Cardiocrinum (Endlicher) Lindley (Liliaceae), a genus comprising three species in China (C. giganteum, C. cathayanum) and Japan (C. cordatum). Phylogenomic and population genomic coalescent-based analyses demonstrated that Late Neogene tectonic/climatic events triggered speciation of Cardiocrinum, and Pleistocene climatic fluctuations had limited influence on its divergence history. Population demographic inference using Approximate Bayesian Computation from EST-SSRs and palaeoclimatic niche models both indicated that all three Cardiocrinum species experienced population expansions during the transition from the LIG to the LGM. We also discussed the implications of these results on the conservation of montane TDF species in the SJFR under ongoing environmental change. Our results improve our understanding of how the constituents of montane TDF across the SJFR responded to previous periods of rapid climate and environmental change in terms of speciation and population demographic processes.
Collapse
Affiliation(s)
- Rui-Sen Lu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yang Chen
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ichiro Tamaki
- Gifu Academy of Forest Science and Culture, 88 Sodai, Mino, Gifu 501-3714, Japan
| | - Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yan-Qian Ding
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daiki Takahashi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuji Isaji
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Jun Chen
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying-Xiong Qiu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
20
|
Lipshutz SE, Meier JI, Derryberry GE, Miller MJ, Seehausen O, Derryberry EP. Differential introgression of a female competitive trait in a hybrid zone between sex-role reversed species. Evolution 2019; 73:188-201. [PMID: 30597557 DOI: 10.1111/evo.13675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/10/2018] [Indexed: 01/04/2023]
Abstract
Mating behavior between recently diverged species in secondary contact can impede or promote reproductive isolation. Traditionally, researchers focus on the importance of female mate choice and male-male competition in maintaining or eroding species barriers. Although female-female competition is widespread, little is known about its role in the speciation process. Here, we investigate a case of interspecific female competition and its influence on patterns of phenotypic and genetic introgression between species. We examine a hybrid zone between sex-role reversed, Neotropical shorebird species, the northern jacana (Jacana spinosa) and wattled jacana (J. jacana), in which female-female competition is a major determinant of reproductive success. Previous work found that females of the more aggressive and larger species, J. spinosa, disproportionately mother hybrid offspring, potentially by monopolizing breeding territories in sympatry with J. jacana. We find a cline shift of female body mass relative to the genetic center of the hybrid zone, consistent with asymmetric introgression of this competitive trait. We suggest that divergence in sexual characteristics between sex-role reversed females can influence patterns of gene flow upon secondary contact, similar to males in systems with more typical sex roles.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, 70118.,Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996.,Institute of Ecology and Evolution, University of Bern, Switzerland
| | - Joana I Meier
- Institute of Ecology and Evolution, University of Bern, Switzerland.,Fish Ecology and Evolution, Eawag Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Graham E Derryberry
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Matthew J Miller
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama.,Sam Noble Oklahoma Museum and Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019
| | - Ole Seehausen
- Institute of Ecology and Evolution, University of Bern, Switzerland.,Fish Ecology and Evolution, Eawag Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, 70118.,Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|