1
|
Salisbury SJ, Daniels RR, Monaghan SJ, Bron JE, Villamayor PR, Gervais O, Fast MD, Sveen L, Houston RD, Robinson N, Robledo D. Keratinocytes drive the epithelial hyperplasia key to sea lice resistance in coho salmon. BMC Biol 2024; 22:160. [PMID: 39075472 PMCID: PMC11287951 DOI: 10.1186/s12915-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. RESULTS We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. CONCLUSIONS Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.
Collapse
Affiliation(s)
- S J Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - R Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - S J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - J E Bron
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - P R Villamayor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - O Gervais
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - M D Fast
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - R D Houston
- Benchmark Genetics, 1 Pioneer BuildingMilton Bridge, Edinburgh TechnopolePenicuik, UK
| | - N Robinson
- Nofima AS, Tromsø, Norway.
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Deakin University, Melbourne, VIC, 3225, Australia.
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Vernone A, Ricca C, Merlo D, Pescarmona G, Silvagno F. The analysis of glutamate and glutamine frequencies in human proteins as marker of tissue oxygenation. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181891. [PMID: 31183125 PMCID: PMC6502398 DOI: 10.1098/rsos.181891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
In this study, we investigated whether the relative abundance of glutamate and glutamine in human proteins reflects the availability of these amino acids (AAs) dictated by the cellular context. In particular, because hypoxia increases the conversion of glutamate to glutamine, we hypothesized that the ratio glutamate/glutamine could be related to tissue oxygenation. By histological, biochemical and genetic evaluation, we identified proteins expressed selectively by distinct cellular populations that are exposed in the same tissue to high or low oxygenation, or proteins codified by different chromosomal loci. Our biochemical assessment was implemented by software tools that calculated the absolute and the relative frequencies of all AAs contained in the proteins. Moreover, an agglomerative hierarchical cluster analysis was performed. In the skin model that has a strictly local metabolism, we demonstrated that the ratio glutamate/glutamine of the selected proteins was directly proportional to oxygenation. Accordingly, the proteins codified by the epidermal differentiation complex in the region 1q21.3 and by the lipase clustering region 10q23.31 showed a significantly lower ratio glutamate/glutamine compared with the nearby regions of the same chromosome. Overall, our results demonstrate that the estimation of glutamate/glutamine ratio can give information on tissue oxygenation and could be exploited as marker of hypoxia, a condition common to several pathologies.
Collapse
Affiliation(s)
- Annamaria Vernone
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Chiara Ricca
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Daniela Merlo
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gianpiero Pescarmona
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Francesca Silvagno
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| |
Collapse
|
3
|
Mound A, Malaisse J, De Vuyst É, Hayez A, Lambert de Rouvroit C, Pittelkow MR, Poumay Y. Epidermal reference genes at the forefront of data interpretation. Exp Dermatol 2015; 24:738-9. [PMID: 26186391 DOI: 10.1111/exd.12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2015] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Yves Poumay
- URPHYM-Narilis, University of Namur, Namur, Belgium
| |
Collapse
|
4
|
Beer L, Mlitz V, Gschwandtner M, Berger T, Narzt MS, Gruber F, Brunner PM, Tschachler E, Mildner M. Bioinformatics approach for choosing the correct reference genes when studying gene expression in human keratinocytes. Exp Dermatol 2015; 24:742-7. [PMID: 25980460 DOI: 10.1111/exd.12759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 12/27/2022]
Abstract
Reverse transcription polymerase chain reaction (qRT-PCR) has become a mainstay in many areas of skin research. To enable quantitative analysis, it is necessary to analyse expression of reference genes (RGs) for normalization of target gene expression. The selection of reliable RGs therefore has an important impact on the experimental outcome. In this study, we aimed to identify and validate the best suited RGs for qRT-PCR in human primary keratinocytes (KCs) over a broad range of experimental conditions using the novel bioinformatics tool 'RefGenes', which is based on a manually curated database of published microarray data. Expression of 6 RGs identified by RefGenes software and 12 commonly used RGs were validated by qRT-PCR. We assessed whether these 18 markers fulfilled the requirements for a valid RG by the comprehensive ranking of four bioinformatics tools and the coefficient of variation (CV). In an overall ranking, we found GUSB to be the most stably expressed RG, whereas the expression values of the commonly used RGs, GAPDH and B2M were significantly affected by varying experimental conditions. Our results identify RefGenes as a powerful tool for the identification of valid RGs and suggest GUSB as the most reliable RG for KCs.
Collapse
Affiliation(s)
- Lucian Beer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Gschwandtner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tanja Berger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marie-Sophie Narzt
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|