1
|
Robinson CD, Hale MD, Cox CL, John-Alder HB, Cox RM. Effects of Testosterone on Gene Expression Are Concordant between Sexes but Divergent across Species of Sceloporus Lizards. Am Nat 2024; 204:517-532. [PMID: 39486031 DOI: 10.1086/732200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractHormones mediate sexual dimorphism by regulating sex-specific patterns of gene expression, but it is unclear how much of this regulation involves sex-specific hormone levels versus sex-specific transcriptomic responses to the same hormonal signal. Moreover, transcriptomic responses to hormones can evolve, but the extent to which hormonal pleiotropy in gene regulation is conserved across closely related species is not well understood. We addressed these issues by elevating testosterone levels in juvenile females and males of three Sceloporus lizard species before sexual divergence in circulating testosterone and then characterizing transcriptomic responses in the liver. In each species, more genes were responsive to testosterone in males than in females, suggesting that early developmental processes prime sex-specific transcriptomic responses to testosterone later in life. However, overall transcriptomic responses to testosterone were concordant between sexes, with no genes exhibiting sex-by-treatment interactions. By contrast, hundreds of genes exhibited species-by-treatment interactions, particularly when comparing distantly related species with different patterns of sexual dimorphism, suggesting evolutionary lability in gene regulation by testosterone. Collectively, our results indicate that early organizational effects may lead to sex-specific differences in the magnitude, but not the direction, of transcriptomic responses to testosterone and that the hormone-genome interface accrues regulatory changes over evolutionary time.
Collapse
|
2
|
Sin SYW, Ke F, Chen G, Huang PY, Enbody ED, Karubian J, Webster MS, Edwards SV. Genetic Basis and Evolution of Structural Color Polymorphism in an Australian Songbird. Mol Biol Evol 2024; 41:msae046. [PMID: 38415852 PMCID: PMC10962638 DOI: 10.1093/molbev/msae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Island organisms often evolve phenotypes divergent from their mainland counterparts, providing a useful system for studying adaptation under differential selection. In the white-winged fairywren (Malurus leucopterus), subspecies on two islands have a black nuptial plumage whereas the subspecies on the Australian mainland has a blue nuptial plumage. The black subspecies have a feather nanostructure that could in principle produce a blue structural color, suggesting a blue ancestor. An earlier study proposed independent evolution of melanism on the islands based on the history of subspecies divergence. However, the genetic basis of melanism and the origin of color differentiation in this group are still unknown. Here, we used whole-genome resequencing to investigate the genetic basis of melanism by comparing the blue and black M. leucopterus subspecies to identify highly divergent genomic regions. We identified a well-known pigmentation gene ASIP and four candidate genes that may contribute to feather nanostructure development. Contrary to the prediction of convergent evolution of island melanism, we detected signatures of a selective sweep in genomic regions containing ASIP and SCUBE2 not in the black subspecies but in the blue subspecies, which possesses many derived SNPs in these regions, suggesting that the mainland subspecies has re-evolved a blue plumage from a black ancestor. This proposed re-evolution was likely driven by a preexisting female preference. Our findings provide new insight into the evolution of plumage coloration in island versus continental populations, and, importantly, we identify candidate genes that likely play roles in the development and evolution of feather structural coloration.
