1
|
Negrescu AM, Zampieri L, Martines E, Cimpean A. The Potential of a Novel Cold Atmospheric Plasma Jet as a Feasible Therapeutic Strategy for Gingivitis-A Cell-Based Study. Cells 2024; 13:1970. [PMID: 39682721 PMCID: PMC11640168 DOI: 10.3390/cells13231970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Due to its antimicrobial, anti-inflammatory and pro-healing properties, the application of cold atmospheric plasma (CAP) has emerged as a new and promising therapeutic strategy in various fields of medicine, including general medicine and dentistry. In this light, the aim of the present study was to investigate the effects of a homemade plasma jet on the cellular behaviour of two important cell types involved in gingivitis, namely gingival fibroblasts (HGF-1 cell line) and macrophages (RAW 264.7 cell line), by the direct application of CAP in different experimental conditions. The cellular behaviour of the HGF-1 cells was investigated in terms of viability/proliferation (LIVE/DEAD and CCK-8 assays), morphological features (immunofluorescent staining of the actin cytoskeleton) and fibronectin expression (immunocytochemical staining of the fibronectin network), while the macrophages' response was evaluated through the assessment of the cellular survival/proliferation rate (LIVE/DEAD and CCK-8 assays), morphological behaviour (immunofluorescent staining of the actin cytoskeleton) and inflammatory activity (pro-inflammatory cytokine secretion profile (ELISA assay) and foreign body giant cells (FBGCs) formation (immunofluorescent staining of the actin cytoskeleton and multinuclearity index determination)). The in vitro biological assessment revealed an upward trend dependent on treatment time and number of CAP applications, in terms of fibroblasts proliferation (p < 0.0001) and fibronectin expression (p < 0.0001). On the other hand, the macrophages exposed to five consecutive CAP applications for longer treatment times (over 120 s) exhibited a strong pro-inflammatory activity, as evinced by their altered morphology, pro-inflammatory cytokine profile (p < 0.0001) and FBGCs formation. Overall, our results demonstrate that CAP exposure, when used with appropriate operating parameters, has a beneficial effect on the cellular response of HGF-1 and RAW 264.7 cells, thus paving the way for further in vitro and in vivo investigations that will allow the translation of CAP treatment from research to clinic as an alternative therapy for gingivitis.
Collapse
Affiliation(s)
- Andreea-Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050657 Bucharest, Romania;
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| | - Leonardo Zampieri
- Department of Physics “Giuseppe Occhialini”, University of Milano-Bicocca, Piazza Della Scienza 3, 20126 Milan, Italy; (L.Z.); (E.M.)
| | - Emilio Martines
- Department of Physics “Giuseppe Occhialini”, University of Milano-Bicocca, Piazza Della Scienza 3, 20126 Milan, Italy; (L.Z.); (E.M.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050657 Bucharest, Romania;
| |
Collapse
|
2
|
Yun JH, Kim YS, Kang HY, Kang SU, Kim CH. A novel liquid plasma derivative inhibits melanogenesis through upregulation of Nrf2. Sci Rep 2024; 14:21851. [PMID: 39300161 DOI: 10.1038/s41598-024-72750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Non-thermal plasma (NTP) is an emerging technology with extensive applications in biomedicine, including treatment of abnormal pigmentation. However, very few studies have investigated how plasma induces anti-melanogenesis. Here, liquid plasma was prepared by treating an NTP jet with helium and oxygen (as carrier gases) for 15 min in serum-free culture media. In the zebrafish model, pigmentation ratio was observed with or without liquid plasma. The anti-melanogenic effect of liquid plasma was evaluated in human melanocytes by assessing the expression of melanogenesis-related genes using western blotting, RT-PCR, and immunohistochemistry. Liquid plasma reduced pigmentation in the zebrafish model and inhibited melanin synthesis in primary human melanocytes. Intracellular reactive oxygen species levels decreased and Nrf2 expression increased in liquid plasma-treated melanocytes. Liquid plasma affected microphthalmia-associated transcription factor (MITF) and tyrosinase mRNA and protein levels, tyrosinase activity, and melanin content. Considering the role of Wnt/β-catenin and PI3K/Akt pathways in melanogenesis, the effect of liquid plasma on this pathway was determined; liquid plasma decreased active β-catenin, LEF1/TCF4, MITF, and tyrosinase levels in a time-dependent manner and inhibited the nuclear translocation of β-catenin. This inhibition subsequently suppressed melanogenesis by downregulating MITF and tyrosinase. These results suggest that liquid plasma may be used for treating pigmentary disorders.
Collapse
Affiliation(s)
- Ju Hyun Yun
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Yeon Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 02841, Korea
| | - Hee Young Kang
- Department of Dermatology, School of Medicine, Ajou University, Suwon, 16499, Korea
| | - Sung Un Kang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 16499, Korea.
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
3
|
Yarangsee P, Khacha-ananda S, Pitchakarn P, Intayoung U, Sriuan S, Karinchai J, Wijaikhum A, Boonyawan D. A Nonclinical Safety Evaluation of Cold Atmospheric Plasma for Medical Applications: The Role of Genotoxicity and Mutagenicity Studies. Life (Basel) 2024; 14:759. [PMID: 38929742 PMCID: PMC11204557 DOI: 10.3390/life14060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Atmospheric nonthermal plasma (ANTP) has rapidly evolved as an innovative tool in biomedicine with various applications, especially in treating skin diseases. In particular, the formation of reactive oxygen species (ROS) and nitrogen species (RNS), which are generated by ANTP, plays an important role in the biological signaling pathways of human cells. Unfortunately, excessive amounts of these reactive species significantly result in cellular damage and cell death induction. To ensure the safe application of ANTP, preclinical in vitro studies must be conducted before proceeding to in vivo or clinical trials involving humans. Our study aimed to investigate adverse effects on genetic substances in murine fibroblast cells exposed to ANTP. Cell viability and proliferation were markedly reduced after exposing the cells with plasma. Both extracellular and intracellular reactive species, especially RNS, were significantly increased upon plasma exposure in the culture medium and the cells. Notably, significant DNA damage in the cells was observed in the cells exposed to plasma. However, plasma was not classified as a mutagen in the Ames test. This suggested that plasma led to the generation of both extracellular and intracellular reactive species, particularly nitrogen species, which affect cell proliferation and are also known to induce genetic damage in fibroblast cells. These results highlight the genotoxic and mutagenic effects of ANTP, emphasizing the need for the cautious selection of plasma intensity in specific applications to avoid adverse side effects resulting from reactive species production.
Collapse
Affiliation(s)
- Piimwara Yarangsee
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.Y.); (U.I.); (S.S.)
| | - Supakit Khacha-ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.Y.); (U.I.); (S.S.)
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Unchisa Intayoung
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.Y.); (U.I.); (S.S.)
| | - Sirikhwan Sriuan
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.Y.); (U.I.); (S.S.)
