1
|
Feng D, Fang Z, Zhang P. The melanin inhibitory effect of plants and phytochemicals: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154449. [PMID: 36126406 DOI: 10.1016/j.phymed.2022.154449] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Melanin plays an important role in protecting human skin, while excessive synthesis of melanin can cause abnormal pigmentation and induce skin diseases. Long-term use of commercial whitening agents in managing skin melanin such as kojic acid and arbutin can lead to some negative effects such as dermatitis and liver cancer. Although past studies have researched the melanin inhibitory effect of plant extracts, the effective dose and mechanisms are not well summarized and discussed. This study aims to explore the melanin inhibitory property of phytochemicals and tries to answer the following research questions: (1) Which plant extracts and phytochemicals could inhibit melanin biosynthesis in the skin? what is the mechanism of action? (2) Have human trials been conducted to confirm their melanin inhibitory effect? (3) If not, which phytochemicals are recommended for further human trials? This article would provide information for future research to develop natural and safe skin whitening products. METHODS A preferred reporting items for systematic reviews and meta-analyses (PRISMA) systematic review method and OHAT risk-of-bias tool were applied to screen literature from 2000 to 2021 and 50 research articles met the selection criteria. RESULTS Flavonoids, phenolic acids, stilbenes and terpenes are main classes of phytochemicals responsible for the melanin inhibitory effects. The in vitro/in vivo melanin inhibitory effects of these plant extracts/phytochemicals are achieved via three main mechanisms: (1) the ethyl acetate extract of Oryza sativa Indica cv., and phytochemicals such as galangin and origanoside could manage melanin biosynthesis through competitive inhibition, non-competitive inhibition or mixed-type inhibition of tyrosinase; (2) phytochemicals such as ginsenoside F1, ginsenoside Rb1 and 4‑hydroxy-3-methoxycinnamaldehyde could inhibit melanogenesis through down-regulating microphthalmia-related transcription factor (MITF) gene expression via different signalling pathways; (3) the ethanolic extracts of Dimorphandra gardneriana, Dimorphandra gardneriana, Lippia microphylla and Schinus terebinthifolius have a good ultraviolet absorption ability and high sun protective factor (SPF) values, thereby inhibiting UV induced melanogenesis in the skin. CONCLUSION Although many plant extracts and phytochemicals have been found to inhibit melanin production, most of the results were only proved in cellular and/or animal models. Only the ethyl acetate extract of Oryza sativa Indica cv. panicle, and ginsenoside F1 were proved effective in human trials. Animal studies proved the effectiveness of galangin, origanoside, ginsenoside Rb1 and 4‑hydroxy-3-methoxycinnamaldehyde with effective dose below 3 mM, and therefore recommended for future human trial. In addition, cellular studies have demonstrated the effectiveness of oxyresveratrol, mulberroside A, kurarinol, kuraridinol, plumbagin, (6aR,11aR)-3,8-dihydroxy-9‑methoxy pterocarpan, ginsenoside Rh4, cardamonin, nobiletin, curcumin, β-mangostin and emodin in inhibiting melanin synthesis at low concentrations of 20 µM and proved the low SPF values of Dimorphandra gardneriana, Dimorphandra gardneriana, Lippia microphylla and Schinus terebinthifolius extracts, and therefore recommended for further animal and human trials.
