1
|
Engelen Y, Demuynck R, Ramon J, Breckpot K, De Smedt S, Lajoinie GPR, Braeckmans K, Krysko DV, Lentacker I. Immunogenic cell death as interplay between physical anticancer modalities and immunotherapy. J Control Release 2025:113721. [PMID: 40368187 DOI: 10.1016/j.jconrel.2025.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Current cancer treatment strategies in practice nowadays often face limitations in effectiveness due to factors such as resistance, recurrence, or suboptimal outcomes. Traditional approaches like chemotherapy often come with severe systemic side effects due to their non-specific action, prompting the development of more targeted therapies. Among these, physical ablation techniques such as radiotherapy (RT) and focused ultrasound (FUS) have gained attention for their ability to precisely target malignant tissues, reduce physical and mental stress for the patients, and minimize recovery time. These therapies also aim to stimulate the immune system through a process referred to as immunogenic cell death (ICD), enhancing the body's ability to fight cancer, explaining abscopal effects. RT has been the most established of the abovementioned techniques for decades, and will not be included in the review. While initially focused on complete tumor ablation, these techniques are now shifting towards milder, more controlled applications that induce ICD without extensive tissue damage. This review explores how physical ablation therapies can harness ICD to boost anticancer immunity, emphasizing their potential to complement immunotherapies and improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Y Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - R Demuynck
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - J Ramon
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium
| | - K Breckpot
- Laboratory for Molecular and Cellular Therapy, Translational Oncology Research Center, Department of Biomedical Sciences, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - S De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - G P R Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - K Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium
| | - D V Krysko
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - I Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Ben Abdallah H, Iversen L, Johansen C. The Differential Roles of HSP90 Isoforms in Skin Inflammation: Anti-Inflammatory Potential of TRAP1 Inhibition. J Invest Dermatol 2025:S0022-202X(25)00110-1. [PMID: 39978584 DOI: 10.1016/j.jid.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
HSP90, a molecular chaperone, has been identified as a drug target in inflammatory skin diseases. However, 4 different HSP90 isoforms (HSP90α, HSP90β, GRP94, and TRAP1) exist. Therefore, this study aimed to evaluate the functional role of the HSP90 isoforms in skin inflammation. Selective knockdown of the HSP90 isoforms revealed different inflammatory effects in stimulated keratinocytes. TRAP1 knockdown significantly downregulated the expression of the measured inflammatory genes (IL1B, IL6, IL17C, IL23A, IL19, IL36G, CXCL8, CCL5, CCL17, CCL20). Selective and combined knockdown of HSP90α and HSP90β showed a trend toward increased inflammatory activity. Selective GRP94 knockdown and combined knockdown of the organelle-specific isoforms (GRP94 + TRAP1) or all 4 isoforms resulted in inconsistent effects. In addition, a selective TRAP1 inhibitor (gamitrinib) suppressed the inflammatory gene expression in keratinocytes and fibroblasts (IL17C, IL23A, IL36G) and in hidradenitis suppurativa skin cultured ex vivo (IL1B, IL6, CXCL8, IL17A, IL36G). In conclusion, selective and simultaneous knockdown of the HSP90 isoforms mediated different inflammatory effects, revealing that the HSP90 isoforms have distinct roles in skin inflammation. In addition, we discovered that inhibition of TRAP1 exerted consistent anti-inflammatory effects, suggesting that TRAP1 inhibitors may represent a topical therapeutic strategy for inflammatory skin diseases.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark.
| | - Lars Iversen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark; MC2 Therapeutics A/S, Hørsholm, Denmark
| | - Claus Johansen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Fan X, Sun L, Qin Y, Liu Y, Wu S, Du L. The Role of HSP90 Molecular Chaperones in Depression: Potential Mechanisms. Mol Neurobiol 2025; 62:708-717. [PMID: 38896156 DOI: 10.1007/s12035-024-04284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Major depressive disorder (MDD) is characterized by high rates of disability and death and has become a public health problem that threatens human life and health worldwide. HPA axis disorder and neuroinflammation are two common biological abnormalities in MDD patients. Hsp90 is an important molecular chaperone that is widely distributed in the organism. Hsp90 binds to the co-chaperone and goes through a molecular chaperone cycle to complete its regulation of the client protein. Numerous studies have demonstrated that Hsp90 regulates how the HPA axis reacts to stress and how GR, the HPA axis' responsive substrate, matures. In addition, Hsp90 exhibits pro-inflammatory effects that are closely related to neuroinflammation in MDD. Currently, Hsp90 inhibitors have made some progress in the treatment of a variety of human diseases, but they still need to be improved. Further insight into the role of Hsp90 in MDD provides new ideas for the development of new antidepressant drugs targeting Hsp90.
