1
|
Vrdoljak J, Imanol Sánchez K, González-Marín A, Morando M, Javier Avila L. A straightforward workflow to explore species diversity using the Patagonian lizards of the Diplolaemus genus (Iguania: Leiosauridae) as a study case, with the description of a new species. Mol Phylogenet Evol 2025; 204:108274. [PMID: 39694347 DOI: 10.1016/j.ympev.2024.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Disputes over species descriptions, stemming from conceptual disparities and arbitrary species boundaries, are among the primary challenges of modern taxonomy. In this study, we introduce a straightforward workflow, grounded in evolutionary theory, designed to tackle these challenges. We exemplified this approach using Patagonian lizards from the Diplolaemus clade. This workflow involves assigning specimens to putative evolutionary lineages, conducting primary species delimitations, constructing a species tree, comparing lineages for evolutionary independence, and using post-hoc analyses to separate well-supported from ambiguous lineages. This approach aims to establish a reliable foundation for exploring the taxonomic and evolutionary diversity of challenging groups. Applying this workflow to the Diplolaemus clade, we used various analytical methods on genetic (mitochondrial and nuclear markers) and phenotypic data (meristic, linear, and geometric morphometrics). We identified ten lineages with varying degrees of evolutionary independence in a clade where only four species had been described. Among the newly identified lineages, two exhibited low support for evolutionary independence, three showed strong support but had non-conclusive information, and one was recognized and described as a new species. In summary, our hierarchical workflow not only facilitated comprehensive comparisons but also enabled us to draw robust conclusions.
Collapse
Affiliation(s)
- Juan Vrdoljak
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Boulevard Almirante Brown 3051, U9120ACD Puerto Madryn, Chubut, Argentina.
| | - Kevin Imanol Sánchez
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
| | - Andrea González-Marín
- Parque Nacional Lanín, Administración de Parques Nacionales, Perito Moreno 1006, 8371 San Martín de los Andes, Neuquén, Argentina
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Boulevard Almirante Brown 3051, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Luciano Javier Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
2
|
Nge FJ, Hammer TA, Vasconcelos T, Biffin E, Kellermann J, Waycott M. Polyploidy linked with species richness but not diversification rates or niche breadth in Australian Pomaderreae (Rhamnaceae). ANNALS OF BOTANY 2025; 135:531-548. [PMID: 39441970 PMCID: PMC11920800 DOI: 10.1093/aob/mcae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS Polyploidy is an important evolutionary driver for plants and has been linked with higher species richness and increases in diversification rate. These correlations between ploidy and plant radiations could be the result of polyploid lineages exploiting broader niche space and novel niches due to their enhanced adaptability. The evolution of ploidy and its link to plant diversification across the Australian continent is not well understood. Here, we focus on the ploidy evolution of the Australasian Rhamnaceae tribe Pomaderreae. METHODS We generated a densely sampled phylogeny (90 %, 215/240 species) of the tribe and used it to test for the evolution of ploidy. We obtained 30 orthologous nuclear loci per sample and dated the phylogeny using treePL. Ploidy estimates for each sequenced species were obtained using nQuire, based on phased sequence data. We used MiSSE to obtain tip diversification rates and tested for significant relationships between diversification rates and ploidy. We also assessed for relationships between ploidy level and niche breadth, using distributional records, species distributional modelling and WorldClim data. KEY RESULTS Polyploidy is extensive across the tribe, with almost half (45 %) of species and the majority of genera exhibiting this trait. We found a significant positive relationship between polyploidy and genus size (i.e. species richness), but a non-significant positive relationship between polyploidy and diversification rates. Polyploidy did not result in significantly wider niche space occupancy for Pomaderreae; however, polyploidy did allow transitions into novel wetter niches. Spatially, eastern Australia is the diversification hotspot for Pomaderreae in contrast to the species hotspot of south-west Western Australia. CONCLUSIONS The relationship between polyploidy and diversification is complex. Ancient polyploidization events likely played an important role in the diversification of species-rich genera. A lag time effect may explain the uncoupling of tip diversification rates and polyploidy of extant lineages. Further studies on other groups are required to validate these hypotheses.