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Apiwat Wijaikhum
- Research and Innovation Division, Electricity Generating Authority of Thailand, Nonthaburi 11130, Thailand;
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Facility, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
4
|
Du L, Ming H, Yan Z, Chen J, Song W, Dai H. Decitabine combined with cold atmospheric plasma induces pyroptosis via the ROS/Caspase-3/GSDME signaling pathway in Ovcar5 cells. Biochim Biophys Acta Gen Subj 2024; 1868:130602. [PMID: 38513927 DOI: 10.1016/j.bbagen.2024.130602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/06/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND High methylation of the DFNA5 gene results in the absence of GSDME, a key protein that mediates pyroptosis, while decitabine demethylates the DFNA5 gene, resulting in high expression of the GSDME protein. Cold atmospheric plasma (CAP) is a novel anti-cancer method that induces tumor cell death. METHODS The pyroptosis induced by decitabine in combination with CAP in Ovcar5 cells was evaluated. In particular, mitochondrial membrane potential was estimated by JC-1 staining, dehydrogenase (LDH) release was assessed by ELISA, Annexin V/PI staining was detected by flow cytometry, the cell cycle changes were evaluated using PI staining followed by detection by flow cytometry, and Caspase-9 cleavage, Caspase-3 cleavage and GSDME expression were evaluated by western blot. RESULTS Decitabine resulted in high expression of the GSDME in Ovcar5 in a concentration-dependent manner and increased tumor cell sensitivity to CAP. CAP induced mitochondrial damage and activated the Caspase-9/Caspase-3 pathway. Therefore, decitabine combined with CAP induced Ovcar5 cell pyroptosis through Caspase-3 mediated GSDME cleavage. Reactive oxygen species (ROS) generated by CAP treatment played an important role in the CAP/decitabine combination-induced production of ROS, activation of Caspase-9/Caspase-3, GSDME cleavage and pyroptosis that ROS scavenger NAC inhibited all these processes. CONCLUSIONS CAP combined with decitabine induced Caspase-3 activation, which cleaved decitabine-upregulated GSDME and ediated pyroptosis.
Collapse
Affiliation(s)
- Liang Du
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Huiyun Ming
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhuna Yan
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jinwu Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; School of Life Science, Hefei Normal University, Hefei 230061, China.
| | - Wencheng Song
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, China.
| | - Haiming Dai
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
5
|
Kang SU, Kim HJ, Ma S, Oh DY, Jang JY, Seo C, Lee YS, Kim CH. Liquid plasma promotes angiogenesis through upregulation of endothelial nitric oxide synthase-induced extracellular matrix metabolism: potential applications of liquid plasma for vascular injuries. Cell Commun Signal 2024; 22:138. [PMID: 38374138 PMCID: PMC10875778 DOI: 10.1186/s12964-023-01412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/25/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Applications of nonthermal plasma have expanded beyond the biomedical field to include antibacterial, anti-inflammatory, wound healing, and tissue regeneration. Plasma enhances epithelial cell repair; however, the potential damage to deep tissues and vascular structures remains under investigation. RESULT This study assessed whether liquid plasma (LP) increased nitric oxide (NO) production in human umbilical vein endothelial cells by modulating endothelial NO synthase (eNOS) phosphorylation and potential signaling pathways. First, we developed a liquid plasma product and confirmed the angiogenic effect of LP using the Matrigel plug assay. We found that the NO content increased in plasma-treated water. NO in plasma-treated water promoted cell migration and angiogenesis in scratch and tube formation assays via vascular endothelial growth factor mRNA expression. In addition to endothelial cell proliferation and migration, LP influenced extracellular matrix metabolism and matrix metalloproteinase activity. These effects were abolished by treatment with NG-L-monomethyl arginine, a specific inhibitor of NO synthase. Furthermore, we investigated the signaling pathways mediating the phosphorylation and activation of eNOS in LP-treated cells and the role of LKB1-adenosine monophosphate-activated protein kinase in signaling. Downregulation of adenosine monophosphate-activated protein kinase by siRNA partially inhibited LP-induced eNOS phosphorylation, angiogenesis, and migration. CONCLUSION The present study suggests that LP treatment may be a novel strategy for promoting angiogenesis in vascular damage. Video Abstract.
Collapse
Affiliation(s)
- Sung Un Kang
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Sukhwal Ma
- Medical Accelerator Research Team, Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowonro, Nowon-gu, Seoul, 01812, South Korea
| | - Doo-Yi Oh
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Chorong Seo
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Department of Molecular Science and Technology, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-Gu, Suwon, 443-380, Republic of Korea.
| |
Collapse
|
6
|
Ouyang H, Wang L, Sapkota D, Yang M, Morán J, Li L, Olson BA, Schwartz M, Hogan CJ, Torremorell M. Control technologies to prevent aerosol-based disease transmission in animal agriculture production settings: a review of established and emerging approaches. Front Vet Sci 2023; 10:1291312. [PMID: 38033641 PMCID: PMC10682736 DOI: 10.3389/fvets.2023.1291312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Transmission of infectious agents via aerosols is an ever-present concern in animal agriculture production settings, as the aerosol route to disease transmission can lead to difficult-to-control and costly diseases, such as porcine respiratory and reproductive syndrome virus and influenza A virus. It is increasingly necessary to implement control technologies to mitigate aerosol-based disease transmission. Here, we review currently utilized and prospective future aerosol control technologies to collect and potentially inactivate pathogens in aerosols, with an emphasis on technologies that can be incorporated into mechanically driven (forced air) ventilation systems to prevent aerosol-based disease spread from facility to facility. Broadly, we find that control technologies can be grouped into three categories: (1) currently implemented technologies; (2) scaled technologies used in industrial and medical settings; and (3) emerging technologies. Category (1) solely consists of fibrous filter media, which have been demonstrated to reduce the spread of PRRSV between swine production facilities. We review the mechanisms by which filters function and are rated (minimum efficiency reporting values). Category (2) consists of electrostatic precipitators (ESPs), used industrially to collect aerosol particles in higher flow rate systems, and ultraviolet C (UV-C) systems, used in medical settings to inactivate pathogens. Finally, category (3) consists of a variety of technologies, including ionization-based systems, microwaves, and those generating reactive oxygen species, often with the goal of pathogen inactivation in aerosols. As such technologies are typically first tested through varied means at the laboratory scale, we additionally review control technology testing techniques at various stages of development, from laboratory studies to field demonstration, and in doing so, suggest uniform testing and report standards are needed. Testing standards should consider the cost-benefit of implementing the technologies applicable to the livestock species of interest. Finally, we examine economic models for implementing aerosol control technologies, defining the collected infectious particles per unit energy demand.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - Lan Wang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Deepak Sapkota
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - My Yang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - José Morán
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Li Li
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Bernard A. Olson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Mark Schwartz
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Schwartz Farms, Sleepy Eye, MN, United States
| | - Christopher J. Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
7
|
Lee HR, Kang SU, Kim HJ, Ji EJ, Yun JH, Kim S, Jang JY, Shin YS, Kim CH. Liquid plasma as a treatment for cutaneous wound healing through regulation of redox metabolism. Cell Death Dis 2023; 14:119. [PMID: 36781835 PMCID: PMC9925775 DOI: 10.1038/s41419-023-05610-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/15/2023]
Abstract
The skin functions as the outermost protective barrier to the internal organs and major vessels; thus, delayed regeneration from acute injury could induce serious clinical complications. For rapid recovery of skin wounds, promoting re-epithelialization of the epidermis at the initial stage of injury is essential, wherein epithelial keratinocytes act as leading cells via migration. This study applied plasma technology, which has been known to enable wound healing in the medical field. Through in vitro and in vivo experiments, the study elucidated the effect and molecular mechanism of the liquid plasma (LP) manufactured by our microwave plasma system, which was found to improve the applicability of existing gas-type plasma on skin cell migration for re-epithelialization. LP treatment promoted the cytoskeletal transformation of keratinocytes and migration owing to changes in the expression of integrin-dependent focal adhesion molecules and matrix metalloproteinases (MMPs). This study also identified the role of increased levels of intracellular reactive oxygen species (ROS) as a driving force for cell migration activation, which was regulated by changes in NADPH oxidases and mitochondrial membrane potential. In an in vivo experiment using a murine dorsal full-thickness acute skin wound model, LP treatment helped improve the re-epithelialization rate, reaffirming the activation of the underlying intracellular ROS-dependent integrin-dependent signaling molecules. These findings indicate that LP could be a valuable wound management material that can improve the regeneration potential of the skin via the activation of migration-related molecular signaling within the epithelial cell itself with plasma-driven oxidative eustress.