Collapse
Affiliation(s)
- Xuyuan Fan
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Lei Sun
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Ye Qin
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yuan Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Shusheng Wu
- Department of the Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| |
Collapse
|
4
|
Sitko K, Starke M, Tukaj S. Heat shock protein 90 (Hsp90) inhibitor STA-9090 (Ganetespib) ameliorates inflammation in a mouse model of atopic dermatitis. Cell Stress Chaperones 2023; 28:935-942. [PMID: 37851180 PMCID: PMC10746637 DOI: 10.1007/s12192-023-01387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Molecular chaperones belonging to the heat shock protein 90 (Hsp90) family are implicated in inflammatory processes and described as potential novel therapeutic targets in autoimmune/inflammatory skin diseases. While the pathological role of circulating Hsp90 has been recently proposed in patients with atopic dermatitis (AD), a chronic inflammatory skin disease characterized by intense itching and recurrent skin lesions, studies aimed at investigating the role of Hsp90 as a potential target of AD therapy have not yet been conducted. Here, the effects of the Hsp90 blocker STA-9090 (Ganetespib) applied systemically or topically were determined in an experimental mouse model of dinitrochlorobenzene (DNCB)-induced AD. Intraperitoneal administration of STA-9090 ameliorated clinical disease severity, histological epidermal thickness, and dermal leukocyte infiltration in AD mice which was associated with reducing the scratching behavior in DNCB-treated animals. Additionally, topically applied STA-9090 led to lowered disease activity in AD mice, reduced serum levels of IgE, and up-regulated filaggrin expression in lesional skin samples. Our observations suggest that Hsp90 may be a promising therapeutic target in atopic dermatitis and potentially other inflammatory or autoimmune dermatoses.
Collapse
Affiliation(s)
- Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Starke
- Department of Plant Cytology and Embryology Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
5
|
Ben Abdallah H, Seeler S, Bregnhøj A, Ghatnekar G, Kristensen LS, Iversen L, Johansen C. Heat shock protein 90 inhibitor RGRN-305 potently attenuates skin inflammation. Front Immunol 2023; 14:1128897. [PMID: 36825010 PMCID: PMC9941631 DOI: 10.3389/fimmu.2023.1128897] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Chronic inflammatory skin diseases may have a profound negative impact on the quality of life. Current treatment options may be inadequate, offering an unsatisfactory response or side effects. Therefore, ongoing efforts exist to identify novel effective and safe treatments. Heat shock protein (HSP) 90 is a chaperone that promotes the activity of a wide range of client proteins including key proinflammatory molecules involved in aberrant inflammation. Recently, a proof-of-concept clinical trial of 13 patients suggested that RGRN-305 (an HSP90 inhibitor) may be an oral treatment for psoriasis. However, HSP90 inhibition may be a novel therapeutic approach extending beyond psoriasis to include multiple immune-mediated inflammatory skin diseases. Methods This study aimed to investigate (i) the anti-inflammatory effects and mechanisms of HSP90 inhibition and (ii) the feasibility of topical RGRN-305 administration (new route of administration) in models of inflammation elicited by 12-O-tetradecanoylphorbol-13-acetate (TPA) in primary human keratinocytes and mice (irritative dermatitis murine model). Results/Discussion In primary human keratinocytes stimulated with TPA, a Nanostring® nCounter gene expression assay demonstrated that HSP90 inhibition with RGRN-305 suppressed many proinflammatory genes. Furthermore, when measured by quantitative real-time polymerase chain reaction (RT-qPCR), RGRN-305 significantly reduced the gene expression of TNF, IL1B, IL6 and CXCL8. We next demonstrated that topical RGRN-305 application significantly ameliorated TPA-induced skin inflammation in mice. The increase in ear thickness (a marker of inflammation) was significantly reduced (up to 89% inhibition). In accordance, RT-qPCR