Collapse
Affiliation(s)
- Francis J Nge
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- National Herbarium of New South Wales, Botanic Gardens of Sydney, Mount Annan, NSW 2567, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
- IRD – Institut de Recherche pour le Développement, Montpellier, BP 64501, France
| | - Timothy A Hammer
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Thais Vasconcelos
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ed Biffin
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Jürgen Kellermann
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Michelle Waycott
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| |
Collapse
|
3
|
Brennan IG, Lemmon AR, Moriarty Lemmon E, Hoskin CJ, Donnellan SC, Keogh JS. Populating a Continent: Phylogenomics Reveal the Timing of Australian Frog Diversification. Syst Biol 2024; 73:1-11. [PMID: 37527840 DOI: 10.1093/sysbio/syad048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023] Open
Abstract
The Australian continent's size and isolation make it an ideal place for studying the accumulation and evolution of biodiversity. Long separated from the ancient supercontinent Gondwana, most of Australia's plants and animals are unique and endemic, including the continent's frogs. Australian frogs comprise a remarkable ecological and morphological diversity categorized into a small number of distantly related radiations. We present a phylogenomic hypothesis based on an exon-capture dataset that spans the main clades of Australian myobatrachoid, pelodryadid hyloid, and microhylid frogs. Our time-calibrated phylogenomic-scale phylogeny identifies great disparity in the relative ages of these groups that vary from Gondwanan relics to recent immigrants from Asia and include arguably the continent's oldest living vertebrate radiation. This age stratification provides insight into the colonization of, and diversification on, the Australian continent through deep time, during periods of dramatic climatic and community changes. Contemporary Australian frog diversity highlights the adaptive capacity of anurans, particularly in response to heat and aridity, and explains why they are one of the continent's most visible faunas. [Anuran; adaptive radiation; Gondwana; phylogenetics].
Collapse
Affiliation(s)
- Ian G Brennan
- Division of Ecology & Evolution, The Australian National University, Canberra, ACT 2601, Australia
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32316, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Stephen C Donnellan
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| | - J Scott Keogh
- Division of Ecology & Evolution, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
4
|
Gofton AW, Popa-Baez A, Takano A, Soennichsen K, Michie M, Short M, Supriyono S, Pascoe J, Cusbert S, Mulley R. Characterisation and comparative genomics of three new Varanus-associated Borrelia spp. from Indonesia and Australia. Parasit Vectors 2023; 16:317. [PMID: 37670353 PMCID: PMC10481545 DOI: 10.1186/s13071-023-05937-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Borrelia are important disease-causing tick- and louse-borne spirochaetes than can infect a wide variety of vertebrates, including humans and reptiles. Reptile-associated (REP) Borrelia, once considered a peculiarity, are now recognised as a distinct and important evolutionary lineage, and are increasingly being discovered worldwide in association with novel hosts. Numerous novel Borrelia spp. associated with monitor lizards (Varanus spp.) have been recently identified throughout the Indo-Pacific region; however, there is a lack of genomic data on these Borrelia. METHODS We used metagenomic techniques to sequence almost complete genomes of novel Borrelia spp. from Varanus varius and Varanus giganteus from Australia, and used long- and short-read technologies to sequence the complete genomes of two strains of a novel Borrelia sp. previously isolated from ticks infesting Varanus salvator from Indonesia. We investigated intra- and interspecies genomic diversity, including plasmid diversity and relatedness, among Varanus-associated Borrelia and other available REP Borrelia and, based on 712 whole genome orthologues, produced the most complete phylogenetic analysis, to the best of our knowledge, of REP Borrelia to date. RESULTS The genomic architecture of Varanus-associated Borrelia spp. is similar to that of Borrelia spp. that cause relapsing fever (RF), and includes a highly conserved megaplasmid and numerous smaller linear and circular plasmids that lack structural consistency between species. Analysis of PF32 and PF57/62 plasmid partitioning genes indicated that REP Borrelia plasmids fall into at least six distinct plasmid families, some of which are related to previously defined Borrelia plasmid families, whereas the others appear to be unique. REP Borrelia contain immunogenic variable major proteins that are homologous to those found in Borrelia spp. that cause RF, although they are limited in copy number and variability and have low sequence identities to RF variable major proteins. Phylogenetic analyses based on single marker genes and 712 single copy orthologs also definitively demonstrated the monophyly of REP Borrelia as a unique lineage. CONCLUSIONS In this work we present four new genomes from three novel Borrelia, and thus double the number of REP Borrelia genomes publicly available. The genomic characterisation of these Borrelia clearly demonstrates their distinctiveness as species, and we propose the names Borrelia salvatorii, 'Candidatus Borrelia undatumii', and 'Candidatus Borrelia rubricentralis' for them.
