1
|
Matsubayashi M, Tsuchida S, Shibahara T, Ushida K, Fuglei E, Pedersen ÅØ, Nielsen ÓK, Duszynski DW, Skírnisson K. Comparative molecular analyses of Eimeria Schneider (Apicomplexa: Eimeriidae) species from rock ptarmigan in Iceland, Svalbard-Norway, and Japan. Syst Parasitol 2024; 101:31. [PMID: 38642205 DOI: 10.1007/s11230-024-10159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/07/2024] [Indexed: 04/22/2024]
Abstract
The rock ptarmigan (Lagopus muta) has a Holarctic breeding distribution and is found in arctic and sub-arctic regions. Isolated populations and glacial relicts occur in alpine areas south of the main range, like the Pyrenees in Europe, the Pamir mountains in Central Asia, and the Japanese Alps. In recent decades considerable effort has been made to clarify parasite infections in the rock ptarmigan. Seven Eimeria spp. have been reported parasitizing rock ptarmigan. Two of those species, E. uekii and E. raichoi parasitizing rock ptarmigan (L. m. japonica) in Japan, have been identified genetically. Here we compare partial sequences of nuclear (18S rRNA) and mitochondrial (COI) genes and we detail the morphology of sporulated oocysts of E. uekii and E. raichoi from Japan, E. muta and E. rjupa, from the rock ptarmigan (L. m. islandorum) in Iceland, and two undescribed eimerian morphotypes, Eimeria sp. A, and Eimeria sp. B, from rock ptarmigan (L. m. hyperborea) in Norway (Svalbard in the Norwegian Archipelago). Two morphotypes, ellipsoidal and spheroidal, are recognized for each of the three host subspecies. Our phylogenetic analysis suggests that the ellipsoidal oocyst types, E. uekii, E. muta, and Eimeria sp. A (Svalbard-Norway) are identical and infects rock ptarmigan in Japan, Iceland, and Svalbard-Norway, respectively. Eimeria uekii was first described in Japan in 1981 so that E. muta, described in Iceland in 2007, and Eimeria sp. A in Svalbard-Norway are junior synonyms of E. uekii. Also, phylogenetic analysis shows that the spheroidal oocyst types, E. rjupa and Eimeria sp. B (Svalbard-Norway), are identical, indicating that rock ptarmigan in Iceland and Svalbard-Norway are infected by the same Eimeria species and differ from E. raichoi in Japan.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku oraikita, Izumisano, Osaka, 598-8531, Japan.
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, 60115, Indonesia.
| | - Sayaka Tsuchida
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tomoyuki Shibahara
- Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku oraikita, Izumisano, Osaka, 598-8531, Japan
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan
| | - Kazunari Ushida
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Eva Fuglei
- Fram Centre, Norwegian Polar Institute, Hjalmar Johansens gate 14, 9296, Tromsø, Norway
| | - Åshild Ø Pedersen
- Fram Centre, Norwegian Polar Institute, Hjalmar Johansens gate 14, 9296, Tromsø, Norway
| | - Ólafur K Nielsen
- Icelandic Institute of Natural History, Urriðaholtsstræti 6-8, 210, Garðabær, Iceland
| | - Donald W Duszynski
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Karl Skírnisson
- Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, Keldnavegur 3, 112, Reykjavík, Iceland
| |
Collapse
|
2
|
Zhang J, Huang J, Tang Y, Lu Y, Zhou Z. Construction of a Banker Plant System via the Host Switch Trait of a Natural Enemy Aenasius bambawalei. Life (Basel) 2023; 13:2115. [PMID: 38004255 PMCID: PMC10672032 DOI: 10.3390/life13112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the most effective host switch patterns in parasitic wasps, specifically Aenasius bambawalei (AB), is crucial for effectively controlling pests like Penacoccus solenopsis (PSS). This study aims to elucidate AB's ideal host switch pattern and assess its utility in maintaining synchronization between AB and PSS, thereby aiding in PSS control. We examined various host switch patterns and cycles to evaluate their impact on AB's offspring's parasitism rates and fitness in laboratory conditions. Concurrently, we assessed the fitness of both PSS and AB on tomato plants using different banker plant systems to maintain field synchronization. Results indicate that the three-repeat T1 host switch pattern of PSS-Penacoccus solani (PSI)-PSS was the most effective. Additionally, a specific banker plant system, "System B", which provided succulent plants hosting PSI, was optimal for synchronizing AB and PSS in a summer greenhouse setting. Our findings underscore the importance of employing specific host switch patterns and banker plant systems to effectively control PSS in the field. This research offers foundational data for incorporating a banker plant system into integrated pest management strategies for enhanced PSS control.
Collapse
Affiliation(s)
- Juan Zhang
- Institute of Garden Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China; (J.Z.); (Y.T.)
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agricultural Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Yayuan Tang
- Institute of Garden Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China; (J.Z.); (Y.T.)
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agricultural Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Zhongshi Zhou
- Institute of Plant Protection, Chinease Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
López-Estrada EK, Sanmartín I, Uribe JE, Abalde S, Jiménez-Ruiz Y, García-París M. Mitogenomics and hidden-trait models reveal the role of phoresy and host shifts in the diversification of parasitoid blister beetles (Coleoptera: Meloidae). Mol Ecol 2022; 31:2453-2474. [PMID: 35146829 PMCID: PMC9305437 DOI: 10.1111/mec.16390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Changes in life history traits are often considered speciation triggers and can have dramatic effects on the evolutionary history of a lineage. Here, we examine the consequences of changes in two life history traits, host‐type and phoresy, in the hypermetamorphic blister beetles, Meloidae. Subfamilies Nemognathinae and Meloinae exhibit a complex life cycle involving multiple metamorphoses and parasitoidism. Most genera and tribes are bee‐parasitoids, and include phoretic or nonphoretic species, while two tribes feed on grasshopper eggs. These different life strategies are coupled with striking differences in species richness among clades. We generated a mitogenomic phylogeny for Nemognathinae and Meloinae, confirming the monophyly of these two clades, and used the dated phylogeny to explore the association between diversification rates and changes in host specificity and phoresy, using state‐dependent speciation and extinction (SSE) models that include the effect of hidden traits. To account for the low taxon sampling, we implemented a phylogenetic‐taxonomic approach based on birth‐death simulations, and used a Bayesian framework to integrate parameter and phylogenetic uncertainty. Results show that the ancestral hypermetamorphic Meloidae was a nonphoretic bee‐parasitoid, and that transitions towards a phoretic bee‐parasitoid and grasshopper parasitoidism occurred multiple times. Nonphoretic bee‐parasitoid lineages exhibit significantly higher relative extinction and lower diversification rates than phoretic bee‐and grasshopper‐parasitoids, but no significant differences were found between the latter two strategies. This suggests that Orthopteran host shifts and phoresy contributed jointly to the evolutionary success of the parasitoid meloidae. We also demonstrate that SSE models can be used to identify hidden traits coevolving with the focal trait in driving a lineage's diversification dynamics.
Collapse
Affiliation(s)
- E K López-Estrada
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, España.,Real Jardín Botánico (RJB-CSIC). Plaza de Murillo, 2, 28014. Madrid, España
| | - I Sanmartín
- Real Jardín Botánico (RJB-CSIC). Plaza de Murillo, 2, 28014. Madrid, España
| | - J E Uribe
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, España
| | - S Abalde
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, España.,Centro de Estudios Avanzados de Blanes (CEAB-CSIC). Accéss, Cala Sant Francesc, 14, 17300, Blanes, España
| | - Y Jiménez-Ruiz
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, España
| | - M García-París
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, España
| |
Collapse
|