of the ear tissue demonstrated that RGRN-305 robustly reduced the gene expression of proinflammatory markers (Tnf, Il1b, Il6, Il17A and Defb4). Moreover, RNA sequencing revealed that RGRN-305 mitigated TPA-induced alterations in gene expression and suppressed genes implicated in inflammation. Lastly, we discovered that the anti-inflammatory effects were mediated, at least partly, by suppressing the activity of NF-κB, ERK1/2, p38 MAPK and c-Jun signaling pathways, which are consistent with previous findings in other experimental models beyond skin inflammation. In summary, HSP90 inhibition robustly suppressed TPA-induced inflammation by targeting key proinflammatory cytokines and signaling pathways. Our findings suggest that HSP90 inhibition may be a novel mechanism of action for treating immune-mediated skin disease beyond psoriasis, and it may be a topical treatment option.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark,*Correspondence: Hakim Ben Abdallah,
| | - Sabine Seeler
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Bregnhøj
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Lars Iversen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Tešanović Perković D, Bukvić Mokos Z, Marinović B. Epidermolysis Bullosa Acquisita-Current and Emerging Treatments. J Clin Med 2023; 12:jcm12031139. [PMID: 36769788 PMCID: PMC9917799 DOI: 10.3390/jcm12031139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is a rare chronic autoimmune subepidermal blistering disease of the skin and mucous membranes, usually beginning in adulthood. EBA is induced by autoantibodies to type VII collagen, a major component of anchoring fibrils in the dermal-epidermal junction (DEJ). The binding of autoantibodies to type-VII collagen subsequently leads to the detachment of the epidermis and the formation of mucocutaneous blisters. EBA has two major clinical subtypes: the mechanobullous and inflammatory variants. The classic mechanobullous variant presentation consists of skin fragility, bullae with minimal clinical or histological inflammation, erosions in acral distribution that heal with scarring, and milia formation. The inflammatory variant is challenging to differentiate from other autoimmune bullous diseases, most commonly bullous pemphigoid (BP) but also mucous membrane pemphigoid (MMP), Brunsting-Perry pemphigoid, and linear IgA dermatosis. Due to its recalcitrance conventional treatment of epidermolysis bullosa acquisita is shown to be demanding. Here we discuss novel therapeutic strategies that have emerged and which could potentially improve the quality of life in patients with EBA.
Collapse
Affiliation(s)
| | - Zrinka Bukvić Mokos
- Department of Dermatology and Venereology, School of Medicine, University Hospital Centre Zagreb, University of Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Branka Marinović
- Department of Dermatology and Venereology, School of Medicine, University Hospital Centre Zagreb, University of Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
7
|
Kasperkiewicz M, Tukaj S. Targeting heat shock proteins 90 and 70: A promising remedy for both autoimmune bullous diseases and COVID-19. Front Immunol 2022; 13:1080786. [PMID: 36591225 PMCID: PMC9797581 DOI: 10.3389/fimmu.2022.1080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps), including Hsp90 and Hsp70, are intra- and extracellular molecules implicated in cellular homeostasis and immune processes and are induced by cell stress such as inflammation and infection. Autoimmune bullous disorders (AIBDs) and COVID-19 represent potentially life-threatening inflammatory and infectious diseases, respectively. A significant portion of AIBDs remain refractory to currently available immunosuppressive therapies, which may represent a risk factor for COVID-19, and suffer from treatment side-effects. Despite advances in vaccination, there is still a need to develop new therapeutic approaches targeting SARS-CoV-2, especially considering vaccine hesitancy, logistical distribution challenges, and breakthrough infections. In this mini review, we briefly summarize the role of targeting Hsp90/70 as a promising double-edged sword in the therapy of AIBDs and COVID-19.