Collapse
Affiliation(s)
- Hye Ran Lee
- Department of Otolaryngology-Head and Neck Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon, 22711, Republic of Korea
- Department of Medical Sciences, Otolaryngology, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Eun Jong Ji
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Ju Hyun Yun
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungryeal Kim
- Department of Otolaryngology, College of Medicine, Inha University, Incheon, 22332, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
8
|
Davies HL, Guerra V, van der Woude M, Gans T, O’Connell D, Gibson AR. Vibrational kinetics in repetitively pulsed atmospheric pressure nitrogen discharges: average-power-dependent switching behaviour. PLASMA SOURCES SCIENCE & TECHNOLOGY 2023; 32:014003. [PMID: 36777326 PMCID: PMC9905790 DOI: 10.1088/1361-6595/aca9f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
Characterisation of the vibrational kinetics in nitrogen-based plasmas at atmospheric pressure is crucial for understanding the wider plasma chemistry, which is important for a variety of biomedical, agricultural and chemical processing applications. In this study, a 0-dimensional plasma chemical-kinetics model has been used to investigate vibrational kinetics in repetitively pulsed, atmospheric pressure plasmas operating in pure nitrogen, under application-relevant conditions (average plasma powers of 0.23-4.50 W, frequencies of 1-10 kHz, and peak pulse powers of 23-450 W). Simulations predict that vibrationally excited state production is dominated by electron-impact processes at lower average plasma powers. When the average plasma power increases beyond a certain limit, due to increased pulse frequency or peak pulse power, there is a switch in behaviour, and production of vibrationally excited states becomes dominated by vibrational energy transfer processes (vibration-vibration (V-V) and vibration-translation (V-T) reactions). At this point, the population of vibrational levels up to v ⩽ 40 increases significantly, as a result of V-V reactions causing vibrational up-pumping. At average plasma powers close to where the switching behaviour occurs, there is potential to control the energy efficiency of vibrational state production, as small increases in energy deposition result in large increases in vibrational state densities. Subsequent pathways analysis reveals that energy in the vibrational states can also influence the wider reaction chemistry through vibrational-electronic (V-E) linking reactions (N + N2 ( 40 ⩽ v ⩽ 45 ) → N( 2 D ) + N2 ( A ) and N + N2 ( 39 ⩽ v ⩽ 45 ) → N + N2 ( a ' ) ), which result in increased Penning ionisation and an increased average electron density. Overall, this study investigates the potential for delineating the processes by which electronically and vibrationally excited species are produced in nitrogen plasmas. Therefore, potential routes by which nitrogen-containing plasma sources could be tailored, both in terms of chemical composition and energy efficiency, are highlighted.
Collapse
Affiliation(s)
- Helen L Davies
- York Plasma Institute, Department of Physics, University of York, Heslington, YO10 5DD, United Kingdom
| | - Vasco Guerra
- Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Marjan van der Woude
- York Biomedical Research Institute and Hull York Medical School, University of York, Heslington, YO10 5DD, United Kingdom
| | - Timo Gans
- School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
| | - Deborah O’Connell
- School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
| | - Andrew R Gibson
- Research Group for Biomedical Plasma Technology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
9
|
Suwanchinda A, Nararatwanchai T. Efficacy and safety of the innovative cold atmospheric-pressure plasma technology in the treatment of keloid: A randomized controlled trial. J Cosmet Dermatol 2022; 21:6788-6797. [PMID: 36120805 DOI: 10.1111/jocd.15397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Keloid (KD) treatment is challenging for both physicians and patients. It can be functional debilitating and psychologically distressing. Available current therapeutics modalities give inconsistently effective results. OBJECTIVES To evaluate the efficacy and safety of innovative cold atmospheric plasma (CAP) technology in the treatment of keloid. METHODS This prospective, randomized control trial, the assessor-blinded trial, includes 18 patients with keloids. The keloid lesion was divided into two halves. One side was randomly treated with CAP technology biweekly on the same treated side for five sessions with a follow-up 30 days after finishing the final treatment. Another half was left untreated as a control. Efficacy assessment using POSAS, VSS, Patients' satisfaction scale, Antera 3D® skin imaging system. The safety assessment using VAS and adverse effects monitoring was completed. RESULTS Objective assessment using Antera 3D® skin imaging system (Miravex, Dublin, Ireland) showed statistically significant improvement (p-value <0.05) on the treated side compared with the untreated side in all parameters, color, melanin, hemoglobin, texture, except for volume. POSAS, patient, and observer overall opinion score, and patient and observer total score in the summary of all rated characteristics, comparing the treated and untreated areas, showed a statistically significant reduction in all parameters after two treatments (*p-value <0.05). VSS showed statistically significant improvement after the second treatment and continued to the last follow-up. Most patients rated satisfaction scales up to 72.2% as moderate improvement, 11.1% as great improvement, 11.1% as slight improvement, and 5.6% as no change. The adverse effect was only a small scab in one patient. CONCLUSION CAP technology could be considered an alternative treatment for keloid offering mild-to-moderate improvement with minimal side effects.
