1
|
Sandra F, Dewi DAR, Astawa INM, Pangkahila W, Chouw A, Celinna M, Dewi NM. Inhibition of Ultraviolet B-induced Apoptosis in Fibroblasts by Human Umbilical Cord Blood Mesenchymal Stem Cell Conditioned Media via the Phosphatidylinositol-3-Kinase/Akt Pathway. IRANIAN JOURNAL OF MEDICAL SCIENCES 2025; 50:44-53. [PMID: 39957810 PMCID: PMC11829070 DOI: 10.30476/ijms.2024.100856.3342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2025]
Abstract
Background Ultraviolet B (UVB) irradiation induces photoaging and apoptosis in various cell types. Inhibition of UVB-induced apoptotic pathways has been explored in different apoptotic cascades. Conditioned media from human umbilical cord blood mesenchymal stem cells (CM-hUCB-MSC) contain important substances for cell regeneration. However, the potential of CM-hUCB-MSC in preventing UVB-induced apoptosis has not been clearly elucidated. Therefore, the current research was conducted to investigate the potential of CM-hUCB-MSC in inhibiting UVB-induced apoptosis and its role in the antiapoptotic signaling pathway. Methods An experimental in vitro study was conducted at PT. Prodia StemCell Indonesia, Jakarta, Indonesia, 2019-2022. Initially, hUCB-MSCs were isolated and cultured to produce CM-hUCB-MSC. NIH3T3 cells were pretreated with/without 50 μM LY294002, treated with/without 10% CM-hUCB-MSC, and then irradiated with/without UVB. Subsequently, the cells were analyzed using sub-G1, immunofluorescence, and immunoblotting assays. One-way analysis of variance (ANOVA) was used for data analysis, followed by Tukey's honest significant difference (HSD) test or the Kruskal-Wallis test, followed by the Dunn-Bonferroni test using IBM SPSS Statistics software version 21. Statistical significance was determined at P<0.05. Results CM-hUCB-MSC significantly inhibited UVB-induced apoptosis in NIH3T3 cells (P=0.002, Dunn-Bonferroni test). CM-hUCB-MSC significantly induced Akt phosphorylation at Ser 473 in UVB-irradiated NIH3T3 cells (P<0.001, Tukey's HSD test). The CM-hUCB-MSC-induced phosphorylation of Akt was significantly inhibited by LY294002 (P<0.001, Tukey's HSD test). Conclusion Taken together, it can be concluded that CM-hUCB-MSC inhibits UVB-induced NIH3T3 cell apoptosis via the activation of phosphatidylinositol-3-kinase (PI3K)/Akt signaling cascades.
Collapse
Affiliation(s)
- Ferry Sandra
- Department of Biochemistry and Molecular Biology, Division of Oral Biology, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | | | | | - Wimpie Pangkahila
- Department of Andrology and Sexology, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia
| | | | - Maria Celinna
- The Prodia Education and Research Institute, Jakarta, Indonesia
| | | |
Collapse
|
2
|
Frommeyer TC, Rohan CA, Spandau DF, Kemp MG, Wanner MA, Tanzi E, Travers JB. Wounding Therapies for Prevention of Photocarcinogenesis. Front Oncol 2022; 11:813132. [PMID: 35071017 PMCID: PMC8776632 DOI: 10.3389/fonc.2021.813132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 01/01/2023] Open
Abstract
The occurrence of non-melanoma skin cancer (NMSC) is closely linked with advanced age and ultraviolet-B (UVB) exposure. More specifically, the development of NMSC is linked to diminished insulin-like growth factor-1 (IGF-1) signaling from senescent dermal fibroblasts in geriatric skin. Consequently, keratinocyte IGF-1 receptor (IGF-1R) remains inactive, resulting in failure to induce appropriate protective responses including DNA repair and cell cycle checkpoint signaling. This allows UVB-induced DNA damage to proliferate unchecked, which increases the likelihood of malignant transformation. NMSC is estimated to occur in 3.3 million individuals annually. The rising incidence results in increased morbidity and significant healthcare costs, which necessitate identification of effective treatment modalities. In this review, we highlight the pathogenesis of NMSC and discuss the potential of novel preventative therapies. In particular, wounding therapies such as dermabrasion, microneedling, chemical peeling, and fractionated laser resurfacing have been shown to restore IGF-1/IGF-1R signaling in geriatric skin and suppress the propagation of UVB-damaged keratinocytes. This wounding response effectively rejuvenates geriatric skin and decreases the incidence of age-associated NMSC.