Collapse
Affiliation(s)
- Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States,*Correspondence: Michael Kasperkiewicz,
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
8
|
Tukaj S, Sitko K. Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases. Biomolecules 2022; 12:biom12081153. [PMID: 36009046 PMCID: PMC9405624 DOI: 10.3390/biom12081153] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/22/2022] Open
Abstract
Over a hundred different autoimmune diseases have been described to date, which can affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the world's population suffers from chronic, noninfectious inflammatory skin diseases, the development of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but almost never leads to the development of permanent mechanisms of immune tolerance. In addition, current therapies and their long-term administration may cause serious adverse effects. Hence, safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90 and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
Collapse
|
9
|
Tukaj S, Mantej J, Sitko K, Bednarek M, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Evidence for a role of extracellular heat shock protein 70 in epidermolysis bullosa acquisita. Exp Dermatol 2021; 31:528-534. [PMID: 34741567 DOI: 10.1111/exd.14495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/11/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Heat shock protein 90 (Hsp90) and Hsp70 are chaperones implicated in different inflammatory disorders, given their property to impact innate and adaptive immune responses. Here, we determined the so far unknown role of extracellular Hsp70 in epidermolysis bullosa acquisita (EBA), an anti-type VII collagen autoantibody-mediated blistering dermatosis. The in vivo pathophysiological relevance of extracellular Hsp70 was demonstrated in an anti-type VII collagen antibody transfer-induced EBA mouse model in which elevated blood levels of this chaperone were recorded. We found that Hsp70-treated mice had a more intense clinical disease severity compared to controls that were paralleled by increased levels of cutaneous matrix metalloproteinase 9 and plasma hydrogen peroxide. The latter finding was confirmed in an independent reactive oxygen species release assay using EBA-specific immune complexes combined with recombinant Hsp70. Finally, cell culture experiments using human naive peripheral blood mononuclear cells (PBMC) revealed that extracellular Hsp70 stimulated the secretion of the T cell-derived pro-inflammatory cytokines IL-6 and IL-8. This work extends knowledge about the role of Hsps in autoimmune bullous diseases, suggesting that extracellular Hsp70 represents a pathophysiological factor and potential treatment target in EBA.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Marta Bednarek
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Sitko K, Bednarek M, Mantej J, Trzeciak M, Tukaj S. Circulating heat shock protein 90 (Hsp90) and autoantibodies to Hsp90 are increased in patients with atopic dermatitis. Cell Stress Chaperones 2021; 26:1001-1007. [PMID: 34532820 PMCID: PMC8578264 DOI: 10.1007/s12192-021-01238-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic inflammatory dermatoses characterized by persistent itching and recurrent eczematous lesions. While the primary events and key drivers of AD are topics of ongoing debate, cutaneous inflammation due to inappropriate IgE (auto)antibody-related immune reactions is frequently considered. Highly conserved and immunogenic heat shock protein 90 (Hsp90), a key intra- and extracellular chaperone, can activate the immune response driving the generation of circulating anti-Hsp90 autoantibodies that are found to be elevated in several autoimmune disorders. Here, for the first time, we observed that serum levels of Hsp90 and anti-Hsp90 IgE autoantibodies are significantly elevated (p < 0.0001) in AD patients (n = 29) when compared to age- and gender-matched healthy controls (n = 70). We revealed a positive correlation (0.378, p = 0.042) between serum levels of Hsp90 and the severity of AD assessed by Scoring Atopic Dermatitis (SCORAD). In addition, seropositivity for anti-Hsp90 IgE has been found in 48.27% of AD patients and in 2.85% of healthy controls. Although further studies on a larger group of patients are needed to confirm presented data, our results suggest that extracellular Hsp90 and autoantibodies to Hsp90 deserve attention in the study of the mechanisms that promote the development and/or maintenance of atopic dermatitis.
Collapse
Affiliation(s)
- Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marta Bednarek
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Magdalena Trzeciak
- Department of Dermatology, Venerology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
11
|
Eyermann CE, Haley JD, Alexandrova EM. The HSP-RTK-Akt axis mediates acquired resistance to Ganetespib in HER2-positive breast cancer. Cell Death Dis 2021; 12:126. [PMID: 33500390 PMCID: PMC7838268 DOI: 10.1038/s41419-021-03414-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide. Human epidermal growth factor receptor 2 (HER2)-positive subtype comprises 20% of sporadic breast cancers and is an aggressive disease. While targeted therapies have greatly improved its management, primary and acquired resistance remain a major roadblock to making it a curable malignancy. Ganetespib, an Hsp90 (Heat shock protein 90) small molecule inhibitor, shows preferential efficacy in HER2-positive breast cancer, including therapy-refractory cases, and has an excellent safety profile in ongoing clinical trials (38 in total, six on breast cancer). However, Ganetespib itself evokes acquired resistance, which is a significant obstacle to its clinical advancement. Here, we show that Ganetespib potently, albeit temporarily, suppresses HER2-positive breast cancer in genetic mouse models, but the animals eventually succumb via acquired resistance. We found that Ganetespib-resistant tumors upregulate several compensatory HSPs, as well as a wide network of phospho-activated receptor tyrosine kinases (RTKs), many of which are HSP clients. Downstream of p-RTKs, the MAPK pathway remains suppressed in the resistant tumors, as is HER2 itself. In contrast, the p-RTK effector Akt is stabilized and phospho-activated. Notably, pharmacological inhibition of Akt significantly delays acquired Ganetespib resistance, by 50%. These data establish Akt as a unifying actionable node downstream of the broadly upregulated HSP/p-RTK resistance program and suggests that Akt co-targeting with Ganetespib may be a superior therapeutic strategy in the clinic.