Collapse
Affiliation(s)
- Atchima Suwanchinda
- Department of Dermatology, School of Anti-aging and Regenerative Medicine, Mae Fah Luang University, Bangkok, Thailand
| | - Thamthiwat Nararatwanchai
- Department of Dermatology, School of Anti-aging and Regenerative Medicine, Mae Fah Luang University, Bangkok, Thailand
| |
Collapse
|
10
|
Perrotti V, Caponio VCA, Muzio LL, Choi EH, Marcantonio MCD, Mazzone M, Kaushik NK, Mincione G. Open Questions in Cold Atmospheric Plasma Treatment in Head and Neck Cancer: A Systematic Review. Int J Mol Sci 2022; 23:ijms231810238. [PMID: 36142145 PMCID: PMC9498988 DOI: 10.3390/ijms231810238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022] Open
Abstract
Over the past decade, we witnessed a promising application of cold atmospheric plasma (CAP) in cancer therapy. The aim of this systematic review was to provide an exhaustive state of the art of CAP employed for the treatment of head and neck cancer (HNC), a tumor whose late diagnosis, local recurrence, distant metastases, and treatment failure are the main causes of patients’ death. Specifically, the characteristics and settings of the CAP devices and the in vitro and in vivo treatment protocols were summarized to meet the urgent need for standardization. Its molecular mechanisms of action, as well as the successes and pitfalls of current CAP applications in HNC, were discussed. Finally, the interesting emerging preclinical hypotheses that warrant further clinical investigation have risen. A total of 24 studies were included. Most studies used a plasma jet device (54.2%). Argon resulted as the mostly employed working gas (33.32%). Direct and indirect plasma application was reported in 87.5% and 20.8% of studies, respectively. In vitro investigations were 79.17%, most of them concerned with direct treatment (78.94%). Only eight (33.32%) in vivo studies were found; three were conducted in mice, and five on human beings. CAP showed pro-apoptotic effects more efficiently in tumor cells than in normal cells by altering redox balance in a way that oxidative distress leads to cell death. In preclinical studies, it exhibited efficacy and tolerability. Results from this systematic review pointed out the current limitations of translational application of CAP in the urge of standardization of the current protocols while highlighting promising effects as supporting treatment in HNC.
Collapse
Affiliation(s)
- Vittoria Perrotti
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | | | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Mariangela Mazzone
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
11
|
The Multiple Roles of CD147 in the Development and Progression of Oral Squamous Cell Carcinoma: An Overview. Int J Mol Sci 2022; 23:ijms23158336. [PMID: 35955471 PMCID: PMC9369056 DOI: 10.3390/ijms23158336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cluster of differentiation (CD)147, also termed extracellular matrix metalloprotease inducer or basigin, is a glycoprotein ubiquitously expressed throughout the human body, the oral cavity included. CD147 actively participates in physiological tissue development or growth and has important roles in reactive processes such as inflammation, immunity, and tissue repair. It is worth noting that deregulated expression and/or activity of CD147 is observed in chronic inflammatory or degenerative diseases, as well as in neoplasms. Among the latter, oral squamous cell carcinoma (OSCC) is characterized by an upregulation of CD147 in both the neoplastic and normal cells constituting the tumor mass. Most interestingly, the expression and/or activity of CD147 gradually increase as healthy oral mucosa becomes inflamed; hyperplastic/dysplastic lesions are then set on, and, eventually, OSCC develops. Based on these findings, here we summarize published studies which evaluate whether CD147 could be employed as a marker to monitor OSCC development and progression. Moreover, we describe CD147-promoted cellular and molecular events which are relevant to oral carcinogenesis, with the aim to provide useful information for assessing whether CD147 may be the target of novel therapeutic approaches directed against OSCC.
Collapse
|
12
|
Lan H, Zou M, Zhu F, Chen H, Wang T, Huang X. Pro‐angiogenic role of
ZEB1
in skin wound healing by upregulating
VEGFA
via
microRNA
‐206 suppression. Exp Dermatol 2022; 31:1392-1401. [PMID: 35570385 DOI: 10.1111/exd.14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Hongwei Lan
- Department of Burn Plastic Surgery The First Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan P.R. China
| | - Meilin Zou
- Department of Burn Plastic Surgery The First Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan P.R. China
| | - Furong Zhu
- Department of Burn Plastic Surgery The First Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan P.R. China
| | - Hongping Chen
- Department of Burn Plastic Surgery The First Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan P.R. China
| | - Tingting Wang
- Department of Burn Plastic Surgery The First Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan P.R. China
| | - Xinling Huang
- Department of Burn Plastic Surgery The First Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan P.R. China
| |
Collapse
|
13
|
Lee HR, Lee YS, You YS, Huh JY, Kim K, Hong YC, Kim CH. Antimicrobial effects of microwave plasma-activated water with skin protective effect for novel disinfectants in pandemic era. Sci Rep 2022; 12:5968. [PMID: 35396389 PMCID: PMC8992786 DOI: 10.1038/s41598-022-10009-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Skin antiseptics have important implications for public health and medicine. Although conventional antiseptics have considerable antimicrobial activity, skin toxicity and the development of resistance are common problems. Plasma-treated water has sterilization and tissue-regenerative effects. Therefore, the aim of this study was to identify whether plasma-activated water (PAW) manufactured by our microwave plasma system can be used as a novel antiseptic solution for skin protection. PAW was produced by dissolving reactive nitrogen oxide gas using microwave plasma in deionized water. The antibacterial effects of PAW against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, and Salmonella typhimurium and effective concentrations were investigated by a solid agar plate assay. The factors mediating the effects of PAW were evaluated by the addition of reactive species scavengers. Cytotoxicity and cell viability assays were performed to examine the protective effect of PAW on normal skin cells. PAW exhibited excellent sterilization and no toxicity in normal skin cells. Experiments also confirmed the potential of PAW as a sanitizer for SARS-CoV-2. Our findings support the use of PAW as an effective skin disinfectant with good safety in the current situation of a global pandemic.
Collapse
Affiliation(s)
- Hye Ran Lee
- Department of Otolaryngology-Head and Neck Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon, 22711, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, 164 World-Cup Street, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Young Suk You
- Plarit Co., Ltd., 443 Samnye-ro Samnye-eup, Wanju-gun, Jeollabuk-do, 565-701, Republic of Korea
| | - Jin Young Huh
- ICD Co., Ltd., 274 Manse-ro, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17542, Republic of Korea
| | - Kangil Kim
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 814-2 Ohsikdo-dong, Gunsan, 573-540, Republic of Korea
| | - Yong Cheol Hong
- Division of Applied Technology Research, National Fusion Research Institute, 113 Gwahangno, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, 164 World-Cup Street, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
14
|
Kang SU, Kim CH, Kim HK, Yoon YW, Kim YK, Kim SJ. Effect of the Plasma Gas Type on the Surface Characteristics of 3Y-TZP Ceramic. Int J Mol Sci 2022; 23:3007. [PMID: 35328427 PMCID: PMC8950882 DOI: 10.3390/ijms23063007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Plasma surface treatment can be an attractive strategy for modifying the chemically inert nature of zirconia to improve its clinical performance. This study aimed to clarify the effect of plasma gas compositions on the physicochemical surface modifications of 3 mol% yttria-stabilized zirconia (3Y-TZP). The cold, atmospheric plasma discharges were carried out by using four different plasma gases, which are He/O2, N2/Ar, N2, and Ar from an application distance of 10 mm for 60 s. Static contact angles were measured to define the surface free energy. Changes in elemental composition, surface crystallinity, and surface topography were assessed with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM), respectively. A significant decrease in water contact angle was observed in all plasma groups with the lowest value of 69° in the N2/Ar group. CLSM and SEM investigations exhibited no morphological changes in all plasma groups. XPS revealed that a reduction in the surface C content along with an increase in O content was pronounced in the case of N2/Ar compared to others, which was responsible for high hydrophilicity of the surface. XRD showed that the changes in crystallite size and microstrain due to oxygen atom displacements were observed in the N2/Ar group. The N2/Ar plasma treatment may contribute to enhancing the bioactivity as well as the bonding performance of 3Y-TZP by controlling the plasma-generated nitrogen functionalities.