Collapse
Affiliation(s)
- Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fushi Ke
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Guoling Chen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Pei-Yu Huang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Erik D Enbody
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Michael S Webster
- Cornell Lab of Ornithology and Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Robinson CD, Hale MD, Wittman TN, Cox CL, John-Alder HB, Cox RM. Species differences in hormonally mediated gene expression underlie the evolutionary loss of sexually dimorphic coloration in Sceloporus lizards. J Hered 2023; 114:637-653. [PMID: 37498153 DOI: 10.1093/jhered/esad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Phenotypic sexual dimorphism often involves the hormonal regulation of sex-biased expression for underlying genes. However, it is generally unknown whether the evolution of hormonally mediated sexual dimorphism occurs through upstream changes in tissue sensitivity to hormone signals, downstream changes in responsiveness of target genes, or both. Here, we use comparative transcriptomics to explore these possibilities in 2 species of Sceloporus lizards exhibiting different patterns of sexual dichromatism. Sexually dimorphic S. undulatus develops blue and black ventral coloration in response to testosterone, while sexually monomorphic S. virgatus does not, despite exhibiting similar sex differences in circulating testosterone levels. We administered testosterone implants to juveniles of each species and used RNAseq to quantify gene expression in ventral skin. Transcriptome-wide responses to testosterone were stronger in S. undulatus than in S. virgatus, suggesting species differences in tissue sensitivity to this hormone signal. Species differences in the expression of genes for androgen metabolism and sex hormone-binding globulin were consistent with this idea, but expression of the androgen receptor gene was higher in S. virgatus, complicating this interpretation. Downstream of androgen signaling, we found clear species differences in hormonal responsiveness of genes related to melanin synthesis, which were upregulated by testosterone in S. undulatus, but not in S. virgatus. Collectively, our results indicate that hormonal regulation of melanin synthesis pathways contributes to the development of sexual dimorphism in S. undulatus, and that changes in the hormonal responsiveness of these genes in S. virgatus contribute to the evolutionary loss of ventral coloration.
Collapse
Affiliation(s)
| | - Matthew D Hale
- University of Virginia, Department of Biology, Charlottesville, VA, United States
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
| | - Tyler N Wittman
- University of Virginia, Department of Biology, Charlottesville, VA, United States
| | - Christian L Cox
- Florida International University, Department of Biological Sciences and Institute of Environment, Miami, FL, United States
| | - Henry B John-Alder
- Rutgers University, Department of Ecology, Evolution, and Natural Resources, New Brunswick, NJ, United States
| | - Robert M Cox
- University of Virginia, Department of Biology, Charlottesville, VA, United States
| |
Collapse
|
4
|
Anderson AP, Falk JJ. Cross-sexual Transfer Revisited. Integr Comp Biol 2023; 63:936-945. [PMID: 37147027 DOI: 10.1093/icb/icad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
In her influential book "Developmental Plasticity and Evolution," Mary Jane West-Eberhard introduced the concept of cross-sexual transfer, where traits expressed in one sex in an ancestral species become expressed in the other sex. Despite its potential ubiquity, we find that cross-sexual transfer has been under-studied and under-cited in the literature, with only a few experimental papers that have invoked the concept. Here, we aim to reintroduce cross-sexual transfer as a powerful framework for explaining sex variation and highlight its relevance in current studies on the evolution of sexual heteromorphism (different means or modes in trait values between the sexes). We discuss several exemplary studies of cross-sexual transfer that have been published in the past two decades, further building on West-Eberhard's extensive review. We emphasize two scenarios as potential avenues of study, within-sex polymorphic and sex-role reversed species, and discuss the evolutionary and adaptive implications. Lastly, we propose future questions to expand our understanding of cross-sexual transfer, from nonhormonal mechanisms to the identification of broad taxonomic patterns. As evolutionary biologists increasingly recognize the nonbinary and often continuous nature of sexual heteromorphism, the cross-sexual framework has important utility for generating novel insights and perspectives on the evolution of sexual phenotypes across diverse taxa.
