1
|
Poveda-Martínez D, Salinas NA, Aguirre MB, Sánchez-Restrepo AF, Hight S, Díaz-Soltero H, Logarzo G, Hasson E. Genomic and ecological evidence shed light on the recent demographic history of two related invasive insects. Sci Rep 2022; 12:19629. [PMID: 36385480 PMCID: PMC9669014 DOI: 10.1038/s41598-022-21548-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Hypogeococcus pungens is a species complex native to southern South America that is composed of at least five putative species, each one specialized in the use of different host plants. Two of these undescribed species were registered as invasive in Central and North America: Hyp-C is a cactophagous mealybug that became an important pest that threatens endemic cactus species in Puerto Rico, and Hyp-AP feeds on Amaranthaceae and Portulacaceae hosts, but does not produce severe damage to the host plants. We quantified genomic variation and investigated the demographic history of both invasive species by means of coalescent-based simulations using high throughput sequencing data. We also evaluated the incidence of host plant infestation produced by both species and used an ecological niche modeling approach to assess potential distribution under current and future climatic scenarios. Our genetic survey evinced the footprints of strong effective population size reduction and signals of genetic differentiation among populations within each species. Incidence of plant attacks varied between species and among populations within species, with some host plant species preferred over others. Ecological niche modeling suggested that under future climatic scenarios both species would expand their distribution ranges in Puerto Rico. These results provide valuable information for the design of efficient management and control strategies of the Puerto Rican cactus pest and shed light on the evolutionary pathways of biological invasions.
Collapse
Affiliation(s)
- Daniel Poveda-Martínez
- Fundación Para El Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina.
- Facultad de Ciencias Exactas Y Naturales, Instituto de Ecología Genética Y Evolución de Buenos Aires (IEGEBA), Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Nicolas A Salinas
- Fundación Para El Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Belén Aguirre
- Fundación Para El Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina.
| | - Andrés F Sánchez-Restrepo
- Fundación Para El Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Stephen Hight
- Insect Behavior and Biocontrol Research Unit (IBBRU), USDA-ARS, Tallahassee, FL, USA
| | | | - Guillermo Logarzo
- Fundación Para El Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina
| | - Esteban Hasson
- Facultad de Ciencias Exactas Y Naturales, Instituto de Ecología Genética Y Evolución de Buenos Aires (IEGEBA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Hagen O, Flück B, Fopp F, Cabral JS, Hartig F, Pontarp M, Rangel TF, Pellissier L. gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity. PLoS Biol 2021; 19:e3001340. [PMID: 34252071 PMCID: PMC8384074 DOI: 10.1371/journal.pbio.3001340] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
Understanding the origins of biodiversity has been an aspiration since the days of early naturalists. The immense complexity of ecological, evolutionary, and spatial processes, however, has made this goal elusive to this day. Computer models serve progress in many scientific fields, but in the fields of macroecology and macroevolution, eco-evolutionary models are comparatively less developed. We present a general, spatially explicit, eco-evolutionary engine with a modular implementation that enables the modeling of multiple macroecological and macroevolutionary processes and feedbacks across representative spatiotemporally dynamic landscapes. Modeled processes can include species' abiotic tolerances, biotic interactions, dispersal, speciation, and evolution of ecological traits. Commonly observed biodiversity patterns, such as α, β, and γ diversity, species ranges, ecological traits, and phylogenies, emerge as simulations proceed. As an illustration, we examine alternative hypotheses expected to have shaped the latitudinal diversity gradient (LDG) during the Earth's Cenozoic era. Our exploratory simulations simultaneously produce multiple realistic biodiversity patterns, such as the LDG, current species richness, and range size frequencies, as well as phylogenetic metrics. The model engine is open source and available as an R package, enabling future exploration of various landscapes and biological processes, while outputs can be linked with a variety of empirical biodiversity patterns. This work represents a key toward a numeric, interdisciplinary, and mechanistic understanding of the physical and biological processes that shape Earth's biodiversity.