Collapse
Affiliation(s)
- Sung-Un Kang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea;
- Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Hee-Kyung Kim
- Department of Prosthodontics, Institute of Oral Health Science, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ye-Won Yoon
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea; (Y.-W.Y.); (Y.-K.K.); (S.-J.K.)
| | - Yu-Kwon Kim
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea; (Y.-W.Y.); (Y.-K.K.); (S.-J.K.)
| | - Seung-Joo Kim
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea; (Y.-W.Y.); (Y.-K.K.); (S.-J.K.)
| |
Collapse
|
15
|
Choi KY, Sultan MT, Ajiteru O, Hong H, Lee YJ, Lee JS, Lee H, Lee OJ, Kim SH, Lee JS, Park SJ, Eden JG, Park CH. Treatment of Fungal-Infected Diabetic Wounds with Low Temperature Plasma. Biomedicines 2021; 10:27. [PMID: 35052706 PMCID: PMC8773309 DOI: 10.3390/biomedicines10010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus renders patients susceptible to chronic wounds and various infections. Regarding the latter, fungal infections are of particular concern since, although they are the source of significant morbidity and mortality in immunocompromised patients, they are generally resistant to conventional treatment and a definite treatment strategy has not yet been established. Herein, we report the treatment of skin wounds in a diabetic rat model, infected by Candida albicans, with low temperature helium plasma generated in a hand-held atmospheric jet device. A fungal infection was induced on two dorsal skin wounds of the diabetic rats, and one wound was treated with the plasma jet whereas the other served as a control. Histological analysis revealed accelerated skin wound healing and decreased evidence of fungal infection in the plasma-treated group, as compared to the control group. Regeneration of the epidermis and dermis, collagen deposition, and neovascularization were all observed as a result of plasma treatment, but without wound contraction, scar formation or any evidence of thermal damage to the tissue. These findings demonstrate that the He plasma jet is remarkably effective in diabetic skin wounds infected by Candida albicans, thereby providing a promising medical treatment option for diabetes mellitus patients with skin wound and fungal infections.
Collapse
Affiliation(s)
- Kyu Young Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Kangnam Sacred Heart Hospital, Seoul 07441, Korea;
| | - Md. Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Korea; (M.T.S.); (O.A.); (H.H.); (Y.J.L.); (J.S.L.); (H.L.); (O.J.L.); (S.H.K.)
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Korea; (M.T.S.); (O.A.); (H.H.); (Y.J.L.); (J.S.L.); (H.L.); (O.J.L.); (S.H.K.)
| | - Heesun Hong
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Korea; (M.T.S.); (O.A.); (H.H.); (Y.J.L.); (J.S.L.); (H.L.); (O.J.L.); (S.H.K.)
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Korea; (M.T.S.); (O.A.); (H.H.); (Y.J.L.); (J.S.L.); (H.L.); (O.J.L.); (S.H.K.)
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Korea; (M.T.S.); (O.A.); (H.H.); (Y.J.L.); (J.S.L.); (H.L.); (O.J.L.); (S.H.K.)
| | - Hanna Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Korea; (M.T.S.); (O.A.); (H.H.); (Y.J.L.); (J.S.L.); (H.L.); (O.J.L.); (S.H.K.)
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Korea; (M.T.S.); (O.A.); (H.H.); (Y.J.L.); (J.S.L.); (H.L.); (O.J.L.); (S.H.K.)
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Korea; (M.T.S.); (O.A.); (H.H.); (Y.J.L.); (J.S.L.); (H.L.); (O.J.L.); (S.H.K.)
| | - Joong Seob Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Anyang 14068, Korea;
| | - Sung-Jin Park
- Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA; (S.-J.P.); (J.G.E.)
| | - James Gary Eden
- Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA; (S.-J.P.); (J.G.E.)
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Korea; (M.T.S.); (O.A.); (H.H.); (Y.J.L.); (J.S.L.); (H.L.); (O.J.L.); (S.H.K.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
| |
Collapse
|
16
|
Barillari G, Bei R, Manzari V, Modesti A. Infection by High-Risk Human Papillomaviruses, Epithelial-to-Mesenchymal Transition and Squamous Pre-Malignant or Malignant Lesions of the Uterine Cervix: A Series of Chained Events? Int J Mol Sci 2021; 22:13543. [PMID: 34948338 PMCID: PMC8703928 DOI: 10.3390/ijms222413543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Wound healing requires static epithelial cells to gradually assume a mobile phenotype through a multi-step process termed epithelial-to-mesenchymal transition (EMT). Although it is inherently transient and reversible, EMT perdures and is abnormally activated when the epithelium is chronically exposed to pathogens: this event deeply alters the tissue and eventually contributes to the development of diseases. Among the many of them is uterine cervical squamous cell carcinoma (SCC), the most frequent malignancy of the female genital system. SCC, whose onset is associated with the persistent infection of the uterine cervix by high-risk human papillomaviruses (HR-HPVs), often relapses and/or metastasizes, being resistant to conventional chemo- or radiotherapy. Given that these fearsome clinical features may stem, at least in part, from the exacerbated and long-lasting EMT occurring in the HPV-infected cervix; here we have reviewed published studies concerning the impact that HPV oncoproteins, cellular tumor suppressors, regulators of gene expression, inflammatory cytokines or growth factors, and the interactions among these effectors have on EMT induction and cervical carcinogenesis. It is predictable and desirable that a broader comprehension of the role that EMT inducers play in SCC pathogenesis will provide indications to flourish new strategies directed against this aggressive tumor.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montellier, 00133 Rome, Italy; (R.B.); (V.M.); (A.M.)
| | | | | | | |
Collapse
|
17
|
Pekbağrıyanık T, Dadas FK, Enhoş Ş. Effects of non-thermal atmospheric pressure plasma on palatal wound healing of free gingival grafts: a randomized controlled clinical trial. Clin Oral Investig 2021; 25:6269-6278. [PMID: 33877440 DOI: 10.1007/s00784-021-03925-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/29/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of this trial was to evaluate the effects of non-thermal atmospheric pressure plasma (NAPP) on wound healing, epithelization, local pain, bleeding, and alteration of sensation in palatal donor site. MATERIALS AND METHODS Forty patients with inadequate attached gingiva were included in the study. Patients were divided into two groups: (i) NAPP group (Free gingival graft [FGG] + NAPP) and (ii) control group (FGG alone). NAPP was performed immediately after the operation and on days 3 and 7. Pain, bleeding, and the amount of medication were recorded by patients every day. Epithelization in donor site, alteration of sensation and color match were assessed weekly for 2 months. Inter-group comparisons of continuous variables by time were performed with two-way repeated measures ANOVA test and a general linear model. Categorical variables were compared using Chi-square exact test. A p value of < 0.05 was considered significant. RESULTS At week 2, the number of patients with complete epithelization was greater in the NAPP group compared to the control group (p < 0.05). Additionally, color match in donor site was better in the NAPP group than in the control group (p < 0.05) during the first five follow-up assessments. No significant difference was found between the two groups with regard to bleeding, pain level, drug use, and alteration of sensation. CONCLUSION The NAPP application increased the epithelization and accelerated the wound healing process although it did not decrease the level of pain and sensation. CLINICAL RELEVANCE Our data suggested that the NAPP application may help epithelization and thus may shorten the recovery time after oral surgeries.