Collapse
Affiliation(s)
| | - Jay Jinsing Falk
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
5
|
Anderson AP, Renn SCP. The Ancestral Modulation Hypothesis: Predicting Mechanistic Control of Sexually Heteromorphic Traits Using Evolutionary History. Am Nat 2023; 202:241-259. [PMID: 37606950 DOI: 10.1086/725438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractAcross the animal kingdom there are myriad forms within a sex across, and even within, species, rendering concepts of universal sex traits moot. The mechanisms that regulate the development of these trait differences are varied, although in vertebrates, common pathways involve gonadal steroid hormones. Gonadal steroids are often associated with heteromorphic trait development, where the steroid found at higher circulating levels is the one involved in trait development for that sex. Occasionally, there are situations in which a gonadal steroid associated with heteromorphic trait development in one sex is involved in heteromorphic or monomorphic trait development in another sex. We propose a verbal hypothesis, the ancestral modulation hypothesis (AMH), that uses the evolutionary history of the trait-particularly which sex ancestrally possessed higher trait values-to predict the regulatory pathway that governs trait expression. The AMH predicts that the genomic architecture appears first to resolve sexual conflict in an initially monomorphic trait. This architecture takes advantage of existing sex-biased signals, the gonadal steroid pathway, to generate trait heteromorphism. In cases where the other sex experiences evolutionary pressure for the new phenotype, that sex will co-opt the existing architecture by altering its signal to match that of the original high-trait-value sex. We describe the integrated levels needed to produce this pattern and what the expected outcomes will be given the evolutionary history of the trait. We present this framework as a testable hypothesis for the scientific community to investigate and to create further engagement and analysis of both ultimate and proximate approaches to sexual heteromorphism.
Collapse
|
6
|
Macedo G, Marcondes RS, Biondo C, Bravo GA, Derryberry EP. The evolution of sex similarities in social signals: Climatic seasonality is associated with lower sexual dimorphism and greater elaboration of female and male signals in antbirds (Thamnophilidae). Evolution 2022; 76:2893-2915. [PMID: 36237126 DOI: 10.1111/evo.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/22/2023]
Abstract
Selection on signals that mediate social competition varies with resource availability. Climate regulates resource availability, which may affect the strength of competition and selection on signals. Traditionally, this meant that more seasonal, colder, or dryer-overall harsher-environments should favor the elaboration of male signals under stronger male-male competition, increasing sexual dimorphism. However, females also use signals to compete; thus, harsher environments could strengthen competition and favor elaboration of signals in both sexes, decreasing sexual dimorphism. Alternatively, harsher environments could decrease sexual dimorphism due to scarcer resources to invest in signal elaboration in both sexes. We evaluated these contrasting hypotheses in antbirds, a family of Neotropical passerines that varies in female and male signals and occurs across diverse climatic regimes. We tested the association of sexual dimorphism of plumage coloration and songs with temperature, precipitation, and their seasonality. We found that greater seasonality is associated with lower sexual dimorphism in plumage coloration and greater elaboration of visual signals in both sexes, but not acoustic signals. Our results suggest that greater seasonality may be associated with convergent elaboration of female and male visual signals, highlighting the role of signals of both sexes in the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Gabriel Macedo
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), São Bernardo do Campo, SP, 09606-045, Brazil.,Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Rafael S Marcondes
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, 70803.,Current Address: Department of Biosciences, Rice University, Houston, Texas, 77005
| | - Cibele Biondo
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), São Bernardo do Campo, SP, 09606-045, Brazil
| | - Gustavo A Bravo
- Sección de Ornitología, Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Villa de Leyva, 154001, Colombia.,Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, 02138
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
7
|
Nolazco S, Delhey K, Fan M, Hall ML, Kingma SA, Roast MJ, Teunissen N, Peters A. Which plumage patches provide information about condition and success in a female fairy-wren? Behav Ecol 2022. [DOI: 10.1093/beheco/arac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract
Recent evidence suggests that female ornaments can commonly act as signals. However, how signaling functions might be affected by the tendency for reduced ornament elaboration in relation to males is less well-understood. We address this in mutually ornamented purple-crowned fairy-wrens. We investigated putatively ornamental (tail, ear coverts, crown) and non-ornamental (throat, back) plumage patches in females and compared our findings to previous studies in males. Both sexes have brown backs, buff-white throats, and turquoise-blue tails (bluer in males), while ear coverts are rufous in females and black in males. Both sexes also have a seasonal crown (slate-gray in females, black-and-purple in males). Dominant (breeder) females expressed more complete and grayer (more ornamented) crowns, although variation in coloration should not be discriminable by individuals. Unexpectedly, subordinates showed more colorful (saturated) rufous ear coverts, which should be discriminable. Condition-dependence was only evident for crown completeness (% slate-gray cover). Females with more reddish-brown backs were more reproductively successful. Variation in plumage characteristics did not explain differential allocation by mates or chances of gaining dominance. Our outcomes were not entirely consistent with findings in males. The most notable disparity was for the crown, a signal used in male-male competition that in females seems to be expressed as an incomplete version of the male crown that is not associated with fitness benefits. Our study shows that in a species, multiple traits can vary in their information content and that female ornaments can sometimes be less informative than in males, even those that are produced seasonally.
