1
|
Yang M, Li Y, Liang Q, Dong H, Ma Y, Andersson G, Bongcam-Rudloff E, Ahmad HI, Fu X, Han J. Identification of lncRNAs involved in the hair follicle cycle transition of cashmere goats in response to photoperiod change. BMC Genomics 2025; 26:487. [PMID: 40375123 PMCID: PMC12080124 DOI: 10.1186/s12864-025-11675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Cashmere goats, as one of the important domesticated animal species, are known for their high-quality fiber. The growth of cashmere has seasonal variations caused by photoperiodic changes, but the molecular genetic mechanisms underlying this phenotype including the functional role of long non-coding RNAs (lncRNA) is still poorly understood. RESULTS In this study, we analyzed the RNA-seq dataset of 39 Cashmere goat skin samples including all different growth stages and identified 1591 lncRNAs. These lncRNAs exhibited growth stage-specific expression patterns. Combining shortened light and hair follicle growth cycles, we found that 68% of differentially photo-responsive lncRNAs showed similar expression trends during transition phase I (early anagen to anagen phase). This suggests that the mechanism of light-controlled induction of hair follicles from early anagen to anagen is similar to that of transition phase I. According to weighted gene co-expression network analyses (WGCNA) analysis, it was found that two gene clusters and 10 hub lncRNAs participated in the transformation of hair follicle cycle, inducing hair follicles to enter the full growth phase in advance. These hub lncRNAs may regulate the development cycle of hair follicles through cis- or trans-regulation on clock genes, SLC superfamily genes, fibroblast growth factor genes. CONCLUSIONS This study identified the key lncRNAs and target genes probably participating in the transformation of hair follicle cycle. This study will help further elucidate the role of lncRNAs in the hair follicle cycle and development.
Collapse
Affiliation(s)
- Min Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832061, China
| | - Yingying Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832061, China
| | - Qianqian Liang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832061, China
| | - Huajiao Dong
- College of Animal Science and Technology, Shihezi University, Shihezi, 832061, China
| | - Yuehui Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Göran Andersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Xuefeng Fu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Jilong Han
- College of Animal Science and Technology, Shihezi University, Shihezi, 832061, China.
| |
Collapse
|
2
|
Qiao Z, Zhang K, Ma Y, Koo B, Lee EY, Lee HJ, Kim MG, Ma J, Park CO, Shin Y. Chia Seed Polysaccharide-Based Self-Assembled Microencapsulation Enhances Hair Regeneration by Inducing Glycolysis and Autophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503440. [PMID: 40289658 DOI: 10.1002/smll.202503440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/16/2025] [Indexed: 04/30/2025]
Abstract
Effective strategies for hair regeneration and maintenance focus on enhancing the hair growth cycle by expediting the transition from the telogen to anagen phases, extending the growth phase, and delaying the onset of the catagen phase. These measures ultimately improve hair density, vitality, and overall health. This study introduces a chia seed polysaccharide-based microencapsulation (CSMi) cream as a promising non-invasive approach for hair regeneration and maintenance through the stimulation of glycolysis and autophagy. The innovative formulation, derived from chia seed mucilage polysaccharides and oil, shows significant potential in promoting hair follicle (HF) neogenesis, as demonstrated in a hair removal mouse model. Single-cell transcriptomic analysis revealed that the CSMi cream influences cellular metabolism toward glycolytic pathways and modulating autophagy levels, the cream facilitates the telogen-to-anagen transition, extends the anagen phase, and delays the onset of catagen. These findings provide compelling evidence for the CSMi cream as a potential therapeutic option for treating hair loss, offering a safe and effective alternative to existing solutions in trichology.