Collapse
Affiliation(s)
- Tuğba Pekbağrıyanık
- Department of Periodontology, Izmir Katip Celebi University, 35640, Cigli, Izmir, Turkey. .,Public Oral Health Care Center, 35560, Karsıyaka, Izmir, Turkey.
| | - Fadime Kaya Dadas
- Department of Periodontology, Izmir Katip Celebi University, 35640, Cigli, Izmir, Turkey.,Private Practice, Izmir, Turkey
| | - Şükrü Enhoş
- Department of Periodontology, Izmir Katip Celebi University, 35640, Cigli, Izmir, Turkey
| |
Collapse
|
18
|
Akter M, Yadav DK, Ki SH, Choi EH, Han I. Inactivation of Infectious Bacteria Using Nonthermal Biocompatible Plasma Cabinet Sterilizer. Int J Mol Sci 2020; 21:ijms21218321. [PMID: 33171928 PMCID: PMC7664273 DOI: 10.3390/ijms21218321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/29/2022] Open
Abstract
Nonthermal, biocompatible plasma (NBP) is a promising unique state of matter that is effective against a wide range of pathogenic microorganisms. This study focused on a sterilization method for bacteria that used the dielectric barrier discharge (DBD) biocompatible plasma cabinet sterilizer as an ozone generator. Reactive oxygen species play a key role in inactivation when air or other oxygen-containing gases are used. Compared with the untreated control, Escherichia coli(E. coli), Staphylococcus aureus (S. aureus), and Salmonella typhimurium (sepsis) were inhibited by approximately 99%, or were nondetectable following plasma treatment. Two kinds of plasma sterilizers containing six- or three-chamber cabinets were evaluated. There was no noticeable difference between the two configurations in the inactivation of microorganisms. Both cabinet configurations were shown to be able to reduce microbes dramatically, i.e., to the nondetectable range. Therefore, our data indicate that the biocompatible plasma cabinet sterilizer may prove to be an appropriate alternative sterilization procedure.
Collapse
Affiliation(s)
- Mahmuda Akter
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea;
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy, College of Pharmacy, Gachon University of Medicine and Science, Incheon City 21924, Korea;
| | - Se Hoon Ki
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea;
- Department of Electronic and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Eun Ha Choi
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea;
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea;
- Department of Electronic and Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (E.H.C.); (I.H.)
| | - Ihn Han
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea;
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea;
- Correspondence: (E.H.C.); (I.H.)
| |
Collapse
|
19
|
Gökçelli U, Ercan UK, İlhan E, Argon A, Çukur E, Üreyen O. Prevention of Peritoneal Adhesions by Non-Thermal Dielectric Barrier Discharge Plasma Treatment on Mouse Model: A Proof of Concept Study. J INVEST SURG 2020; 33:605-614. [PMID: 30644787 DOI: 10.1080/08941939.2018.1550542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purposes: Formation of peritoneal adhesions is a common consequence of abdominopelvic surgeries and remarkably increases the mortality and morbidity. Moreover, peritoneal adhesions linked to chronic abdominopelvic pain and infertility in women. Various attempts for prevention of peritoneal adhesions were reported. However, these methods either remain insufficient to prevent formation of peritoneal adhesions or carry some practical limitations and thus, there is a need for novel techniques that could effectively decrease the formation of peritoneal adhesions. The aim of the present prospective, randomized, controlled, and single blinded study was to evaluate the effect of non-thermal atmospheric plasma (NTAP) treatment on prevention of peritoneal adhesions. Materials and Methods: Sixteen male CD-1 mice were randomly divided into two groups: control and plasma. Excisional and abrasion adhesion models were generated on the peritoneal side wall and cecum, respectively. Ten days after creating adhesion models, mice were sacrificed and adhesion formations were evaluated macroscopically using Knightly's and Linsky's grading systems to assess the intensity and extent of adhesions, respectively. Zühlke's grading system was used for microscopic assessment of adhesions. Results: The mean scores for peritoneum and cecum in control group according to Knightly's grading system were determined as 3.3 and 2.6, respectively. In NTAP-treated group, Knightly's score was determined as 1.6 and 0.5 for peritoneum and cecum, respectively. NTAP treatment reduced Linsky's score from 3.8 to 1.3 and 2.1 to 1.1 on peritoneum and cecum. Finally, in microscopic evaluation, NTAP treatment reduced Zühlke's score from 3.4 to 1.5 and 2.6 to 1.3 for peritoneum and cecum, respectively. Conclusions: The results of the present proof of concept study suggest that NTAP could be a novel method to reduce and/or prevent the formation of peritoneal adhesions after abdominopelvic surgeries.
Collapse
Affiliation(s)
- Uğur Gökçelli
- Department of General Surgery, İzmir Bozyaka Research and Training Hospital, University of Health Sciences, İzmir, Turkey
| | - Utku Kürşat Ercan
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Enver İlhan
- Department of General Surgery, İzmir Bozyaka Research and Training Hospital, University of Health Sciences, İzmir, Turkey
| | - Asuman Argon
- Department of Pathology, İzmir Bozyaka Research and Training Hospital, University of Health Sciences, İzmir, Turkey
| | - Elif Çukur
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Orhan Üreyen
- Department of General Surgery, İzmir Bozyaka Research and Training Hospital, University of Health Sciences, İzmir, Turkey
| |
Collapse
|
20
|
Prabhakar PK, Singh K, Kabra D, Gupta J. Natural SIRT1 modifiers as promising therapeutic agents for improving diabetic wound healing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153252. [PMID: 32505916 DOI: 10.1016/j.phymed.2020.153252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The occurrence of chronic wounds, account for significant suffering of diabetic people, together with increasing healthcare burden. The chronic wounds associated with diabetes do not undergo the normal healing process rather stagnate into chronic proinflammatory phase as well as declined fibroblast function and impaired cell migration. HYPOTHESIS SIRT1, which is the most studied isoform of the sirtuin family in mammals, has now emerged as a crucial target for improving diabetic wound healing. It is an NAD+ dependent deacetylase, originally characterized to deacetylate histone proteins leading to heterochromatin formation and gene silencing. It is now known to regulate a number of cellular processes like cell proliferation, division, senescence, apoptosis, DNA repair, and metabolism. METHODOLOGY The retrieval of potentially relevant studies was done by systematically searching of three databases (Google Scholar, Web of science and PubMed) in December 2019. The keywords used as search terms were related to SIRT1 and wound healing. The systematic search retrieved 649 papers that were potentially relevant and after selection procedure, 73 studies were included this review and discussed below. RESULTS Many SIRT1 activating compounds (SACs) were found protective and improve diabetic wound healing through regulation of inflammation, cell migration, oxidative stress response and formation of granulation tissue at the wound site. CONCLUSIONS However, contradictory reports describe the opposing role of SACs on the regulation of cell migration and cancer incidence. SACs are therefore subjected to intense research for understanding the mechanisms responsible for controlling cell migration and therefore possess prospective to enter the clinical arena in the foreseeable future.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, Lovely Professional University Punjab, India 144411
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Dhiraj Kabra
- Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Limited, Vadodara, Gujarat, India, 390010
| | - Jeena Gupta
- Department of Biochemistry, Lovely Professional University Punjab, India 144411.