Collapse
Affiliation(s)
- Oskar Hagen
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of
Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Land Change Science Research Unit, Swiss Federal Institute for Forest,
Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| | - Benjamin Flück
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of
Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Land Change Science Research Unit, Swiss Federal Institute for Forest,
Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| | - Fabian Fopp
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of
Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Land Change Science Research Unit, Swiss Federal Institute for Forest,
Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| | - Juliano S. Cabral
- Ecosystem Modeling, Center for Computational and Theoretical Biology,
University of Würzburg, Würzburg, Germany
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg,
Germany
| | | | - Thiago F. Rangel
- Department of Ecology, Institute of Biological Sciences, Federal
University of Goiás, Goiânia, Brazil
| | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of
Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Land Change Science Research Unit, Swiss Federal Institute for Forest,
Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| |
Collapse
|
3
|
Schoville SD, Simon S, Bai M, Beethem Z, Dudko RY, Eberhard MJB, Frandsen PB, Küpper SC, Machida R, Verheij M, Willadsen PC, Zhou X, Wipfler B. Comparative transcriptomics of ice-crawlers demonstrates cold specialization constrains niche evolution in a relict lineage. Evol Appl 2021; 14:360-382. [PMID: 33664782 PMCID: PMC7896716 DOI: 10.1111/eva.13120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/25/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Key changes in ecological niche space are often critical to understanding how lineages diversify during adaptive radiations. However, the converse, or understanding why some lineages are depauperate and relictual, is more challenging, as many factors may constrain niche evolution. In the case of the insect order Grylloblattodea, highly conserved thermal breadth is assumed to be closely tied to their relictual status, but has not been formerly tested. Here, we investigate whether evolutionary constraints in the physiological tolerance of temperature can help explain relictualism in this lineage. Using a comparative transcriptomics approach, we investigate gene expression following acute heat and cold stress across members of Grylloblattodea and their sister group, Mantophasmatodea. We additionally examine patterns of protein evolution, to identify candidate genes of positive selection. We demonstrate that cold specialization in Grylloblattodea has been accompanied by the loss of the inducible heat shock response under both acute heat and cold stress. Additionally, there is widespread evidence of selection on protein-coding genes consistent with evolutionary constraints due to cold specialization. This includes positive selection on genes involved in trehalose transport, metabolic function, mitochondrial function, oxygen reduction, oxidative stress, and protein synthesis. These patterns of molecular adaptation suggest that Grylloblattodea have undergone evolutionary trade-offs to survive in cold habitats and should be considered highly vulnerable to climate change. Finally, our transcriptomic data provide a robust backbone phylogeny for generic relationships within Grylloblattodea and Mantophasmatodea. Major phylogenetic splits in each group relate to arid conditions driving biogeographical patterns, with support for a sister-group relationship between North American Grylloblatta and Altai-Sayan Grylloblattella, and a range disjunction in Namibia splitting major clades within Mantophasmatodea.
Collapse
Affiliation(s)
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchPB WageningenThe Netherlands
| | - Ming Bai
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zachary Beethem
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Department of Biomedical SciencesSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roman Y. Dudko
- Institute of Systematics and Ecology of AnimalsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
- Tomsk State UniversityTomskRussia
| | - Monika J. B. Eberhard
- Zoological Institute and MuseumGeneral Zoology and Zoological SystematicsUniversity of GreifswaldGreifswaldGermany
| | - Paul B. Frandsen
- Department of Plant & Wildlife SciencesBrigham Young UniversityProvoUTUSA
- Data Science LabOffice of the Chief Information OfficerSmithsonian InstitutionWashingtonDCU.S.A
| | - Simon C. Küpper
- Zoological Institute and MuseumGeneral Zoology and Zoological SystematicsUniversity of GreifswaldGreifswaldGermany
| | - Ryuichiro Machida
- Sugadaira Research StationMountain Science CenterUniversity of TsukubaUeda, NaganoJapan
| | - Max Verheij
- Biosystematics GroupWageningen University & ResearchPB WageningenThe Netherlands
| | - Peter C. Willadsen
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Department of Entomology and Plant PathologyNorth Carolina State UniversityCampus Box 7613RaleighNCUSA
| | - Xin Zhou