Collapse
Affiliation(s)
- Zhen Qiao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kelun Zhang
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yue Ma
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, 110042, P. R. China
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun Yeong Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Chang Ook Park
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Chen XW, Ni N, Xie XJ, Zhao YL, Liang WZ, Huang YX, Lin CM. Sympathetic Reinnervation of Intact and Upper Follicle Xenografts into BALB/c-nu/nu Mice. Life (Basel) 2023; 13:2163. [PMID: 38004304 PMCID: PMC10672584 DOI: 10.3390/life13112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Increasing concerns about hair loss affect people's quality of life. Recent studies have found that sympathetic nerves play a positive role in regulating hair follicle stem cell activity to promote hair growth. However, no study has investigated sympathetic innervation of transplanted follicles. Rat vibrissa follicles were extracted and implanted under the dorsal skin of BALB/c-nu/nu mice using one of two types of follicles: (1) intact follicles, where transplants included bulbs, and (2) upper follicles, where transplants excluded bulbs. Follicular samples were collected for hematoxylin and eosin staining, immunofluorescence staining for tyrosine hydroxylase (TH, a sympathetic marker) and enzyme-linked immunosorbent assays. At 37 days after implantation in both groups, follicles had entered anagen, with the growth of long hair shafts; tyrosine-hydroxylase-positive nerves were innervating follicles (1.45-fold); and norepinephrine concentrations (2.03-fold) were significantly increased compared to 5 days, but did not return to normal. We demonstrate the survival of intact and upper follicle xenografts and the partial restoration of sympathetic reinnervations of both transplanted follicles.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chang-Min Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (X.-W.C.); (N.N.); (X.-J.X.); (Y.-L.Z.); (W.-Z.L.); (Y.-X.H.)
| |
Collapse
|
4
|
Tang H, Fayomi AP, Bai S, Gupta N, Cascio S, Yang D, Buckanovich RJ. Generation and characterization of humanized affinity-matured EGFL6 antibodies for ovarian cancer therapy. Gynecol Oncol 2023; 171:49-58. [PMID: 36804621 PMCID: PMC10040429 DOI: 10.1016/j.ygyno.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
OBJECTIVES Epidermal growth factor EGF-like domain multiple-6 (EGFL6) is highly expressed in high grade serous ovarian cancer and promotes both endothelial cell proliferation/angiogenesis and cancer cell proliferation/metastasis. As such it has been implicated as a therapeutic target. As a secreted factor, EGFL6 is a candidate for antibody therapy. The objectives of this study were to create and validate humanized affinity-matured EGFL6 neutralizing antibodies for clinical development. METHODS A selected murine EGFL6 antibody was humanized using CDR grafting to create 26 variant humanized antibodies. These were screened and the lead candidate was affinity matured. Seven humanized affinity-matured EGFL6 antibodies were screened for their ability to block EGFL6 activity on cancer cells in vitro, two of which were selected and tested their therapeutic activity in vivo. RESULTS Humanized affinity matured antibodies demonstrated high affinity for EGFL6 (150 pM to 2.67 nM). We found that several humanized affinity-matured EGFL6 antibodies specifically bound to recombinant, and native human EGFL6. Two lead antibodies were able to inhibit EGFL6-mediated (i) cancer cell migration, (ii) proliferation, and (iii) increase in ERK phosphorylation in cancer cells in vitro. Both lead antibodies restricted growth of an EGFL6 expressing ovarian cancer patient derived xenograft. Analysis of treated human tumor xenografts indicated that anti-EGFL6 therapy suppressed angiogenesis, inhibited tumor cell proliferation, and promoted tumor cell apoptosis. CONCLUSIONS Our studies confirm the ability of these humanized affinity-matured antibodies to neutralize EGFL6 and acting as a therapeutic to restrict cancer growth. This work supports the development of these antibody for first-in-human clinical trials.