| |
Collapse
|
21
|
Kusakci-Seker B, Demirayak-Akdemir M. The effect of non-thermal atmospheric pressure plasma application on wound healing after gingivectomy. Int Wound J 2020; 17:1376-1383. [PMID: 32462820 DOI: 10.1111/iwj.13379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/02/2020] [Accepted: 04/13/2020] [Indexed: 01/24/2023] Open
Abstract
Recent studies have indicated the potential benefits of Non-thermal atmospheric pressure plasma (NTAPP) as a novel therapeutic approach. The purpose of the current study was thus to assess the effect of NTAPP on gingival wound healing. Fifteen patients with bilaterally symmetrical gingival hyperplasia were included in the study. After gingivectomy and gingivoplasty, the left-hand side of the symmetrical surgical area was irradiated with NTAPP (plasma jet kINPen 11). Digital photographs of the gingival wounds were taken at baseline and days 3, 7, and 14. Wound epithelialisation was evaluated. Landry Wound Healing Index (WHI) scores and visual analogue scale (VAS) scores were also recorded. There were significant differences between the epithelialisation of the NTAPP-treated sites and the control sites after the surgical procedures. The NTAPP-treated sites had significantly smaller stained surface areas compared with the control sites on the 3rd, 7th , and 14th days (P < .05). The NTAPP-treated sites had better WHI scores than the control sites throughout the follow-up period (P < .05). It can be concluded that NTAPP enhances epithelialisation and stimulates wound healing after gingivectomy and gingivoplasty. However, further clinical studies with larger sample sizes are needed to determine the exact benefits of NTAPP for gingival wound healing.
Collapse
Affiliation(s)
- Basak Kusakci-Seker
- Department of Periodontology, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Melike Demirayak-Akdemir
- Department of Periodontology, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
22
|
VON Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann KD. Plasma Medicine: A Field of Applied Redox Biology. In Vivo 2019; 33:1011-1026. [PMID: 31280189 DOI: 10.21873/invivo.11570] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022]
Abstract
Plasma medicine comprises the application of physical plasma directly on or in the human body for therapeutic purposes. Three most important basic plasma effects are relevant for medical applications: i) inactivation of a broad spectrum of microorganisms, including multidrug-resistant pathogens, ii) stimulation of cell proliferation and angiogenesis with lower plasma treatment intensity, and iii) inactivation of cells by initialization of cell death with higher plasma treatment intensity, above all in cancer cells. Based on own published results as well as on monitoring of relevant literature the aim of this topical review is to summarize the state of the art in plasma medicine and connect it to redox biology. One of the most important results of basic research in plasma medicine is the insight that biological plasma effects are mainly mediated via reactive oxygen and nitrogen species influencing cellular redox-regulated processes. Plasma medicine can be considered a field of applied redox biology.
Collapse
Affiliation(s)
- Thomas VON Woedtke
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany .,Greifswald University Medicine, Greifswald, Germany
| | - Anke Schmidt
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany
| | | | | | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Lee MH, Lee YS, Kim HJ, Han CH, Kang SU, Kim CH. Non-thermal plasma inhibits mast cell activation and ameliorates allergic skin inflammatory diseases in NC/Nga mice. Sci Rep 2019; 9:13510. [PMID: 31534179 PMCID: PMC6751194 DOI: 10.1038/s41598-019-49938-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
Non-thermal plasma (NTP) has many functional activities such as, sterilization, wound healing and anti-cancer activity. Despite of its wide spread biomedical application, the effect of NTP on immune cells and allergic response has not been well studied. In this study, we determined whether NTP suppresses mast cell activation, which is important for allergic response, and ameliorates an atopic dermatitis (AD)-like skin inflammatory disease in mice. Exposure to NTP-treated medium during mast cell activation inhibited the expression and production of IL-6, TNF-α and suppressed NF-κB activation. We also investigated whether NTP treatment ameliorates house dust mite (HDM)-induced AD-like skin inflammation in mice. NTP treatment inhibited increases in epidermal thickness and recruitment of mast cells and eosinophils, which are important cell types in AD pathogenesis. In addition, Th2 cell differentiation was induced by application of HDM and the differentiation was also inhibited in the draining lymph node of NTP-treated mice. Finally, the expression of AD-related cytokines and chemokines was also decreased in NTP-treated mice. Taken together, these results suggest that NTP might be useful in the treatment of allergic skin diseases, such as AD.
Collapse
Affiliation(s)
- Myung-Hoon Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Chang Hak Han
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea. .,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
24
|
Won HR, Song EH, Won JE, Lee HY, Kang SU, Shin YS, Kim CH. Liquid-type non-thermal atmospheric plasma ameliorates vocal fold scarring by modulating vocal fold fibroblast. Exp Biol Med (Maywood) 2019; 244:824-833. [PMID: 31088117 DOI: 10.1177/1535370219850084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Injection laryngoplasty is a widely used therapeutic option for drug delivery into vocal folds (VFs). Efficient injectable materials are urgently needed for treating intractable VF disease. Liquid-type non-thermal atmospheric plasma (LTP) has been found to be useful for various biological applications, including in regenerative medicine. We evaluated the effects of LTP on VF regeneration. Migration and matrix metalloproteinase-2 expression of lipopolysaccharide (LPS)-treated human vocal fold-derived mesenchymal stem cells (VF-MSCs) were enhanced by LTP treatment. LTP treatment not only ameliorated nuclear factor-κB and interleukin-6 activation, induced by LPS treatment, but also the increased manifestation of α-smooth muscle actin and fibronectin, induced by transforming growth factor-ß. In a rabbit VF scarring animal model, histological analyses showed increased hyaluronic acid deposition and decreased collagen accumulation after LTP injection. Videokymographic analysis showed more improved vibrations in LTP-treated VF mucosa compared to those in non-treated group. In conclusion, LTP treatment enhanced the recruitment and activation of VF-MSCs. Regulated extracellular matrix (ECM) synthesis and eventual functional improvement of scarred VFs were observed upon LTP treatment. The results of this study suggest that LTP injection can enhance wound healing and improve functional remodeling following VF injury. Impact statement Voice disorder has a significant impact on life quality, and one of the major causes of this voice disorder is vocal fold scarring. Therefore, various approaches have been tried to treat for voice disorder. However, no method has satisfied all requirements until now. Plasma medicine, which involves the medical application of plasma, is a rapidly developing field. We have confirmed that liquid-type plasma improved vocal fold scarring by mobilizing and activating vocal fold fibroblast. In conclusion, liquid-type plasma is a potential therapeutic agent for promoting vocal fold scarring through simple injection and it may be an alternative therapeutic agent for the current situation to treat voice disorder.