Collapse
Affiliation(s)
- Danni Feng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Tiede S, Hundt JE, Paus R. UDP-GlcNAc-1-Phosphotransferase Is a Clinically Important Regulator of Human and Mouse Hair Pigmentation. J Invest Dermatol 2021; 141:2957-2965.e5. [PMID: 34116066 DOI: 10.1016/j.jid.2021.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022]
Abstract
UDP-GlcNAc-1-phosphotransferase, a product of two separate genes (GNPTAB, GNPTG), is essential for the sorting and transportation of lysosomal enzymes to lysosomes. GNPTAB gene defects cause extracellular missorting of lysosomal enzymes resulting in lysosomal storage diseases, namely mucolipidosis type II and mucolipidosis type III alpha/beta, which is associated with hair discoloration. Yet, the physiological functions of GNPTAB in the control of hair follicle (HF) pigmentation remain unknown. To elucidate these, we have silenced GNPTAB in organ-cultured human HFs as a human ex vivo model for mucolipidosis type II. GNPTAB silencing profoundly inhibited intrafollicular melanin production, the correct sorting of melanosomes, tyrosinase activity, and HMB45 expression in the HF pigmentary unit and altered HF melanocyte morphology in situ. In isolated primary human HF melanocytes, GNPTAB knockdown significantly reduced melanogenesis, tyrosinase activity, and correct tyrosinase protein sorting as well as POMC expression and caused the expected lysosomal enzyme missorting in vitro. Moreover, transgenic mice overexpressing an inserted missense mutation corresponding to that seen in human mucolipidosis type II and mucolipidosis type III alpha/beta showed significantly reduced HF pigmentation, thus corroborating the in vivo relevance of our ex vivo and in vitro findings in the human system. This identifies GNPTAB as a clinically important enzymatic control of human HF pigmentation, likely by directly controlling tyrosinase sorting and POMC transcription in HF melanocytes.
Collapse
Affiliation(s)
- Stephan Tiede
- International Center for Lysosomal Disorders, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; University Children's Research at Kinder-UKE, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom; The NIHR Biomedical Research Centre, Manchester, United Kingdom; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA; Monasterium Laboratory, Münster, Germany.
| |
Collapse
|
3
|
Inhibitory effect of CADI on melanin transfer in the B16F10-HaCAT cells co-culture system and anti-melanogenesis of CNCE in zebrafish. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Tobin DJ. How to design robust assays for human skin pigmentation: A "Tortoise and Hare challenge". Exp Dermatol 2021; 30:624-627. [PMID: 33899266 DOI: 10.1111/exd.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Desmond J Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Surakunprapha P, Winaikosol K, Chowchuen B, Punyavong P, Jenwitheesuk K, Jenwitheesuk K. A Prospective Randomized Double-blind study of silicone gel plus Herbal Extracts Versus Placebo in Pre-sternal hypertrophic scar prevention and amelioration. Heliyon 2020; 6:e03883. [PMID: 32405550 PMCID: PMC7210591 DOI: 10.1016/j.heliyon.2020.e03883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 04/27/2020] [Indexed: 11/24/2022] Open
Abstract
Objective Post-surgical hypertrophic scar is more frequently reported in Asians. Many modalities can treat scars but there have not been any publications to define the efficacy of silicone gel plus herbal extracts for scar prevention or amelioration. Design 48 patients, who underwent median sternotomy were randomized and double-blinded to 2 groups to use topical silicone gel plus herbal extract gel or placebo for 6 months. Patients were treated either with topical silicone gel plus herbal extract gel or control using only placebo for 6 months. The scars were observed by experienced plastic surgeons using the Vancouver scar scale. Setting A single tertiary care center at Khon Kaen University. Paticipants 48 patients who underwent median sternotomy were enrolled in this study. All patients were aged over 18 years. All the wounds were sutured with polyglycolic 4/0 subcuticular suture material and did not receive other scar management before participating in this study. Intervention The silicone gel plus herbal extract gel (Bangkok Botanica, Bangkok, Thailand) in semi-liquid form was formulated from 15% Herbal extract (Allium Cepa extract, Centella Asiatica extract, Aloe Vera extract and Paper Mulberry extract), 50% polydemethysiloxane, 30% cyclopentasiloxane and 5% silica. The placebo gel was a composite of water, acrylate, C10-30 alkyl acrylate cross-polymer, polysorbate 20 and fragrance that was similar in color and consistency as that of the active gel and packed in the similar sealed packages. Main outcome measures The scar was assessed using the Vancouver scar scale to determine pigmentation, vascularity, pliability and height. Results the study showed the silicone gel plus herbal extract gel could improve scar amelioration in height (p = 0.005) and pliability (p < 0.001) when compared to the placebo. The vascularity and pigmentation showed improvement using silicone gel plus herbal extracts but the improvement was not statistically significant. Conclusion The silicone gel plus herbal extracts gel was effective for scar improvement in median sternotomy wounds.
