1
|
Plikus MV, Chuong CM. Understanding skin morphogenesis across developmental, regenerative and evolutionary levels. Exp Dermatol 2019; 28:327-331. [PMID: 30951234 PMCID: PMC7444456 DOI: 10.1111/exd.13932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
- Integrative Stem Cell Center, China Medical University, Taichung, Taiwan
- International Wound Repair and Regenerative Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Purba TS, Brunken L, Hawkshaw NJ, Peake M, Hardman J, Paus R. A primer for studying cell cycle dynamics of the human hair follicle. Exp Dermatol 2016; 25:663-8. [PMID: 27094702 DOI: 10.1111/exd.13046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 12/28/2022]
Abstract
The cell cycle is of major importance to human hair follicle (HF) biology. Not only is continuously active cell cycling required to facilitate healthy hair growth in anagen VI HFs, but perturbations in the cell cycle are likely to be of significance in HF pathology (i.e. in scarring, non-scarring, chemotherapy-induced and androgenic alopecias). However, cell cycle dynamics of the human hair follicle (HF) are poorly understood in contrast to what is known in mouse. The current Methods Review aims at helping to close this gap by presenting a primer that introduces immunohistological/immunofluorescent techniques to study the cell cycle in the human HF. Moreover, this primer encourages the exploitation of the human HF as a powerful and clinically relevant tool to investigate mammalian cell cycle biology in situ. To achieve this, we describe methods to study markers of general 'proliferation' (nuclei count, Ki-67 expression), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labelling, cleaved caspase 3), mitosis (phospho-histone H3, 'pS780'), DNA synthesis (5-ethynyl-2'-deoxyuridine) and cell cycle regulation (cyclins) in the human HF. In addition, we provide specific examples of dual immunolabelling for instructive cell cycle analyses and for investigating the cell cycle behaviour of specific HF keratinocyte subpopulations, such as keratin 15+ stem/progenitor cells.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lars Brunken
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, Venerology and Allergy, Charité University Medicine Berlin, Berlin, Germany
| | - Nathan J Hawkshaw
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Michael Peake
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,BSc Programme Biological Sciences, University of Huddersfield, Huddersfield, UK
| | - Jonathan Hardman
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|