Collapse
Affiliation(s)
- Ho-Ryun Won
- 1 Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon 35015, Republic of Korea.,2 Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eun Hye Song
- 2 Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jong Eun Won
- 3 Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hye Young Lee
- 3 Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sung Un Kang
- 2 Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yoo Seob Shin
- 2 Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,3 Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Chul-Ho Kim
- 2 Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,3 Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
25
|
Anzai K, Aoki T, Koshimizu S, Takaya R, Tsuchida K, Takajo T. Formation of reactive oxygen species by irradiation of cold atmospheric pressure plasma jet to water depends on the irradiation distance. J Clin Biochem Nutr 2019; 64:187-193. [PMID: 31138951 PMCID: PMC6529703 DOI: 10.3164/jcbn.18-102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022] Open
Abstract
Because application of cold atmospheric pressure plasma jet (CAPPJ) to biological samples have taken large attentions, it is important to examine the effects of various CAPPJ parameters on the generation of reactive species. Here, we investigated the generation of reactive species in water by CAPPJ irradiation by changing the following parameters: irradiation time, sample volume, and irradiation distance between the sample surface and plasma jet tip. We measured 1) change in the ESR signal intensity of 4-hydroxy-2,2,6,6-tetrametylpeperidine-1-oxyl (Tempol), 2) spin-trapping with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3) Fricke dosimeter reaction, and 4) hydrogen peroxide (H2O2) formation induced by CAPPJ irradiation. By the experiment of volume dependency, it is suggested that the reactive species detected in water are formed largely in the plasma gas phase. The reduction of ESR signal intensity of Tempol and the formation of DMPO-OH were strongly dependent on irradiation distance, but the relationship between H2O2 generation and distance was weak. The formation of species that oxidize Fe2+ to Fe3+ was shown by the Fricke dosimeter reaction, and reactions at irradiation distances longer than 3 cm were mainly attributable to H2O2. It may be possible to apply different reactive species to the samples by changing the CAPPJ irradiation distance.
Collapse
Affiliation(s)
- Kazunori Anzai
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Tamami Aoki
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Satoko Koshimizu
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Reina Takaya
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Kazunori Tsuchida
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Tokuko Takajo
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| |
Collapse
|
26
|
Eming SA, Tomic-Canic M. Updates in wound healing: Mechanisms and translation. Exp Dermatol 2018; 26:97-98. [PMID: 28133858 DOI: 10.1111/exd.13281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marjana Tomic-Canic
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
27
|
Non-thermal plasma treated solution with potential as a novel therapeutic agent for nasal mucosa regeneration. Sci Rep 2018; 8:13754. [PMID: 30213992 PMCID: PMC6137218 DOI: 10.1038/s41598-018-32077-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Adequate and rapid mucosal regeneration is one of the most important factors in the healing process of nasal mucosa after surgery or trauma. In particular, delayed mucosal regeneration after surgery is an important cause of surgical failure. However, no effective treatment is available yet. Non-thermal plasma (NTP) has several medical effects, but the existing probe type is limited to local direct treatment. Therefore, we investigated the various effects using liquid type plasma to overcome this limitation. In addition, the therapeutic effects of non-thermal plasma treated solution (NTS) on nasal mucosa have yet to be determined. Experiments were carried out using BEAS-2B, a human bronchial epithelial cell line similar to nasal mucosa epithelium. NTS had no cytotoxicity to the BEAS-2B cells and enhanced cell proliferation. NTS also promoted migration of BEAS-2B cells. NTS increased cell proliferation and migration via epidermal growth factor receptor (EGFR) activities and epithelial-to-mesenchymal transition (EMT) signaling. Furthermore, NTS enhanced wound healing of nasal mucosa in an animal model. Accordingly, NTS promotes nasal mucosa wound healing by increasing cell proliferation and migration. These findings suggest the therapeutic potential of NTS in nasal mucosa wound healing.
Collapse
|
28
|
Kang SU, Kim YS, Kim YE, Park JK, Lee YS, Kang HY, Jang JW, Ryeo JB, Lee Y, Shin YS, Kim CH. Opposite effects of non-thermal plasma on cell migration and collagen production in keloid and normal fibroblasts. PLoS One 2017; 12:e0187978. [PMID: 29145520 PMCID: PMC5690474 DOI: 10.1371/journal.pone.0187978] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022] Open
Abstract
Recent progress in the understanding non-thermal plasma (NTP) properties prompted its application in the treatment of various diseases. However, therapeutic effect of NTP on keloid cells has not been reported previously. We sought to investigate the effect of NTP treatment on keloid by comparing cell migration and collagen production of keloid (KFs) and normal fibroblasts (NFs) and determined the regulatory pathways involved. We assessed NTP effects on cell migration in KFs and NFs by the wound healing assay and measured the expression of the epidermal growth factor receptor (EGFR), signal transducer and activator of transcription-3 (STAT3), and collagen by western blot. Expression of the transforming growth factor-β and Type I collagen following NTP treatment was determined by reverse transcription-polymerase chain reaction, immunofluorescence staining, and the Sircol collagen assay. NTP treatment increased cell migration and collagen production of NFs. However, it reduced these parameters in KFs. NTP reduced the expression of EGFR, STAT3, and Type I collagen in KFs but increased their levels in NFs. We revealed that NTP suppressed KF cell migration via down-regulation of EGFR and STAT3 and reduced collagen production via supressing transforming growth factor-β. Our data suggest that NTP may be a new therapeutic strategy for keloids.
Collapse
Affiliation(s)
- Sung Un Kang
- Department of Otolaryngology, Ajou University, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Yeon Soo Kim
- Department of Otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical research Institute, Daejeon, Korea
| | - Yang Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Ju-Kyeong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Yun Sang Lee
- Department of Otolaryngology, Ajou University, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Hee Young Kang
- Department of Dermatology, Ajou University, Suwon, Korea
| | - Jae Won Jang
- Department of Otorhinolaryngology, Chungnam National University, Daejeon, Korea
| | | | | | - Yoo Seob Shin
- Department of Otolaryngology, Ajou University, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- * E-mail:
| |
Collapse
|
29
|
Low temperature plasma induces angiogenic growth factor via up-regulating hypoxia-inducible factor 1α in human dermal fibroblasts. Arch Biochem Biophys 2017; 630:9-17. [PMID: 28750820 DOI: 10.1016/j.abb.2017.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 02/02/2023]
Abstract
Numerous studies on the application of low temperature plasma (LTP) have produced impressive results, including antimicrobial, antitumor, and wound healing effects. Although LTP research has branched out to include medical applications, the detailed effects and working mechanisms of LTP on wound healing have not been fully investigated. Here, we investigated the potential effect of inducing growth factor after exposure to LTP and demonstrated the increased expression of angiogenic growth factor mediated by LTP-induced HIF1α expression in primary cultured human dermal fibroblasts. In cell viability assays, fibroblast viability was reduced 6 h and 24 h after LTP treatment for only 5 min, and pre-treating with NAC, a ROS scavenger, prevented cell loss. Fibroblast migration significantly increased at 6 h and 24 h in scratch wound healing assays, the expression of cytokines significantly changed, and regulatory growth factors were induced at 6 h and 24 h after exposure to LTP in RT-PCR or ELISAs. Specifically, LTP treatment significantly induced the expression of HIF1α, an upstream regulator of angiogenesis. Pre-treatment with the inhibitor CAY10585 abolished HIF1α expression and prevented LTP-induced angiogenic growth factor production according to immunoblotting, immunocytochemistry, and ELISA results. Taken together, our results provide information on the molecular mechanism by which LTP application may promote angiogenesis and will aid in developing methods to improve wound healing.
Collapse
|