Collapse
Affiliation(s)
- Palakorn Surakunprapha
- Plastic & Reconstructive Unit, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kengkart Winaikosol
- Plastic & Reconstructive Unit, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Bowornsilp Chowchuen
- Plastic & Reconstructive Unit, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Puttama Punyavong
- Plastic & Reconstructive Unit, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kriangsak Jenwitheesuk
- General Surgery Unit, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kamonwan Jenwitheesuk
- Plastic & Reconstructive Unit, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
6
|
Zaidi KU, Ali SA, Ali AS. Purified Mushroom Tyrosinase Induced Melanogenic Protein Expression in B16F10 Melanocytes: A Quantitative Densitometric Analysis. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2018. [PMID: 29541257 PMCID: PMC5842399 DOI: 10.2174/1874104501812010036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Human skin exists in a wide range of different colors and gradations, ranging from white to brown to black. This is due to the presence of a chemically inert and stable pigment known as melanin, which is produced deep inside the skin but is displayed as a mosaic at the surface of the body. Methods & Materials: In mammalian melanocytes, melanosome is a highly specialized organelle where melanin is synthesized. Melanin synthesis is controlled by tyrosinase, the vital enzyme in melanogenic pathway. The present investigation is based on the effect of purified tyrosinase of Agaricus bisporus on B16F10 melanocytes for melanogenic protein expression. Results: After the treatment of purified tyrosinase B16F10 melanocytes did not show any cytotoxic effect. Melanin content in B16F10 melanocytes was increased by purified tyrosinase in a dose-dependent manner. Quantitative western blot analysis revealed that cellular tyrosinase intensity was enhanced after treatment with purified tyrosinase for 48 hours, where the band intensity had a steady increase in the absorption of purified tyrosinase in B16F10 cells. The density analysis described increased absorption for 2 to 5 bands as 2.7, 3.7, 6.7 and 8.6% respectively. The bands in the comparative analysis of western blot were between the Rf value range (0.40-0.57) with maximum absorption of 3000 intensity curve at 32μg/mL, rather than higher concentration 64μg/mL, showing a decrease in the absorption. Conclusion: It is presumed that purified tyrosinase can be used as contestants for the treatment of vitiligous skin conditions.
Collapse
Affiliation(s)
- Kamal U Zaidi
- Biotechnology Pharmacology Laboratory, Centre for Scientific Research & Development, People's University Bhopal-462037, Bhopal, India
| | - Sharique A Ali
- Department of Zoology & Biotechnology, Saifia College of Science, Bhopal-462001, India
| | - Ayesha S Ali
- Department of Zoology & Biotechnology, Saifia College of Science, Bhopal-462001, India
| |
Collapse
|
7
|
Joly-Tonetti N, Wibawa JID, Bell M, Tobin D. Melanin fate in the human epidermis: a reassessment of how best to detect and analyse histologically. Exp Dermatol 2018; 25:501-4. [PMID: 26998907 DOI: 10.1111/exd.13016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 12/27/2022]
Abstract
Melanin is the predominant pigment responsible for skin colour and is synthesized by the melanocyte in the basal layer of the epidermis and then transferred to surrounding keratinocytes. Despite its optical properties, melanin is barely detectable in unstained sections of human epidermis. However, identification and localization of melanin is of importance for the study of skin pigmentation in health and disease. Current methods for the histologic quantification of melanin are suboptimal and are associated with significant risk of misinterpretation. The aim of this study was to reassess the existing literature and to develop a more effective histological method of melanin quantification in human skin. Moreover, we confirm that Warthin-Starry (WS) stain provides a much more sensitive and more specific melanin detection method than the commonplace Fontana-Masson (FM) stain. For example, WS staining sensitivity allowed the visualization of melanin even in very pale Caucasian skin that was missed by FM or Von Kossa (VK) stains. From our reassessment of the histology-related literature, we conclude that so-called melanin dust is most likely an artifact of discoloration due to non-specific silver deposition in the stratum corneum. Unlike FM and VK, WS was not associated with this non-specific stratum corneum darkening, misinterpreted previously as 'degraded' melanin. Finally, WS melanin particle counts were largely similar to previously reported manual counts by transmission electron microscopy, in contrast to both FM and VK. Together these findings allow us to propose a new histology/Image J-informed method for the accurate and precise quantification of epidermal melanin in skin.