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | | |
Collapse
|
4
|
Island songbirds as windows into evolution in small populations. Curr Biol 2021; 31:1303-1310.e4. [PMID: 33476557 DOI: 10.1016/j.cub.2020.12.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Due to their limited ranges and inherent isolation, island species have long been recognized as crucial systems for tackling a range of evolutionary questions, including in the early study of speciation.1,2 Such species have been less studied in the understanding of the evolutionary forces driving DNA sequence evolution. Island species usually have lower census population sizes (N) than continental species and, supposedly, lower effective population sizes (Ne). Given that both the rates of change caused by genetic drift and by selection are dependent upon Ne, island species are theoretically expected to exhibit (1) lower genetic diversity, (2) less effective natural selection against slightly deleterious mutations,3,4 and (3) a lower rate of adaptive evolution.5-8 Here, we have used a large set of newly sequenced and published whole-genome sequences of Passerida species (14 insular and 11 continental) to test these predictions. We confirm that island species exhibit lower census size and Ne, supporting the hypothesis that the smaller area available on islands constrains the upper bound of Ne. In the insular species, we find lower nucleotide diversity in coding regions, higher ratios of non-synonymous to synonymous polymorphisms, and lower adaptive substitution rates. Our results provide robust evidence that the lower Ne experienced by island species has affected both the ability of natural selection to efficiently remove weakly deleterious mutations and also the adaptive potential of island species, therefore providing considerable empirical support for the nearly neutral theory. We discuss the implications for both evolutionary and conservation biology.
Collapse
|
5
|
Koutroumpa K, Warren BH, Theodoridis S, Coiro M, Romeiras MM, Jiménez A, Conti E. Geo-Climatic Changes and Apomixis as Major Drivers of Diversification in the Mediterranean Sea Lavenders ( Limonium Mill.). FRONTIERS IN PLANT SCIENCE 2021; 11:612258. [PMID: 33510756 PMCID: PMC7835328 DOI: 10.3389/fpls.2020.612258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 05/15/2023]
Abstract
The Mediterranean realm, comprising the Mediterranean and Macaronesian regions, has long been recognized as one of the world's biodiversity hotspots, owing to its remarkable species richness and endemism. Several hypotheses on biotic and abiotic drivers of species diversification in the region have been often proposed but rarely tested in an explicit phylogenetic framework. Here, we investigate the impact of both species-intrinsic and -extrinsic factors on diversification in the species-rich, cosmopolitan Limonium, an angiosperm genus with center of diversity in the Mediterranean. First, we infer and time-calibrate the largest Limonium phylogeny to date. We then estimate ancestral ranges and diversification dynamics at both global and regional scales. At the global scale, we test whether the identified shifts in diversification rates are linked to specific geological and/or climatic events in the Mediterranean area and/or asexual reproduction (apomixis). Our results support a late Paleogene origin in the proto-Mediterranean area for Limonium, followed by extensive in situ diversification in the Mediterranean region during the late Miocene, Pliocene, and Pleistocene. We found significant increases of diversification rates in the "Mediterranean lineage" associated with the Messinian Salinity Crisis, onset of Mediterranean climate, Plio-Pleistocene sea-level fluctuations, and apomixis. Additionally, the Euro-Mediterranean area acted as the major source of species dispersals to the surrounding areas. At the regional scale, we infer the biogeographic origins of insular endemics in the oceanic archipelagos of Macaronesia, and test whether woodiness in the Canarian Nobiles clade is a derived trait linked to insular life and a biotic driver of diversification. We find that Limonium species diversity on the Canary Islands and Cape Verde archipelagos is the product of multiple colonization events followed by in situ diversification, and that woodiness of the Canarian endemics is indeed a derived trait but is not associated with a significant shift to higher diversification rates. Our study expands knowledge on how the interaction between abiotic and biotic drivers shape the uneven distribution of species diversity across taxonomic and geographical scales.
Collapse
Affiliation(s)
- Konstantina Koutroumpa
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Ben H. Warren
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Institut de Systematique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France
| | - Spyros Theodoridis
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Mario Coiro
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Maria M. Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ares Jiménez
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- IES Pedra da Auga, Ponteareas, Spain
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|