Collapse
Affiliation(s)
- Timothy C. Frommeyer
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Dan F. Spandau
- Departments of Dermatology and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard A. Roudebush Veterans Administration (VA) Medical Center, Indianapolis, IN, United States
| | - Michael G. Kemp
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Molly A. Wanner
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, United States
| | | | - Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| |
Collapse
|
3
|
Andrade MJ, Van Lonkhuyzen DR, Upton Z, Satyamoorthy K. RPA facilitates rescue of keratinocytes from UVB radiation damage through insulin-like growth factor-I signalling. J Cell Sci 2021; 134:jcs255786. [PMID: 34137442 DOI: 10.1242/jcs.255786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/10/2021] [Indexed: 01/19/2023] Open
Abstract
UVBR-induced photolesions in genomic DNA of keratinocytes impair cellular functions and potentially determine the cell fate post-irradiation. The ability of insulin-like growth factor-I (IGF-I) to rescue epidermal keratinocytes after photodamage via apoptosis prevention and photolesion removal was recently demonstrated using in vitro two-dimensional and three-dimensional skin models. Given the limited knowledge of specific signalling cascades contributing to post-UVBR IGF-I effects, we used inhibitors to investigate the impact of blockade of various signalling mediators on IGF-I photoprotection. IGF-I treatment, in the presence of signalling inhibitors, particularly TDRL-505, which targets replication protein A (RPA), impaired activation of IGF-1R downstream signalling, diminished cyclobutane pyrimidine dimer removal, arrested growth, reduced cell survival and increased apoptosis. Further, the transient partial knockdown of RPA was found to abrogate IGF-I-mediated responses in keratinocytes, ultimately affecting photoprotection and, thereby, establishing that RPA is required for IGF-I function. Our findings thus elucidate the importance of RPA in linking the damage response activation, cell cycle regulation, repair and survival pathways, separately initiated by IGF-I upon UVBR-induced damage. This information is potentially imperative for the development of effective sunburn and photodamage repair strategies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Melisa J Andrade
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Derek R Van Lonkhuyzen
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Zee Upton
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore138648
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
4
|
Hutcherson RJ, Gabbard RD, Castellanos AJ, Travers JB, Kemp MG. Age and insulin-like growth factor-1 impact PCNA monoubiquitination in UVB-irradiated human skin. J Biol Chem 2021; 296:100570. [PMID: 33753168 PMCID: PMC8065225 DOI: 10.1016/j.jbc.2021.100570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/30/2022] Open
Abstract
Nonmelanoma skin cancers occur primarily in individuals over the age of 60 and are characterized by an abundance of ultraviolet (UV) signature mutations in keratinocyte DNA. Though geriatric skin removes UV photoproducts from DNA less efficiently than young adult skin, it is not known whether the utilization of other prosurvival but potentially mutagenic DNA damage tolerance systems such as translesion synthesis (TLS) is altered in older individuals. Using monoubiquitination of the replicative DNA polymerase clamp protein PCNA (proliferating cell nuclear antigen) as a biochemical marker of TLS pathway activation, we find that UVB exposure of the skin of individuals over the age of 65 results in a higher level of PCNA monoubiquitination than in the skin of young adults. Furthermore, based on previous reports showing a role for deficient insulin-like growth factor-1 (IGF-1) signaling in altered UVB DNA damage responses in geriatric human skin, we find that both pharmacological inhibition of the IGF-1 receptor (IGF-1R) and deprivation of IGF-1 potentiate UVB-induced PCNA monoubiquitination in both human skin ex vivo and keratinocytes in vitro. Interestingly, though the TLS DNA polymerase Pol eta can accurately replicate the major photoproducts induced in DNA by UV radiation, we find that it fails to accumulate on chromatin in the absence of IGF-1R signaling and that this phenotype is correlated with increased mutagenesis in keratinocytes in vitro. Thus, altered IGF-1/IGF-1R signaling in geriatric skin may predispose epidermal keratinocytes to carry out a more mutagenic form of DNA synthesis following UVB exposure.