Collapse
Affiliation(s)
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794-8691, USA
| | | |
Collapse
|
12
|
Tukaj S. Heat Shock Protein 70 as a Double Agent Acting Inside and Outside the Cell: Insights into Autoimmunity. Int J Mol Sci 2020; 21:ijms21155298. [PMID: 32722570 PMCID: PMC7432326 DOI: 10.3390/ijms21155298] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (Hsp) are a diverse group of constitutive and/or stress-induced molecules that are categorized into several classes on the basis of their molecular weight. Mammalian Hsp have been mostly regarded as intracellular chaperones that mediate a range of essential cellular functions, including proper folding of newly synthesized polypeptides, refolding of denatured proteins, protein transport, and stabilization of native proteins' structures. The well-characterized and highly evolutionarily conserved, stress-inducible 70-kDa heat shock protein (Hsp70), is a key molecular chaperone that is overexpressed in the cell in response to stress of various origin. Hsp70 exhibits an immunosuppressive activity via, e.g., downregulation of the nuclear factor-kappa B (NF-κB) activation, and pharmacological induction of Hsp70 can ameliorate the autoimmune arthritis development in animal models. Moreover, Hsp70 might be passively or actively released from the necrotic or stressed cells, respectively. Highly immunogenic extracellular Hsp70 has been reported to impact both the innate and adaptive immune responses, and to be implicated in the autoimmune reaction. In addition, preclinical studies revealed that immunization with highly conserved Hsp70 peptides could be regarded as a potential treatment target for autoimmune arthritis, such as the rheumatoid arthritis, via induction of antigen-specific regulatory T helper cells (also called Treg). Here, a dual role of the intra- and extracellular Hsp70 is presented in the context of the autoimmune reaction.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
13
|
Payne M, Bossmann SH, Basel MT. Direct treatment versus indirect: Thermo-ablative and mild hyperthermia effects. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1638. [PMID: 32352660 DOI: 10.1002/wnan.1638] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/02/2020] [Accepted: 04/07/2020] [Indexed: 11/11/2022]
Abstract
Hyperthermia is a rapidly growing field in cancer therapy and many advances have been made in understanding and applying the mechanisms of hyperthermia. Secondary effects of hyperthermia have been increasingly recognized as important in therapeutic effects and multiple studies have started to elucidate their implications for treatment. Immune effects have especially been recognized as important in the efficacy of hyperthermia treatment of cancer. Both thermo-ablative and mild hyperthermia activate the immune system, but mild hyperthermia seems to be more effective at doing so. This may suggest that mild hyperthermia has some advantages over thermo-ablative hyperthermia and research into immune effects of mild hyperthermia should continue. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Macy Payne
- Department of Chemistry, Kansas State University, Manhattan, Kansas, USA
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, Manhattan, Kansas, USA
| | - Matthew T Basel
- Department of Anatomy & Physiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
14
|
Milani A, Basirnejad M, Bolhassani A. Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions. Immunotherapy 2020; 11:215-239. [PMID: 30730280 DOI: 10.2217/imt-2018-0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat-shock proteins (HSPs) have been involved in different functions including chaperone activity, protein folding, apoptosis, autophagy and immunity. The HSP families have powerful effects on the stimulation of innate immune responses through Toll-like receptors and scavenger receptors. Moreover, HSP-mediated phagocytosis directly enhances the processing and presentation of internalized antigens via the endocytic pathway in adaptive immune system. These properties of HSPs have been used for development of prophylactic and therapeutic vaccines against infectious and noninfectious diseases. Several studies also demonstrated the relationship between HSPs and drug resistance as well as their use as a novel biomarker for detecting tumors in patients. The present review describes different roles of HSPs in biology and medicine especially biochemical and immunological aspects.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Cole EF, Sami N, Feldman RJ. Updates on diagnosis and management of autoimmune blistering diseases. GIORN ITAL DERMAT V 2019; 155:46-64. [PMID: 31804056 DOI: 10.23736/s0392-0488.19.06517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the last several decades, advances in the understanding of the pathogenesis of autoimmune blistering diseases has resulted in significant improvements in diagnosis and management. These improvements include new diagnostic assays and therapies targeted at specific disease mediators. Furthermore, the abundance of new therapies in clinic trials for autoimmune blistering diseases will translate to an enhanced therapeutic armamentarium for clinicians. The aim of this article is to review new developments in the understanding of autoimmune blistering diseases and to summarize advancements in their diagnosis and management.