Collapse
Affiliation(s)
- Alexander William Gofton
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
| | - Angel Popa-Baez
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
| | - Ai Takano
- Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kari Soennichsen
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Michelle Michie
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
| | - Makenna Short
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
| | - Supriyono Supriyono
- Department of Animal Diseases and Veterinary Health, Bogor Agricultural University, Bogor, Indonesia
| | - Jack Pascoe
- School of Agricultural and Ecosystem Sciences, University of Melbourne, Melbourne, Australia
| | - Sue Cusbert
- School of Science and Health, Western Sydney University, Penrith, Australia
| | - Robert Mulley
- School of Science and Health, Western Sydney University, Penrith, Australia
| |
Collapse
|
5
|
Umbrello LS, Cooper NK, Adams M, Travouillon KJ, Baker AM, Westerman M, Aplin KP. Hiding in plain sight: two new species of diminutive marsupial (Dasyuridae: Planigale) from the Pilbara, Australia. Zootaxa 2023; 5330:1-46. [PMID: 38220885 DOI: 10.11646/zootaxa.5330.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 01/16/2024]
Abstract
Many of Australias smaller marsupial species have been taxonomically described in just the past 50 years, and the Dasyuridae, a speciose family of carnivores, is known to harbour many cryptic taxa. Evidence from molecular studies is being increasingly utilised to help revise species boundaries and focus taxonomic efforts, and research over the past two decades has identified several undescribed genetic lineages within the dasyurid genus Planigale. Here, we describe two new species, Planigale kendricki sp. nov. (formerly known as Planigale 1) and P. tealei sp. nov. (formerly known as Planigale sp. Mt Tom Price). The two new species have broadly overlapping distributions in the Pilbara region of Western Australia. The new species are genetically distinct from each other and from all other members of the genus, at both mitochondrial and nuclear loci, and morphologically, in both external and craniodental characters. The new species are found in regional sympatry within the Pilbara but occupy different habitat types at local scales. This work makes a start at resolving the cryptic diversity within Planigale at a time when small mammals are continuing to decline throughout Australia.
Collapse
Affiliation(s)
- Linette S Umbrello
- School of Biology and Environmental Science; Queensland University of Technology; 2 George Street; Brisbane; QLD 4001; Australia; Collections and Research; Western Australian Museum; Locked Bag 49; Welshpool; WA 6986; Australia.
| | - Norah K Cooper
- Collections and Research; Western Australian Museum; Locked Bag 49; Welshpool; WA 6986; Australia.
| | - Mark Adams
- Department of Biological Sciences; University of Adelaide; Adelaide; SA 5000; Australia.; Evolutionary Biology Unit; South Australian Museum; Adelaide; SA 5000; Australia.
| | - Kenny J Travouillon
- Collections and Research; Western Australian Museum; Locked Bag 49; Welshpool; WA 6986; Australia.
| | - Andrew M Baker
- School of Biology and Environmental Science; Queensland University of Technology; 2 George Street; Brisbane; QLD 4001; Australia; Biodiversity and Geosciences Program; Queensland Museum; South Brisbane; QLD 4101; Australia.
| | - Mike Westerman
- Department of Environment and Genetics; La Trobe University; Bundoora; VIC 3086; Australia.
| | - Ken P Aplin
- Collections and Research; Western Australian Museum; Locked Bag 49; Welshpool; WA 6986; Australia; Australian Museum Research Institute; Australian Museum; 1 William Street; Sydney; NSW 2010; Australia.