Collapse
Affiliation(s)
- Rebekah J Hutcherson
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Ryan D Gabbard
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Amber J Castellanos
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA; Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA; Dayton Veterans Affairs Medical Center, Dayton, Ohio, USA
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA.
| |
Collapse
|
5
|
Antioxidants as an Epidermal Stem Cell Activator. Antioxidants (Basel) 2020; 9:antiox9100958. [PMID: 33036398 PMCID: PMC7600937 DOI: 10.3390/antiox9100958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
Antioxidants may modulate the microenvironment of epidermal stem cells by reducing the production of reactive oxygen species or by regulating the expression of extracellular matrix protein. The extracellular membrane is an important component of the stem cell niche, and microRNAs regulate extracellular membrane-mediated basal keratinocyte proliferation. In this narrative review, we will discuss several antioxidants such as ascorbic acid, plant extracts, peptides and hyaluronic acid, and their effect on the epidermal stem cell niche and the proliferative potential of interfollicular epidermal stem cells in 3D skin equivalent models.
Collapse
|
6
|
Insulin-like growth factor-I rescue of primary keratinocytes from pre- and post-ultraviolet B radiation effects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111951. [DOI: 10.1016/j.jphotobiol.2020.111951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 01/13/2023]
|
7
|
Abstract
DNA damage response (DDR) and DNA repair pathways determine neoplastic cell transformation and therapeutic responses, as well as the aging process. Altered DDR functioning results in accumulation of unrepaired DNA damage, increased frequency of tumorigenic mutations, and premature aging. Recent evidence suggests that polypeptide hormones play a role in modulating DDR and DNA damage repair, while DNA damage accumulation may also affect hormonal status. We review the available reports elucidating involvement of insulin-like growth factor 1 (IGF1), growth hormone (GH), α-melanocyte stimulating hormone (αMSH), and gonadotropin-releasing hormone (GnRH)/gonadotropins in DDR and DNA repair as well as the current understanding of pathways enabling these actions. We discuss effects of DNA damage pathway mutations, including Fanconi anemia, on endocrine function and consider mechanisms underlying these phenotypes. (Endocrine Reviews 41: 1 - 19, 2020).
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
8
|
Dorr MM, Guignard R, Auger FA, Rochette PJ. The use of tissue-engineered skin to demonstrate the negative effect of CXCL5 on epidermal ultraviolet radiation-induced cyclobutane pyrimidine dimer repair efficiency. Br J Dermatol 2020; 184:123-132. [PMID: 32271940 DOI: 10.1111/bjd.19117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ultraviolet radiation (UVR) is responsible for keratinocyte cancers through the induction of mutagenic cyclobutane pyrimidine dimers (CPDs). Many factors influence CPD repair in epidermal keratinocytes, and a better understanding of those factors might lead to prevention strategies against skin cancer. OBJECTIVES To evaluate the impact of dermal components on epidermal CPD repair efficiency and to investigate potential factors responsible for the dermal-epidermal crosstalk modulating UVR-induced DNA damage repair in keratinocytes. METHODS A model of self-assembled tissue-engineered skin containing human primary keratinocytes and fibroblasts was used in this study. RESULTS We showed that CPD repair in keratinocytes is positively influenced by the presence of a dermis. We investigated the secretome and found that the cytokine CXCL5 is virtually absent from the culture medium of reconstructed skin, compared with media from fibroblasts and keratinocytes alone. By modulating CXCL5 levels in culture media of keratinocytes, we have shown that CXCL5 is an inhibitor of CPD repair. CONCLUSIONS This work outlines the impact of the secreted dermal components on epidermal UVR-induced DNA damage repair and sheds light on a novel role of CXCL5 in CPD repair.