Collapse
Affiliation(s)
- Huijuan Tang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adetunji P Fayomi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Navneet Gupta
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra Cascio
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Song H, Zhao XB, Chu QS, Zhang J, Gao L, Liao XH. Expression dynamics of lymphoid enhancer-binding factor 1 in terminal Schwann cells, dermal papilla, and interfollicular epidermis. Dev Dyn 2022; 252:527-535. [PMID: 36576725 DOI: 10.1002/dvdy.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Transcription factor lymphoid enhancer-binding factor 1 (LEF1) is a downstream mediator of the Wnt/β-catenin signaling pathway. It is expressed in dermal papilla and surrounding cells in the hair follicle, promoting cell proliferation, and differentiation. RESULTS Here, we report that LEF1 is also expressed all through the hair cycle in the terminal Schwann cells (TSCs), a component of the lanceolate complex located at the isthmus. The timing of LEF1 appearance at the isthmus coincides with that of hair follicle innervation. LEF1 is not found at the isthmus in the aberrant hair follicles in nude mice. Instead, LEF1 in TSCs is found in the de novo hair follicles reconstituted on nude mice by stem cells chamber graft assay. Cutaneous denervation experiment demonstrates that the LEF1 expression in TSCs is independent of nerve endings. At last, LEF1 expression in the interfollicular epidermis during the early stage of skin development is significantly suppressed in transgenic mice with T-cell factor 3 (TCF3) overexpression. CONCLUSION We reveal the expression dynamics of LEF1 in skin during development and hair cycle. LEF1 expression in TSCs indicates that the LEF1/Wnt signal might help to establish a niche at the isthmus region for the lanceolate complex, the bulge stem cells and other neighboring cells.
Collapse
Affiliation(s)
- Hongzhi Song
- School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xu-Bo Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qing-Song Chu
- School of Life Sciences, Shanghai University, Shanghai, China.,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianyu Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lipeng Gao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
6
|
Wu C, Qin C, Fu X, Huang X, Tian K. Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling (anagen, catagen and telogen) of Jiangnan cashmere goat (Capra hircus). BMC Vet Res 2022; 18:167. [PMID: 35524260 PMCID: PMC9074311 DOI: 10.1186/s12917-022-03253-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Among the world's finest natural fiber composites is derived from the secondary hair follicles (SHFs) of cashmere goats yield one of the world's best natural fibres. Their development and cycling are characterized by photoperiodism with diverse, well-orchestrated stimulatory and inhibitory signals. Long non-coding RNA (lncRNAs) and mRNAs play important roles in hair follicle (HF) development. However, not many studies have explored their specific functions in cashmere development and cycling. This study detected mRNAs and lncRNAs with their candidate genes and related pathways in SHF development and cycling of cashmere goat. We utilized RNA sequencing (RNA-Seq) and bioinformatics analysis on lncRNA and mRNA expressions in goat hair follicles to discover candidate genes and metabolic pathways that could affect development and cycling (anagen, catagen, and telogen). RESULTS We identified 228 differentially expressed (DE) mRNAs and 256 DE lncRNA. For mRNAs, catagen and anagen had 16 upregulated and 35 downregulated DEGs, catagen and telogen had 18 upregulated and 9 downregulated DEGs and telogen and anagen had 52 upregulated and 98 downregulated DEGs. LncRNA witnessed 22 upregulated and 39 downregulated DEGs for catagen and anagen, 36 upregulated and 29 downregulated DEGs for catagen and telogen as well as 66 upregulated and 97 downregulated DEGs for telogen and anagen. Several key genes, including MSTRG.5451.2, MSTRG.45465.3, MSTRG.11609.2, CHST1, SH3BP4, CDKN1A, GAREM1, GSK-3β, DEFB103A KRTAP9-2, YAP1, S100A7A, FA2H, LOC102190037, LOC102179090, LOC102173866, KRT2, KRT39, FAM167A, FAT4 and EGFL6 were shown to be potentially important in hair follicle development and cycling. They were related to, WNT/β-catenin, mTORC1, ERK/MAPK, Hedgehog, TGFβ, NFkB/p38MAPK, caspase-1, and interleukin (IL)-1a signaling pathways. CONCLUSION This work adds to existing understanding of the regulation of HF development and cycling in cashmere goats via lncRNAs and mRNAs. It also serves as theoretical foundation for future SHF research in cashmere goats.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China. .,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China.
| |
Collapse
|
7
|
Peng J, Chen H, Zhang B. Nerve–stem cell crosstalk in skin regeneration and diseases. Trends Mol Med 2022; 28:583-595. [DOI: 10.1016/j.molmed.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
|