Collapse
Affiliation(s)
- Emily F Cole
- Emory Autoimmune Blistering Disease Clinic, Emory Department of Dermatology, Atlanta, GA, USA
| | - Naveed Sami
- Department of Dermatology, University of Central Florida, Orlando, FL, USA -
| | - Ron J Feldman
- Emory Autoimmune Blistering Disease Clinic, Emory Department of Dermatology, Atlanta, GA, USA
| |
Collapse
|
16
|
Kridin K, Kowalski EH, Kneiber D, Laufer-Britva R, Amber KT. From bench to bedside: evolving therapeutic targets in autoimmune blistering disease. J Eur Acad Dermatol Venereol 2019; 33:2239-2252. [PMID: 31314932 DOI: 10.1111/jdv.15816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune blistering diseases comprise a group of heterogenous conditions characterized by the loss of tolerance and subsequent development of autoantibodies targeting epidermal and subepidermal adhesion proteins. Blisters and erosions form on the skin and mucous membranes leading to significant morbidity and mortality. Traditional therapies rely on systemic immunosuppression. Advancements in our understanding of the pathophysiology of pemphigus and pemphigoid have led to the development of molecules which target specific pathways involved in induction and perpetuation of disease. In this review, we outline the novel therapeutic strategies including B-cell depletion, T-regulatory cell repletion, cell signalling inhibitors and small molecular inhibitors, inhibitory monoclonal antibodies, as well as complement inhibition. We additionally review their current level of clinical evidence. We lastly review therapeutics targets gleaned from the experimental epidermolysis bullosa acquisita mouse model. These emerging treatments offer an exciting progression from basic science discoveries that have the potential to transform the treatment paradigm in autoimmune blistering diseases.
Collapse
Affiliation(s)
- K Kridin
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - E H Kowalski
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - D Kneiber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - R Laufer-Britva
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - K T Amber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Kridin K, Ahn C, Huang WC, Ansari A, Sami N. Treatment Update of Autoimmune Blistering Diseases. Dermatol Clin 2019; 37:215-228. [DOI: 10.1016/j.det.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Lee S, Son B, Park G, Kim H, Kang H, Jeon J, Youn H, Youn B. Immunogenic Effect of Hyperthermia on Enhancing Radiotherapeutic Efficacy. Int J Mol Sci 2018; 19:E2795. [PMID: 30227629 PMCID: PMC6164993 DOI: 10.3390/ijms19092795] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Hyperthermia is a cancer treatment where tumor tissue is heated to around 40 °C. Hyperthermia shows both cancer cell cytotoxicity and immune response stimulation via immune cell activation. Immunogenic responses encompass the innate and adaptive immune systems, involving the activation of macrophages, natural killer cells, dendritic cells, and T cells. Moreover, hyperthermia is commonly used in combination with different treatment modalities, such as radiotherapy and chemotherapy, for better clinical outcomes. In this review, we will focus on hyperthermia-induced immunogenic effects and molecular events to improve radiotherapy efficacy. The beneficial potential of integrating radiotherapy with hyperthermia is also discussed.
Collapse
Affiliation(s)
- Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Gaeul Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Jaewan Jeon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
19
|
Tukaj S, Bieber K, Witte M, Ghorbanalipoor S, Schmidt E, Zillikens D, Ludwig RJ, Kasperkiewicz M. Calcitriol Treatment Ameliorates Inflammation and Blistering in Mouse Models of Epidermolysis Bullosa Acquisita. J Invest Dermatol 2017; 138:301-309. [PMID: 28942362 DOI: 10.1016/j.jid.2017.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022]
Abstract
A link between hypovitaminosis D and development of autoimmune bullous disorders has been suggested recently, but this association has not been elaborated experimentally. Here, the role of vitamin D was investigated in epidermolysis bullosa acquisita (EBA), an anti-type VII collagen autoantibody-induced blistering skin disease. Oral administration of the hormonally active vitamin D metabolite calcitriol ameliorated clinical disease severity and dermal neutrophil infiltration in both an antibody transfer- and immunization-induced EBA mouse model. Mechanistically, calcitriol hindered immune effector cell activation as evidenced by increased L-selectin expression on Gr-1+ cells in calcitriol-treated mice with antibody transfer-induced EBA, as well as suppressed in vitro immune complex-induced reactive oxygen species production in calcitriol-treated murine neutrophils. Additionally, calcitriol administration was associated with an increase of regulatory T (CD4+FoxP3+) and B (CD19+IL10+) cells as well as reduction of pro-inflammatory T helper 17 (CD4+IL-17+) cells in mice with immunization-induced EBA. In line, levels of circulating anti-type VII collagen autoantibodies were lower in mice that received calcitriol compared to solvent-treated animals. Together with the observed state of hypovitaminosis D in most cases of an analyzed EBA patient cohort, the results of this study support the use of vitamin D derivatives or analogs for patients with EBA and related diseases.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Poland.
