1
|
Sundberg JP, Rice RH. Phenotyping mice with skin, hair, or nail abnormalities: A systematic approach and methodologies from simple to complex. Vet Pathol 2023; 60:829-842. [PMID: 37191004 DOI: 10.1177/03009858231170329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The skin and adnexa can be difficult to interpret because they change dramatically with the hair cycle throughout life. However, a variety of methods are commonly available to collect skin and perform assays that can be useful for figuring out morphological and molecular changes. This overview provides information on basic approaches to evaluate skin and its molecular phenotype, with references for more detail, and interpretation of results on the skin and adnexa in the mouse. These approaches range from mouse genetic nomenclature, setting up a cutaneous phenotyping study, skin grafts, hair follicle reconstitution, wax stripping, electron microscopy, and Köbner reaction to very specific approaches such as lipid and protein analyses on a large scale.
Collapse
Affiliation(s)
- John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME
- Vanderbilt University Medical Center, Nashville, TN
| | | |
Collapse
|
2
|
Karim N, Mirmirani P, Durbin-Johnson BP, Rocke DM, Salemi M, Phinney BS, Rice RH. Protein profiling of forehead epidermal corneocytes distinguishes frontal fibrosing from androgenetic alopecia. PLoS One 2023; 18:e0283619. [PMID: 37000833 PMCID: PMC10065298 DOI: 10.1371/journal.pone.0283619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
Protein profiling offers an effective approach to characterizing how far epidermis departs from normal in disease states. The present pilot investigation tested the hypothesis that protein expression in epidermal corneocytes is perturbed in the forehead of subjects exhibiting frontal fibrosing alopecia. To this end, samples were collected by tape stripping from subjects diagnosed with this condition and compared to those from asymptomatic control subjects and from those exhibiting androgenetic alopecia. Unlike the latter, which exhibited only 3 proteins significantly different from controls in expression level, forehead samples from frontal fibrosing alopecia subjects displayed 72 proteins significantly different from controls, nearly two-thirds having lower expression. The results demonstrate frontal fibrosing alopecia exhibits altered corneocyte protein expression in epidermis beyond the scalp, indicative of a systemic condition. They also provide a basis for quantitative measures of departure from normal by assaying forehead epidermis, useful in monitoring response to treatment while avoiding invasive biopsy.
Collapse
Affiliation(s)
- Noreen Karim
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| | - Paradi Mirmirani
- Department of Dermatology, The Permanente Medical Group, Vallejo, California, United States of America
| | - Blythe P. Durbin-Johnson
- Department of Public Health Sciences, Division of Biostatistics, Clinical and Translational Science Center Biostatistics Core, University of California, Davis, California, United States of America
| | - David M. Rocke
- Department of Public Health Sciences, Division of Biostatistics, Clinical and Translational Science Center Biostatistics Core, University of California, Davis, California, United States of America
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, California, United States of America
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, California, United States of America
| | - Robert H. Rice
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| |
Collapse
|
3
|
Proteins, possibly human, found in World War II concentration camp artifact. Sci Rep 2022; 12:12369. [PMID: 35858951 PMCID: PMC9300652 DOI: 10.1038/s41598-022-16192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Museums displaying artifacts of the human struggle against oppression are often caught in their own internal struggle between presenting factual and unbiased descriptions of their collections, or relying on testament of survivors. Often this quandary is resolved in favor of what can be verified, not what is remembered. However, with improving instrumentation, methods and informatic approaches, science can help uncover evidence able to reconcile memory and facts. Following World War II, thousands of small, cement-like disks with numbers impressed on one side were found at concentration camps throughout Europe. Survivors claimed these disks were made of human cremains; museums erred on the side of caution—without documentation of the claims, was it justifiable to present them as fact? The ability to detect species relevant biological material in these disks could help resolve this question. Proteomic mass spectrometry of five disks revealed all contained proteins, including collagens and hemoglobins, suggesting they were made, at least in part, of animal remains. A new protein/informatics approach to species identification showed that while human was not always identified as the top contributor, human was the most likely explanation for one disk. To our knowledge, this is the first demonstration of protein recovery from cremains. Data are available via ProteomeXchange with identifier PXD035267.
Collapse
|
4
|
Loricrin at the Boundary between Inside and Outside. Biomolecules 2022; 12:biom12050673. [PMID: 35625601 PMCID: PMC9138667 DOI: 10.3390/biom12050673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Cornification is a specialized mode of the cell-death program exclusively allowed for terrestrial amniotes. Recent investigations suggest that loricrin (LOR) is an important cornification effector. As the connotation of its name (“lorica” meaning an armor in Latin) suggests, the keratin-associated protein LOR promotes the maturation of the epidermal structure through organizing covalent cross-linkages, endowing the epidermis with the protection against oxidative injuries. By reviewing cornification mechanisms, we seek to classify ichthyosiform dermatoses based on their function, rather than clinical manifestations. We also reviewed recent mechanistic insights into the Kelch-like erythroid cell-derived protein with the cap “n” collar homology-associated protein 1/nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway in skin health and diseases, as LOR and NRF2 coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of cross-talking between keratinocytes and epidermal resident leukocytes, dissecting an LOR immunomodulatory function.