Collapse
Affiliation(s)
- M M Dorr
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada
| | - R Guignard
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada
| | - F A Auger
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada
| | - P J Rochette
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada.,Université Laval, Faculté de Médecine, Département d'Ophtalmologie, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Alkawar AMM, Castellanos AJ, Carpenter MA, Hutcherson RJ, Madkhali MAO, Johnson RM, Bottomley M, Kemp MG. Insulin-like Growth Factor-1 Impacts p53 Target Gene Induction in UVB-irradiated Keratinocytes and Human Skin. Photochem Photobiol 2020; 96:1332-1341. [PMID: 32416609 DOI: 10.1111/php.13279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
The tumor suppressor protein p53 limits mutagenesis in response to ultraviolet-B (UVB) light exposure by activating the transcription of genes that mitigate the damaging effects of UVB radiation on DNA. Because most nonmelanoma skin cancers (NMSCs) occur in older individuals, it is important to understand the process of mutagenesis in the geriatric skin microenvironment. Based on previous studies demonstrating that geriatric skin expresses lower levels of the growth factor insulin-like growth factor-1 (IGF-1) than young adult skin, a role for IGF-1 in the regulation of p53 target genes was investigated in both human keratinocytes in vitro and human skin explants ex vivo. The products of the p53 target genes p21 and DNA polymerase eta (pol η) were found to be increased by UVB exposure in both experimental systems, and this induction was observed to be partially abrogated by depriving keratinocytes of IGF-1 in vitro or by the treatment of keratinocytes in vitro and human skin explants with an IGF-1 receptor antagonist. Because p21 and pol η function to limit mutagenic DNA replication following UVB exposure, these results suggest that NMSC risk in geriatric populations may be due to age-dependent decreases in IGF-1 signaling that disrupt p53 function in the skin.
Collapse
Affiliation(s)
- Abdulrahman M M Alkawar
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Amber J Castellanos
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Mae Alexandra Carpenter
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Rebekah J Hutcherson
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Mariyyah A O Madkhali
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Ron Michael Johnson
- Department of Surgery, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | | | - Michael G Kemp
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| |
Collapse
|
10
|
Anti-Aging Effects of GDF11 on Skin. Int J Mol Sci 2020; 21:ijms21072598. [PMID: 32283613 PMCID: PMC7177281 DOI: 10.3390/ijms21072598] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022] Open
Abstract
Human skin is composed of three layers: the epidermis, the dermis, and the hypodermis. The epidermis has four major cell layers made up of keratinocytes in varying stages of progressive differentiation. Skin aging is a multi-factorial process that affects every phase of its biology and function. The expression profiles of inflammation-related genes analyzed in resident immune cells demonstrated that these cells have a strong ability to regenerate adult skin stem cells and to produce endogenous substances such as growth differentiation factor 11 (GDF11). GDF11 appears to be the key to progenitor proliferation and/or differentiation. The preservation of youthful phenotypes has been tied to the presence of GDF11 in different human tissues, and, in the skin, this factor inhibits inflammatory responses. The protective role of GDF11 depends on a multi-factorial process implicating various types of skin cells such as keratinocytes, fibroblasts and inflammatory cells. GDF11 should be further studied for the purpose of developing novel therapies for the treatment of skin diseases.
Collapse
|
11
|
Andrade MJ, Van Lonkhuyzen DR, Upton Z, Satyamoorthy K. Unravelling the insulin-like growth factor I-mediated photoprotection of the skin. Cytokine Growth Factor Rev 2019; 52:45-55. [PMID: 31767341 DOI: 10.1016/j.cytogfr.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Chronic exposure of human skin to solar ultraviolet radiation (UVR) induces a range of biological reactions which may directly or indirectly lead to the development of skin cancer. In order to overcome these damaging effects of UVR and to reduce photodamage, the skin's endogenous defence system functions in concert with the various exogenous photoprotectors. Growth factors, particularly insulin-like growth factor-I (IGF-I), produced within the body as a result of cellular interaction in response to UVR demonstrates photoprotective properties in human skin. This review summarises the impact of UVR-induced photolesions on human skin, discusses various endogenous as well as exogenous approaches of photoprotection described to date and explains how IGF-I mediates UVR photoprotective responses at the cellular and mitochondrial level. Further, we describe the current interventions using growth factors and propose how the knowledge of the IGF-I photoprotection signalling cascades may direct the development of improved UVR protection and remedial strategies.