Collapse
Affiliation(s)
- Sergio Nolazco
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
| | - Kaspar Delhey
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
- Max Planck Institute for Ornithology , Seewiesen , Germany
| | - Marie Fan
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
| | - Michelle L Hall
- Max Planck Institute for Ornithology , Seewiesen , Germany
- School of Biological Sciences, University of Western Australia , 35 Stirling Highway, Perth, Western Australia 6009 , Australia
| | - Sjouke A Kingma
- Max Planck Institute for Ornithology , Seewiesen , Germany
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research , De Elst 1, 6708 WD Wageningen , The Netherlands
| | - Michael J Roast
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
| | - Niki Teunissen
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
| | - Anne Peters
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
- Max Planck Institute for Ornithology , Seewiesen , Germany
| |
Collapse
|
8
|
Enbody ED, Sin SYW, Boersma J, Edwards SV, Ketaloya S, Schwabl H, Webster MS, Karubian J. The evolutionary history and mechanistic basis of female ornamentation in a tropical songbird. Evolution 2022; 76:1720-1736. [PMID: 35748580 PMCID: PMC9543242 DOI: 10.1111/evo.14545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/22/2023]
Abstract
Ornamentation, such as the showy plumage of birds, is widespread among female vertebrates, yet the evolutionary pressures shaping female ornamentation remain uncertain. In part this is due to a poor understanding of the mechanistic route to ornamentation in females. To address this issue, we evaluated the evolutionary history of ornament expression in a tropical passerine bird, the White-shouldered Fairywren, whose females, but not males, strongly vary between populations in occurrence of ornamented black-and-white plumage. We first use phylogenomic analysis to demonstrate that female ornamentation is derived and that female ornamentation evolves independently of changes in male plumage. We then use exogenous testosterone in a field experiment to induce partial ornamentation in naturally unornamented females. By sequencing the transcriptome of experimentally induced ornamented and natural feathers, we identify genes expressed during ornament production and evaluate the degree to which female ornamentation in this system is associated with elevated testosterone, as is common in males. We reveal that some ornamentation in females is linked to testosterone and that sexes differ in ornament-linked gene expression. Lastly, using genomic outlier analysis we identify a candidate melanogenesis gene that lies in a region of high genomic divergence among populations that is also differentially expressed in feather follicles of different female plumages. Taken together, these findings are consistent with sex-specific selection favoring the evolution of female ornaments and demonstrate a key role for testosterone in generating population divergence in female ornamentation through gene regulation. More broadly, our work highlights similarities and differences in how ornamentation evolves in the sexes.
Collapse
Affiliation(s)
- Erik D. Enbody
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisiana70118,Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSE‐75123Sweden
| | - Simon Y. W. Sin
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusetts02138,School of Biological SciencesThe University of Hong KongPok Fu Lam RoadHong Kong
| | - Jordan Boersma
- School of Biological Sciences, Center for Reproductive BiologyWashington State UniversityPullmanWashington99164,Department of Neurobiology and BehaviorCornell UniversityIthacaNew York14853,Macaulay LibraryCornell Lab of OrnithologyIthacaNew York14850
| | - Scott V. Edwards
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusetts02138
| | - Serena Ketaloya
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisiana70118
| | - Hubert Schwabl
- School of Biological Sciences, Center for Reproductive BiologyWashington State UniversityPullmanWashington99164
| | - Michael S. Webster
- Department of Neurobiology and BehaviorCornell UniversityIthacaNew York14853,Macaulay LibraryCornell Lab of OrnithologyIthacaNew York14850
| | - Jordan Karubian
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisiana70118
| |
Collapse
|