Collapse
Affiliation(s)
- Nicolas Joly-Tonetti
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | - Mike Bell
- Walgreens Boots Alliance, Nottingham, UK
| | - Desmond Tobin
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
8
|
Singh SK, Baker R, Sikkink SK, Nizard C, Schnebert S, Kurfurst R, Tobin DJ. E-cadherin mediates ultraviolet radiation- and calcium-induced melanin transfer in human skin cells. Exp Dermatol 2017. [PMID: 28636748 DOI: 10.1111/exd.13395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skin pigmentation is directed by epidermal melanin units, characterized by long-lived and dendritic epidermal melanocytes (MC) that interact with viable keratinocytes (KC) to contribute melanin to the epidermis. Previously, we reported that MC:KC contact is required for melanosome transfer that can be enhanced by filopodi, and by UVR/UVA irradiation, which can upregulate melanosome transfer via Myosin X-mediated control of MC filopodia. Both MC and KC express Ca2+ -dependent E-cadherins. These homophilic adhesion contacts induce transient increases in intra-KC Ca2+ , while ultraviolet radiation (UVR) raises intra-MC Ca2+ via calcium-selective ORAI1 ion channels; both are associated with regulating melanogenesis. However, how Ca2+ triggers melanin transfer remains unclear. Here we evaluated the role of E-cadherin in UVR-mediated melanin transfer in human skin cells. MC and KC in human epidermis variably express filopodia-associated E-cadherin, Cdc42, VASP and β-catenin, all of which were upregulated by UVR in human MC in vitro. Knockdown of E-cadherin revealed that this cadherin is essential for UVR-induced MC filopodia formation and melanin transfer. Moreover, Ca2+ induced a dose-dependent increase in filopodia formation and melanin transfer, as well as increased β-catenin, Cdc42, Myosin X and E-cadherin expression in these skin cells. Together, these data suggest that filopodial proteins and E-cadherin, which are upregulated by intracellular (UVR-stimulated) and extracellular Ca2+ availability, are required for filopodia formation and melanin transfer. This may open new avenues to explore how Ca2+ signalling influences human pigmentation.
Collapse
Affiliation(s)
- Suman K Singh
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Richard Baker
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Stephen K Sikkink
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | | | | | - Desmond J Tobin
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
9
|
Lee JH, Chen H, Kolev V, Aull KH, Jung I, Wang J, Miyamoto S, Hosoi J, Mandinova A, Fisher DE. High-throughput, high-content screening for novel pigmentation regulators using a keratinocyte/melanocyte co-culture system. Exp Dermatol 2014; 23:125-9. [PMID: 24438532 DOI: 10.1111/exd.12322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 01/06/2023]
Abstract
Skin pigmentation is a complex process including melanogenesis within melanocytes and melanin transfer to the keratinocytes. To develop a comprehensive screening method for novel pigmentation regulators, we used immortalized melanocytes and keratinocytes in co-culture to screen large numbers of compounds. High-throughput screening plates were subjected to digital automated microscopy to quantify the pigmentation via brightfield microscopy. Compounds with pigment suppression were secondarily tested for their effects on expression of microphthalmia transcription factor (MITF) and several pigment regulatory genes, and further validated in terms of non-toxicity to keratinocytes/melanocytes and dose-dependent activity. The results demonstrate a high-throughput, high-content screening approach, which is applicable to the analysis of large chemical libraries using a co-culture system. We identified candidate pigmentation inhibitors from 4000 screened compounds including zoxazolamine, 3-methoxycatechol and alpha-mangostin, which were also shown to modulate expression of MITF and several key pigmentation factors and are worthy of further evaluation for potential translation to clinical use.
Collapse
Affiliation(s)
- Ju Hee Lee
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|