Collapse
Affiliation(s)
- Melisa J Andrade
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Derek R Van Lonkhuyzen
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Zee Upton
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Institute of Medical Biology, A⁎STAR, Singapore
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
12
|
Marinho CG, Mermejo LM, Salvatori R, Assirati JA, Oliveira CRP, Santos EG, Leal ÂCGB, Barros-Oliveira CS, Damascena NP, Lima CA, Farias CT, Moreira AC, Aguiar-Oliveira MH. Occurrence of neoplasms in individuals with congenital, severe GH deficiency from the Itabaianinha kindred. Growth Horm IGF Res 2018; 41:71-74. [PMID: 29571594 DOI: 10.1016/j.ghir.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 11/18/2022]
Abstract
Growth hormone (GH) and the insulin-like growth factor I (IGF-I) have cell proliferative and differentiation properties. Whether these hormones have a role in mutagenesis is unknown. Nevertheless, severe IGF-I deficiency seems to confer protection against the development of neoplasms. Here, we report five cases of adult patients with severe and congenital isolated GH deficiency (IGHD) due to the c.57+1G>A mutation in the GHRH receptor gene, who developed tumors. Four GH-naïve subjects presented skin tumors: a 42-year-old man with a fibroepithelial polyp, a 53-year-old woman and two men (59 and 56 years old) with epidermoid skin cancers. One of these died from it after three surgeries and radiotherapy. The fifth patient was a 25-year-old woman, who had intermittently received GH replacement therapy (GHRT) from age 11 to 18, who developed an ependymoma extending from the fourth ventricle to the end of the thoracic spine. She underwent three surgical procedures, without obvious evidence of tumor recurrence during the six years follow up. These observations suggest that severe IGHD does not protect completely from development of tumors.
Collapse
Affiliation(s)
- Cindi G Marinho
- Division of Endocrinology, Federal University of Sergipe, 49060-100 Aracaju, Sergipe, Brazil
| | - Lívia M Mermejo
- Division of Endocrinology, Faculty of Medicine of Ribeirao Preto of the University of São Paulo (USP), 14049-900 Ribeirao Preto, São Paulo, Brazil
| | - Roberto Salvatori
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD 21287, USA
| | - João A Assirati
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine of Ribeirao Preto of the University of São Paulo (USP), 14049-900 Ribeirao Preto, São Paulo, Brazil
| | - Carla R P Oliveira
- Division of Endocrinology, Federal University of Sergipe, 49060-100 Aracaju, Sergipe, Brazil
| | - Elenilde G Santos
- Division of Endocrinology, Federal University of Sergipe, 49060-100 Aracaju, Sergipe, Brazil
| | - Ângela C G B Leal
- Division of Endocrinology, Federal University of Sergipe, 49060-100 Aracaju, Sergipe, Brazil
| | | | - Nayra P Damascena
- Division of Endocrinology, Federal University of Sergipe, 49060-100 Aracaju, Sergipe, Brazil
| | - Carlos A Lima
- Division of Surgery, Federal University of Sergipe, 49060-100 Aracaju, Sergipe, Brazil
| | - Catarine T Farias
- Division of Endocrinology, Federal University of Sergipe, 49060-100 Aracaju, Sergipe, Brazil
| | - Ayrton C Moreira
- Division of Endocrinology, Faculty of Medicine of Ribeirao Preto of the University of São Paulo (USP), 14049-900 Ribeirao Preto, São Paulo, Brazil
| | | |
Collapse
|
13
|
Khan AQ, Travers JB, Kemp MG. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:438-460. [PMID: 29466611 PMCID: PMC6031472 DOI: 10.1002/em.22176] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 05/10/2023]
Abstract
The growing incidence of melanoma is a serious public health issue that merits a thorough understanding of potential causative risk factors, which includes exposure to ultraviolet radiation (UVR). Though UVR has been classified as a complete carcinogen and has long been recognized for its ability to damage genomic DNA through both direct and indirect means, the precise mechanisms by which the UVA and UVB components of UVR contribute to the pathogenesis of melanoma have not been clearly defined. In this review, we therefore highlight recent studies that have addressed roles for UVA radiation in the generation of DNA damage and in modulating the subsequent cellular responses to DNA damage in melanocytes, which are the cell type that gives rise to melanoma. Recent research suggests that UVA not only contributes to the direct formation of DNA lesions but also impairs the removal of UV photoproducts from genomic DNA through oxidation and damage to DNA repair proteins. Moreover, the melanocyte microenvironment within the epidermis of the skin is also expected to impact melanomagenesis, and we therefore discuss several paracrine signaling pathways that have been shown to impact the DNA damage response in UV-irradiated melanocytes. Lastly, we examine how alterations to the immune microenvironment by UVA-associated DNA damage responses may contribute to melanoma development. Thus, there appear to be multiple avenues by which UVA may elevate the risk of melanoma. Protective strategies against excess exposure to UVA wavelengths of light therefore have the potential to decrease the incidence of melanoma. Environ. Mol. Mutagen. 59:438-460, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aiman Q Khan