| |
Collapse
|
6
|
Skeels A, Boschman LM, McFadden IR, Joyce EM, Hagen O, Jiménez Robles O, Bach W, Boussange V, Keggin T, Jetz W, Pellissier L. Paleoenvironments shaped the exchange of terrestrial vertebrates across Wallace's Line. Science 2023; 381:86-92. [PMID: 37410831 DOI: 10.1126/science.adf7122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Faunal turnover in Indo-Australia across Wallace's Line is one of the most recognizable patterns in biogeography and has catalyzed debate about the role of evolutionary and geoclimatic history in biotic interchanges. Here, analysis of more than 20,000 vertebrate species with a model of geoclimate and biological diversification shows that broad precipitation tolerance and dispersal ability were key for exchange across the deep-time precipitation gradient spanning the region. Sundanian (Southeast Asian) lineages evolved in a climate similar to the humid "stepping stones" of Wallacea, facilitating colonization of the Sahulian (Australian) continental shelf. By contrast, Sahulian lineages predominantly evolved in drier conditions, hampering establishment in Sunda and shaping faunal distinctiveness. We demonstrate how the history of adaptation to past environmental conditions shapes asymmetrical colonization and global biogeographic structure.
Collapse
Affiliation(s)
- A Skeels
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
- Research School of Biology, Australian National University, Canberra 0200, Australia
| | - L M Boschman
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, Netherlands
| | - I R McFadden
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, Netherlands
| | - E M Joyce
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University of Munich, 80331 Munich, Germany
| | - O Hagen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - O Jiménez Robles
- Research School of Biology, Australian National University, Canberra 0200, Australia
- Institute of Biology, École Normale Supérieure, 75005 Paris, France
| | - W Bach
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - V Boussange
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - T Keggin
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - W Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT 06520, USA
| | - L Pellissier
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| |
Collapse
|
7
|
Esquerré D, Brennan IG, Donnellan S, Keogh JS. Evolutionary models demonstrate rapid and adaptive diversification of Australo-Papuan pythons. Biol Lett 2022; 18:20220360. [PMID: 36541096 PMCID: PMC9768648 DOI: 10.1098/rsbl.2022.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Lineages may diversify when they encounter available ecological niches. Adaptive divergence by ecological opportunity often appears to follow the invasion of a new environment with open ecological space. This evolutionary process is hypothesized to explain the explosive diversification of numerous Australian vertebrate groups following the collision of the Eurasian and Australian plates 25 Mya. One of these groups is the pythons, which demonstrate their greatest phenotypic and ecological diversity in Australo-Papua (Australia and New Guinea). Here, using an updated and near complete time-calibrated phylogenomic hypothesis of the group, we show that following invasion of this region, pythons experienced a sudden burst of speciation rates coupled with multiple instances of accelerated phenotypic evolution in head and body shape and body size. These results are consistent with adaptive radiation theory with an initial rapid niche-filling phase and later slow-down approaching niche saturation. We discuss these findings in the context of other Australo-Papuan adaptive radiations and the importance of incorporating adaptive diversification systems that are not extraordinarily species-rich but ecomorphologically diverse to understand how biodiversity is generated.
Collapse
Affiliation(s)
- Damien Esquerré
- Division of Ecology and Evolution, Research School of Biology, The Australian National University 0200, Canberra, ACT, Australia
| | - Ian G. Brennan
- Division of Ecology and Evolution, Research School of Biology, The Australian National University 0200, Canberra, ACT, Australia
| | - Stephen Donnellan
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| | - J. Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University 0200, Canberra, ACT, Australia
| |
Collapse
|
8
|
Pavón-Vázquez CJ, Esquerré D, Fitch AJ, Maryan B, Doughty P, Donnellan SC, Scott Keogh J. Between a rock and a dry place: phylogenomics, biogeography, and systematics of ridge-tailed monitors (Squamata: Varanidae: Varanus acanthurus complex). Mol Phylogenet Evol 2022; 173:107516. [DOI: 10.1016/j.ympev.2022.107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
|
9
|
Ramm T, Roycroft E. Digest: Drivers of diversification in Indo-Australian monitor lizards. Evolution 2022; 76:824-825. [PMID: 35165893 DOI: 10.1111/evo.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 01/21/2023]
Abstract
What factors drive diversification in species groups with wide distributions and high morphological disparity? Pavón-Vázquez et al. used an extensive morphological and phylogenetic dataset to investigate patterns of diversification in monitor lizards (Varanidae). They found contrasting drivers of speciation and morphological diversity across clades and regions, highlighting the importance of considering clade-specific biogeographic histories in broadly distributed taxa.
Collapse
Affiliation(s)
- Till Ramm
- Sciences Department, Museums Victoria, Carlton, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Emily Roycroft
- Sciences Department, Museums Victoria, Carlton, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australia
| |
Collapse
|