Collapse
|
5
|
Liu M, Chen S, Zhiwen Z, Li H, Sun G, Yin N, Wen J. Anti-ageing peptides and proteins for topical applications: a review. Pharm Dev Technol 2021; 27:108-125. [PMID: 34957891 DOI: 10.1080/10837450.2021.2023569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin ageing is a cumulative result of oxidative stress, predominantly caused by reactive oxygen species (ROS). Respiration, pollutants, toxins, or ultraviolet A (UVA) irradiation produce ROS with 80% of skin damage attributed to UVA irradiation. Anti-ageing peptides and proteins are considered valuable compounds for removing ROS to prevent skin ageing and maintenance of skin health. In this review, skin ageing theory has been illustrated with a focus on the mechanism and relationship with anti-ageing peptides and proteins. The effects, classification, and transport pathways of anti-ageing peptides and proteins across skin are summarized and discussed. Over the last decade, several novel formulations and advanced strategies have been developed to overcome the challenges in the dermal delivery of proteins and peptides for skin ageing. This article also provides an in-depth review of the latest advancements in the dermal delivery of anti-ageing proteins and peptides. Based on these studies, this review prospected several semi-solid dosage forms to achieve topical applicability for anti-ageing peptides and proteins.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Zhang Zhiwen
- Shanghai Institute of Materia Medica, Chinese Academy of Science, China
| | - Hongyu Li
- School of Pharmacy, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, China
| | - Naibo Yin
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Forensic proteomics. Forensic Sci Int Genet 2021; 54:102529. [PMID: 34139528 DOI: 10.1016/j.fsigen.2021.102529] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Protein is a major component of all biological evidence, often the matrix that embeds other biomolecules such as polynucleotides, lipids, carbohydrates, and small molecules. The proteins in a sample reflect the transcriptional and translational program of the originating cell types. Because of this, proteins can be used to identify body fluids and tissues, as well as convey genetic information in the form of single amino acid polymorphisms, the result of non-synonymous SNPs. This review explores the application and potential of forensic proteomics. The historical role that protein analysis played in the development of forensic science is examined. This review details how innovations in proteomic mass spectrometry have addressed many of the historical limitations of forensic protein science, and how the application of forensic proteomics differs from proteomics in the life sciences. Two more developed applications of forensic proteomics are examined in detail: body fluid and tissue identification, and proteomic genotyping. The review then highlights developing areas of proteomics that have the potential to impact forensic science in the near future: fingermark analysis, species identification, peptide toxicology, proteomic sex estimation, and estimation of post-mortem intervals. Finally, the review highlights some of the newer innovations in proteomics that may drive further development of the field. In addition to potential impact, this review also attempts to evaluate the stage of each application in the development, validation and implementation process. This review is targeted at investigators who are interested in learning about proteomics in a forensic context and expanding the amount of information they can extract from biological evidence.
Collapse
|
7
|
Karim N, Phinney BS, Salemi M, Wu PW, Naeem M, Rice RH. Human stratum corneum proteomics reveals cross-linking of a broad spectrum of proteins in cornified envelopes. Exp Dermatol 2020; 28:618-622. [PMID: 30916809 DOI: 10.1111/exd.13925] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Abstract
Defects in keratinocyte transglutaminase (TGM1), resulting in an improper protein scaffold for deposition of the lipid barrier, comprise a major source of autosomal recessive congenital ichthyosis. For that reason, the composition and formation of the cornified (cross-linked) protein envelope of the epidermis have been of considerable interest. Since the isopeptide cross-linked protein components are not individually isolable once incorporated, purified envelopes were analysed by mass spectrometry after trypsin digestion. Quantitative estimates of the identified components revealed some 170 proteins, each comprising at least 0.001% of the total, of which keratins were major constituents accounting for ≈74% of the total. Some prevalent non-keratin constituents such as keratinocyte proline-rich protein, loricrin and late envelope protein-7 were preferentially incorporated into envelopes. The results suggest a model where, as previously observed in hair shaft and nail plate, a diversity of cellular proteins are incorporated. They also help rationalize the minimal effect on epidermis of ablating genes for specific single envelope structural components. The quantitative profile of constituent proteins provides a foundation for future exploration of envelope perturbations that may occur in pathological conditions.