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Dayton Veterans Affairs Medical Center, Dayton, Ohio
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
14
|
Lee MJ, Oh JH, Park CH, Kim KH, Lee DH, Chung JH. Galanin contributes to ultraviolet irradiation-induced inflammation in human skin. Exp Dermatol 2017; 26:744-747. [DOI: 10.1111/exd.13268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Min Jung Lee
- Department of Dermatology; Seoul National University College of Medicine; Seoul Korea
- Laboratory of Cutaneous Aging Research; Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
- Institute of Human-Environment Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
| | - Jang-Hee Oh
- Department of Dermatology; Seoul National University College of Medicine; Seoul Korea
- Laboratory of Cutaneous Aging Research; Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
- Institute of Human-Environment Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
| | - Chi-Hyun Park
- Department of Dermatology; Seoul National University College of Medicine; Seoul Korea
- Laboratory of Cutaneous Aging Research; Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
- Institute of Human-Environment Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
| | - Kyu Han Kim
- Department of Dermatology; Seoul National University College of Medicine; Seoul Korea
- Laboratory of Cutaneous Aging Research; Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
- Institute of Human-Environment Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
| | - Dong Hun Lee
- Department of Dermatology; Seoul National University College of Medicine; Seoul Korea
- Laboratory of Cutaneous Aging Research; Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
- Institute of Human-Environment Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
| | - Jin Ho Chung
- Department of Dermatology; Seoul National University College of Medicine; Seoul Korea
- Laboratory of Cutaneous Aging Research; Biomedical Research Institute; Seoul National University Hospital; Seoul Korea
- Institute of Human-Environment Interface Biology; Medical Research Center; Seoul National University; Seoul Korea
- Institute on Aging; Seoul National University; Seoul Korea
| |
Collapse
|
15
|
Impact of Age and Insulin-Like Growth Factor-1 on DNA Damage Responses in UV-Irradiated Human Skin. Molecules 2017; 22:molecules22030356. [PMID: 28245638 PMCID: PMC5432641 DOI: 10.3390/molecules22030356] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 01/19/2023] Open
Abstract
The growing incidence of non-melanoma skin cancer (NMSC) necessitates a thorough understanding of its primary risk factors, which include exposure to ultraviolet (UV) wavelengths of sunlight and age. Whereas UV radiation (UVR) has long been known to generate photoproducts in genomic DNA that promote genetic mutations that drive skin carcinogenesis, the mechanism by which age contributes to disease pathogenesis is less understood and has not been sufficiently studied. In this review, we highlight studies that have considered age as a variable in examining DNA damage responses in UV-irradiated skin and then discuss emerging evidence that the reduced production of insulin-like growth factor-1 (IGF-1) by senescent fibroblasts in the dermis of geriatric skin creates an environment that negatively impacts how epidermal keratinocytes respond to UVR-induced DNA damage. In particular, recent data suggest that two principle components of the cellular response to DNA damage, including nucleotide excision repair and DNA damage checkpoint signaling, are both partially defective in keratinocytes with inactive IGF-1 receptors. Overcoming these tumor-promoting conditions in aged skin may therefore provide a way to lower aging-associated skin cancer risk, and thus we will consider how dermal wounding and related clinical interventions may work to rejuvenate the skin, re-activate IGF-1 signaling, and prevent the initiation of NMSC.