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | - Mareike Witte
- Department of Dermatology, University of Lübeck, Germany
| | | | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany; Department of Dermatology, University of Lübeck, Germany
| | - Detlef Zillikens
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany; Department of Dermatology, University of Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany; Department of Dermatology, University of Lübeck, Germany
| | | |
Collapse
|
20
|
Ludwig RJ. Signalling and targeted therapy of inflammatory cells in epidermolysis bullosa acquisita. Exp Dermatol 2017; 26:1179-1186. [DOI: 10.1111/exd.13335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology and Department of Dermatology; University of Lübeck; Lübeck Germany
| |
Collapse
|
21
|
Topically Applied Hsp90 Blocker 17AAG Inhibits Autoantibody-Mediated Blister-Inducing Cutaneous Inflammation. J Invest Dermatol 2017; 137:341-349. [DOI: 10.1016/j.jid.2016.08.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022]
|
22
|
Tukaj S, Węgrzyn G. Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies. Cell Stress Chaperones 2016; 21:213-8. [PMID: 26786410 PMCID: PMC4786535 DOI: 10.1007/s12192-016-0670-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 90 (Hsp90), a 90-kDa molecular chaperone, is responsible for biological activities of key signaling molecules (clients) such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors regulating various cellular processes, including growth, survival, differentiation, and apoptosis. Because Hsp90 is also involved in stabilization of oncogenic 'client' proteins, its specific chaperone activity blockers are currently being tested as anticancer agents in advanced clinical trials. Recent in vitro and in vivo studies have shown that Hsp90 is also involved in activation of innate and adaptive cells of the immune system. For these reasons, pharmacological inhibition of Hsp90 has been evaluated in murine models of autoimmune and inflammatory diseases. This mini-review summarizes current knowledge of the effects of Hsp90 inhibitors on autoimmune and inflammatory diseases' features and is based solely on preclinical studies.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
23
|
Witte M, Koga H, Hashimoto T, Ludwig RJ, Bieber K. Discovering potential drug-targets for personalized treatment of autoimmune disorders - what we learn from epidermolysis bullosa acquisita. Expert Opin Ther Targets 2016; 20:985-98. [DOI: 10.1517/14728222.2016.1148686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mareike Witte
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Hiroshi Koga
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Takashi Hashimoto
- Institute of Cutaneous Cell Biology, Kurume University, Kurume, Japan
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| |
Collapse
|
24
|
Abstract
Heat-shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays prominent functional roles in nearly all aspects of cell biology. As a chaperone, it interacts with literally hundreds of "clients," many of which are important drivers, regulators, and promoters of cancer. Thus, HSP90 is a high-value target in the development of anticancer therapeutics. Despite its popularity, our overall knowledge of HSP90 in immune function has lagged behind its well-recognized tumor-supportive roles. The use of inhibitors of HSP90 as chemical biological probes has been invaluable in revealing important roles for the chaperone in multiple aspects of immune function. Given this critical link, we must now consider the question of how immune outcomes may be affected by the HSP90 inhibitors currently in clinical development for the treatment of cancer. This chapter will review some of the immunological aspects of HSP90 function in terms of its intracellular and extracellular roles in antigen presentation, immune effector cell tasks, and regulation of inflammatory processes. This review will further examine the value of HSP90 inhibitors within the context of cancer immunotherapy and will discuss how these drugs might be optimally utilized in combination with immune stimulatory approaches against cancer.