Collapse
Affiliation(s)
- Noreen Karim
- Department of Biotechnology, Medical Genetics Research Laboratory, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Environmental Toxicology, University of California, Davis, California
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, California
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, California
| | - Pei-Wen Wu
- Department of Environmental Toxicology, University of California, Davis, California.,Forensic Science Program, University of California, Davis, California
| | - Muhammad Naeem
- Department of Biotechnology, Medical Genetics Research Laboratory, Quaid-i-Azam University, Islamabad, Pakistan
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, California.,Forensic Science Program, University of California, Davis, California
| |
Collapse
|
8
|
Eckhart L, Lachner J, Tschachler E, Rice RH. TINCR is not a non-coding RNA but encodes a protein component of cornified epidermal keratinocytes. Exp Dermatol 2020; 29:376-379. [PMID: 32012357 PMCID: PMC7187231 DOI: 10.1111/exd.14083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs have been implicated in the regulation of a plethora of biological processes, yet it has been challenging to verify that they are truly not coding for proteins. Terminal differentiation-induced non-coding RNA (TINCR) is a 3.7-kilobase mRNA that is highly abundant in epidermal keratinocytes prior to cornification. Here, we report the presence of an evolutionarily conserved open reading frame in TINCR and the identification of peptides derived from this open reading frame in the proteome of human stratum corneum. Our results demonstrate that TINCR is a protein-coding RNA and suggest that the TINCR-encoded protein is involved in keratinocyte cornification.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Julia Lachner
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Erwin Tschachler
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Robert H. Rice
- Department of Environmental ToxicologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
9
|
Cable CJ, Kaplan N, Getsios S, Thomas PM, Perez White BE. Biotin Identification Proteomics in Three-Dimensional Organotypic Human Skin Cultures. Methods Mol Biol 2020; 2109:185-197. [PMID: 31123999 PMCID: PMC6874900 DOI: 10.1007/7651_2019_239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biotin identification (BioID) proteomics facilitates the unbiased detection of protein interaction neighborhoods in live cells. The BioID technique relies on the covalent biotin alteration of vicinal proteins by a modified bacterial biotin ligase. The biotin ligase is fused to a protein of interest to identify putative protein-protein interactions. Here, we describe the adaptation of this technique for use in three-dimensional epidermal cultures. Due to the covalent biotin modification of proteins, our protocol allows for the complete solubilization of the total cellular protein content in differentiated keratinocytes. Thus, a comprehensive network of potential interactors of a protein of interest can be mapped.
Collapse
Affiliation(s)
- Calvin J Cable
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Spiro Getsios
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Paul M Thomas
- Department of Molecular Biosciences, Northwestern University, Chicago, IL, USA
- Northwestern Proteomics, Northwestern University, Chicago, IL, USA
| | - Bethany E Perez White
- Department of Dermatology, Northwestern University, Chicago, IL, USA.
- Skin Disease Research Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Wang PW, Hung YC, Lin TY, Fang JY, Yang PM, Chen MH, Pan TL. Comparison of the Biological Impact of UVA and UVB upon the Skin with Functional Proteomics and Immunohistochemistry. Antioxidants (Basel) 2019; 8:antiox8120569. [PMID: 31756938 PMCID: PMC6943602 DOI: 10.3390/antiox8120569] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
The skin provides protection against external stimuli; however, solar radiation, including ultraviolet A (UVA) and ultraviolet B (UVB), can result in profound influences on skin structure and function, which eventually impairs its molecular characteristics and normal physiology. In the current study, we performed proteome tools combined with an immunohistological approach on nude mouse skin to evaluate the adverse responses elicited by UVA and UVB irradiation, respectively. Our findings indicated that UVA significantly promotes oxidative damage in DNA, the breakdown of collagen fiber in the dermis, and the apoptosis of fibroblasts, which leads to inflammation. Meanwhile, UVB administration was found to enhance the carbonylation of various proteins and the proliferation of keratinocyte. Particularly, raspberry extract, which has been confirmed to have antioxidative efficacy, could effectively attenuate ultraviolet (UV) radiation-caused cell death. Network analysis also implied that UVA and UVB induce quite different responses, and that UVA results in cell death as well as inflammation mediated by caspase-3 and activator protein 1/nuclear factor kappa-light-chain-enhancer of activated B cells (AP-1/NF-κB), while UVB predominantly increases the risk of skin carcinogenesis involved with oncogenes such as p53 and c-Myc. Taken together, functional proteomics coordinated with histological experiments could allow for a high-throughput study to explore the alterations of crucial proteins and molecules linked to skin impacts subjected to UVA and UVB exposure.
Collapse
Affiliation(s)
- Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan;
| | - Yu-Chiang Hung
- Department of Chinese Medicine, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan;
| | - Tung-Yi Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Pei-Ming Yang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11042, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11042, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 5105); Fax: +886-3-211-8700
| |
Collapse
|
11
|
Borja T, Karim N, Goecker Z, Salemi M, Phinney B, Naeem M, Rice R, Parker G. Proteomic genotyping of fingermark donors with genetically variant peptides. Forensic Sci Int Genet 2019; 42:21-30. [DOI: 10.1016/j.fsigen.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/09/2019] [Accepted: 05/26/2019] [Indexed: 01/31/2023]
|
12
|
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands
| |
Collapse
|