Collapse
|
16
|
Kemp MG, Spandau DF, Simman R, Travers JB. Insulin-like Growth Factor 1 Receptor Signaling Is Required for Optimal ATR-CHK1 Kinase Signaling in Ultraviolet B (UVB)-irradiated Human Keratinocytes. J Biol Chem 2016; 292:1231-1239. [PMID: 27979966 DOI: 10.1074/jbc.m116.765883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/08/2016] [Indexed: 01/16/2023] Open
Abstract
UVB wavelengths of light induce the formation of photoproducts in DNA that are potentially mutagenic if not properly removed by the nucleotide excision repair machinery. As an additional mechanism to minimize the risk of mutagenesis, UVB-irradiated cells also activate a checkpoint signaling cascade mediated by the ATM and Rad3-related (ATR) and checkpoint kinase 1 (CHK1) kinases to transiently suppress DNA synthesis and cell cycle progression. Given that keratinocytes in geriatric skin display reduced activation of the insulin-like growth factor 1 receptor (IGF-1R) and alterations in DNA repair rate, apoptosis, and senescence following UVB exposure, here we used cultured human keratinocytes in vitro and skin explants ex vivo to examine how IGF-1R activation status affects ATR-CHK1 kinase signaling and the inhibition of DNA replication following UVB irradiation. We find that disruption of IGF-1R signaling with small-molecule inhibitors or IGF-1 withdrawal partially abrogates both the phosphorylation and activation of CHK1 by ATR and the accompanying inhibition of chromosomal DNA synthesis in UVB-irradiated keratinocytes. A critical protein factor that mediates both ATR-CHK1 signaling and nucleotide excision repair is replication protein A, and we find that its accumulation on UVB-damaged chromatin is partially attenuated in cells with an inactive IGF-1R. These results indicate that mutagenesis and skin carcinogenesis in IGF-1-deficient geriatric skin may be caused by defects in multiple cellular responses to UVB-induced DNA damage, including through a failure to properly suppress DNA synthesis on UVB-damaged DNA templates.
Collapse
Affiliation(s)
- Michael G Kemp
- From the Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435,
| | - Dan F Spandau
- the Departments of Dermatology and.,Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, and
| | - Richard Simman
- From the Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435
| | - Jeffrey B Travers
- From the Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435.,the Dayton Veterans Affairs Medical Center, Dayton, Ohio 45428
| |
Collapse
|
17
|
Insulin-like growth factor-1 receptor regulates repair of ultraviolet B-induced DNA damage in human keratinocytes in vivo. Mol Oncol 2016; 10:1245-54. [PMID: 27373487 DOI: 10.1016/j.molonc.2016.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/24/2016] [Accepted: 06/07/2016] [Indexed: 11/23/2022] Open
Abstract
The activation status of the insulin-like growth factor-1 receptor (IGF-1R) regulates the cellular response of keratinocytes to ultraviolet B (UVB) exposure, both in vitro and in vivo. Geriatric skin is deficient in IGF-1 expression resulting in an aberrant IGF-1R-dependent UVB response which contributes to the development of aging-associated squamous cell carcinoma. Furthermore, our lab and others have reported that geriatric keratinocytes repair UVB-induced DNA damage less efficiently than young adult keratinocytes. Here, we show that IGF-1R activation influences DNA damage repair in UVB-irradiated keratinocytes. Specifically, in the absence of IGF-1R activation, the rate of DNA damage repair following UVB-irradiation was significantly slowed (using immortalized human keratinocytes) or inhibited (using primary human keratinocytes). Furthermore, inhibition of IGF-1R activity in human skin, using either ex vivo explant cultures or in vivo xenograft models, suppressed DNA damage repair. Primary keratinocytes with an inactivated IGF-1R also exhibited lower steady-state levels of nucleotide excision repair mRNAs. These results suggest that deficient UVB-induced DNA repair in geriatric keratinocytes is due in part to silenced IGF-1R activation in geriatric skin and provide a mechanism for how the IGF-1 pathway plays a role in the initiation of squamous cell carcinoma in geriatric patients.
Collapse
|
18
|
Novel Antioxidant Tripeptide "ACQ" Can Prevent UV-Induced Cell Death and Preserve the Number of Epidermal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015. [PMID: 26199677 PMCID: PMC4496495 DOI: 10.1155/2015/359740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We found that tripeptide “ACQ: alanine-cysteine-glutamine” has significant DPPH scavenging activity compared to that of glutathione. Antioxidant effects of ACQ were tested in in vitro and in vivo models. When treated with H2O2, mock treated fibroblasts and keratinocytes showed strong staining by H2DCFA. But, ACQ showed good protective effects against hydrogen peroxide treatment. When mice were fed for 2 or 4 weeks, similar protective effects were observed. In the control group, epidermis was severely damaged by UV irradiation and apoptotic keratinocytes were observed. There were also numerous TUNEL positive cells. But in the ACQ group, epidermis became thicker and there was no sign of severe damage. Interestingly, the number of p63 cells was also higher in ACQ fed mice. To confirm the stem cell rescuing effects of ACQ, three-dimensional skin samples were constructed. Results showed that ACQ increased the expression of integrin α6 and the number of p63 positive cells. These findings showed that ACQ has good antioxidant activity and may increase stem cell activities by the regulation of integrin α6.
Collapse
|