Collapse
|
25
|
Kasperkiewicz M, Sadik CD, Bieber K, Ibrahim SM, Manz RA, Schmidt E, Zillikens D, Ludwig RJ. Epidermolysis Bullosa Acquisita: From Pathophysiology to Novel Therapeutic Options. J Invest Dermatol 2016; 136:24-33. [DOI: 10.1038/jid.2015.356] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/29/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
|
26
|
Ludwig R. Immune mechanism-targeted treatment of experimental epidermolysis bullosa acquisita. Expert Rev Clin Immunol 2015; 11:1365-78. [PMID: 26471717 DOI: 10.1586/1744666x.2015.1085801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epidermolysis bullosa acquisita (EBA) is an autoimmune bullous dermatosis characterized by chronic mucocutaneous blistering caused by autoantibodies directed against type VII collagen. EBA causes a high morbidity and is difficult to treat. Model systems have significantly broadened our understanding of EBA pathogenesis, leading to the identification of numerous therapeutic targets. Of these, so far, a few have been evaluated for their therapeutic potential in preclinical models. In mice, EBA can be induced by transfer of anti-type VII collagen antibodies or by immunization with the protein. The latter model, immunization-induced EBA, is ideal to test drugs for their therapeutic efficacy. Here, mice with already established disease can be treated for prolonged periods. Albeit time consuming, results from immunization-induced EBA will pave the way for clinical application in patients. As the key pathogenic principle, that is, autoantibody-induced, leukocyte-mediated tissue injury and inflammation, is shared by other diseases, these findings may have translational applications beyond EBA.
Collapse
Affiliation(s)
- Ralf Ludwig
- a University of Luebeck, Luebeck Institute of Experimental Dermatology, Ratzeburger Allee 160, Luebeck, Germany
| |
Collapse
|
27
|
Heat shock protein 90 inhibition: A potential double- or triple-edged sword in the treatment of mucous membrane pemphigoid. Med Hypotheses 2015; 85:412-4. [DOI: 10.1016/j.mehy.2015.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/21/2015] [Indexed: 12/18/2022]
|
28
|
Tukaj S, Zillikens D, Kasperkiewicz M. Heat shock protein 90: a pathophysiological factor and novel treatment target in autoimmune bullous skin diseases. Exp Dermatol 2015; 24:567-71. [DOI: 10.1111/exd.12760] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Stefan Tukaj
- Department of Dermatology; University of Lübeck; Lübeck Germany
| | | | | |
Collapse
|
29
|
Liu Y, Ye J, Shin Ogawa L, Inoue T, Huang Q, Chu J, Bates RC, Ying W, Sonderfan AJ, Rao PE, Zhou D. The HSP90 Inhibitor Ganetespib Alleviates Disease Progression and Augments Intermittent Cyclophosphamide Therapy in the MRL/lpr Mouse Model of Systemic Lupus Erythematosus. PLoS One 2015; 10:e0127361. [PMID: 25974040 PMCID: PMC4431681 DOI: 10.1371/journal.pone.0127361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/14/2015] [Indexed: 12/02/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex, systemic autoimmune disease with a diverse range of immunological and clinical manifestations. The introduction of broad spectrum immunosuppressive therapies and better management of acute disease exacerbations have improved outcomes for lupus patients over recent years. However, these regimens are burdened by substantial toxicities and confer significantly higher risks of infection, thus there remains a significant and unmet medical need for alternative treatment options, particularly those with improved safety profiles. Heat shock protein 90 (HSP90) is a ubiquitously expressed molecular chaperone that acts as an important modulator of multiple innate and adaptive inflammatory processes. Of note, accumulating clinical and experimental evidence has implicated a role for HSP90 in the pathogenesis of SLE. Here we evaluated the potential of HSP90 as a therapeutic target for this disease using the selective small molecule inhibitor ganetespib in the well-characterized MRL/lpr autoimmune mouse model. In both the prophylactic and therapeutic dosing settings, ganetespib treatment promoted dramatic symptomatic improvements in multiple disease parameters, including suppression of autoantibody production and the preservation of renal tissue integrity and function. In addition, ganetespib exerted profound inhibitory effects on disease-related lymphadenopathy and splenomegaly, and reduced pathogenic T and B cell lineage populations in the spleen. Ganetespib monotherapy was found to be equally efficacious and tolerable when compared to an effective weekly dosing regimen of the standard-of-care immunosuppressive agent cyclophosphamide. Importantly, co-treatment of ganetespib with a sub-optimal, intermittent dosing schedule of cyclophosphamide resulted in superior therapeutic indices and maximal disease control. These findings highlight the potential of HSP90 inhibition as an alternative, and potentially complementary, strategy for therapeutic intervention in SLE. Such approaches may have important implications for disease management, particularly for limiting or preventing treatment-related toxicities, a major confounding factor in current SLE therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Josephine Ye
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Luisa Shin Ogawa
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Takayo Inoue
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Qin Huang
- Department of Pharmacology and Laboratory Medicine, VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
| | - John Chu
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Richard C Bates
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Weiwen Ying
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Andrew J Sonderfan
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Patricia E Rao
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Dan Zhou
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| |
Collapse
|