1
|
Masri S, Mohd N, Abu Kasim NH, Razali M. 3D-Bioprinted Oil-Based Hydrogels: A Sustainable Approach for Bone and Dental Regeneration. Int J Mol Sci 2025; 26:3510. [PMID: 40332025 PMCID: PMC12026678 DOI: 10.3390/ijms26083510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Recent advancements in 3D bioprinting technology have transformed the development of complex tissue scaffolds, offering significant potential for applications in bone and dental regenerative medicine. Oil-based hydrogels have garnered considerable interest owing to their tunable mechanical properties, biocompatibility, and ability to facilitate cell adhesion, proliferation, and differentiation. This review provides an in-depth review of recent research regarding the utilization of oil-based hydrogels in bone and dental tissue development, focusing on the 3D bioprinting strategies. The review investigates the biological efficacy of the diverse oils used in hydrogel formulations, as well as their physicochemical properties, in promoting osteogenesis and dental tissue regeneration. Significant results from both in vitro and in vivo research are examined, emphasizing their capacity to sustain biological functions and promote tissue regeneration. Challenges such as hydrogel stability, printability, and cytotoxicity efficiency are thoroughly examined, along with strategies to improve these materials for translational and clinical applications. This study highlights the revolutionary potential of oil-based hydrogels in enhancing bone and dental regenerative medicine, providing insights into their current status, as well as future research and development pathways.
Collapse
Affiliation(s)
- Syafira Masri
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.M.); (N.M.)
| | - Nurulhuda Mohd
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.M.); (N.M.)
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Mesomorph Worldwide Sdn. Bhd., Kuala Lumpur 52200, Malaysia
| | - Masfueh Razali
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.M.); (N.M.)
| |
Collapse
|
2
|
Niyangoda D, Aung ML, Qader M, Tesfaye W, Bushell M, Chiong F, Tsai D, Ahmad D, Samarawickrema I, Sinnollareddy M, Thomas J. Cannabinoids as Antibacterial Agents: A Systematic and Critical Review of In Vitro Efficacy Against Streptococcus and Staphylococcus. Antibiotics (Basel) 2024; 13:1023. [PMID: 39596719 PMCID: PMC11591022 DOI: 10.3390/antibiotics13111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Two major bacterial pathogens, Staphylococcus aureus and Streptococcus pyogenes, are becoming increasingly antibiotic-resistant. Despite the urgency, only a few new antibiotics have been approved to address these infections. Although cannabinoids have been noted for their antibacterial properties, a comprehensive review of their effects on these bacteria has been lacking. OBJECTIVE This systematic review examines the antibacterial activity of cannabinoids against S. aureus, including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) strains, and S. pyogenes. METHODS Databases, including CINAHL, Cochrane, Medline, Scopus, Web of Science, and LILACS, were searched. Of 3510 records, 24 studies met the inclusion criteria, reporting on the minimum inhibitory concentration (MIC) and minimum bactericidal concentration of cannabinoids. RESULTS Cannabidiol (CBD) emerged as the most effective cannabinoid, with MICs ranging from 0.65 to 32 mg/L against S. aureus, 0.5 to 4 mg/L for MRSA, and 1 to 2 mg/L for VRSA. Other cannabinoids, such as cannabichromene, cannabigerol (CBG), and delta-9-tetrahydrocannabinol (Δ9-THC), also exhibited significant antistaphylococcal activity. CBD, CBG, and Δ9-THC also showed efficacy against S. pyogenes, with MICs between 0.6 and 50 mg/L. Synergistic effects were observed when CBD and essential oils from Cannabis sativa when combined with other antibacterial agents. CONCLUSION Cannabinoids' antibacterial potency is closely linked to their structure-activity relationships, with features like the monoterpene region, aromatic alkyl side chain, and aromatic carboxylic groups enhancing efficacy, particularly in CBD and its cyclic forms. These results highlight the potential of cannabinoids in developing therapies for resistant strains, though further research is needed to confirm their clinical effectiveness.
Collapse
Affiliation(s)
- Dhakshila Niyangoda
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.B.)
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Myat Lin Aung
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.B.)
| | - Mallique Qader
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Wubshet Tesfaye
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mary Bushell
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.B.)
| | - Fabian Chiong
- Department of Infectious Diseases, The Canberra Hospital, Garran, ACT 2605, Australia;
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia;
| | - Danny Tsai
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Alice Springs, NT 0870, Australia;
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia
- Pharmacy Department, Alice Springs Hospital, Central Australian Region Health Service, Alice Springs, NT 0870, Australia
| | - Danish Ahmad
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia;
| | | | - Mahipal Sinnollareddy
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA;
| | - Jackson Thomas
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.B.)
| |
Collapse
|
3
|
Niyangoda D, Muayad M, Tesfaye W, Bushell M, Ahmad D, Samarawickrema I, Sinclair J, Kebriti S, Maida V, Thomas J. Cannabinoids in Integumentary Wound Care: A Systematic Review of Emerging Preclinical and Clinical Evidence. Pharmaceutics 2024; 16:1081. [PMID: 39204426 PMCID: PMC11359183 DOI: 10.3390/pharmaceutics16081081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
This systematic review critically evaluates preclinical and clinical data on the antibacterial and wound healing properties of cannabinoids in integument wounds. Comprehensive searches were conducted across multiple databases, including CINAHL, Cochrane library, Medline, Embase, PubMed, Web of Science, and LILACS, encompassing records up to May 22, 2024. Eighteen studies met the inclusion criteria. Eleven were animal studies, predominantly utilizing murine models (n = 10) and one equine model, involving 437 animals. The seven human studies ranged from case reports to randomized controlled trials, encompassing 92 participants aged six months to ninety years, with sample sizes varying from 1 to 69 patients. The studies examined the effects of various cannabinoid formulations, including combinations with other plant extracts, crude extracts, and purified and synthetic cannabis-based medications administered topically, intraperitoneally, orally, or sublingually. Four animal and three human studies reported complete wound closure. Hemp fruit oil extract, cannabidiol (CBD), and GP1a resulted in complete wound closure in twenty-three (range: 5-84) days with a healing rate of 66-86% within ten days in animal studies. One human study documented a wound healing rate of 3.3 cm2 over 30 days, while three studies on chronic, non-healing wounds reported an average healing time of 54 (21-150) days for 17 patients by oral oils with tetrahydrocannabinol (THC) and CBD and topical gels with THC, CBD, and terpenes. CBD and tetrahydrocannabidiol demonstrated significant potential in reducing bacterial loads in murine models. However, further high-quality research is imperative to fully elucidate the therapeutic potential of cannabinoids in the treatment of bacterial skin infections and wounds. Additionally, it is crucial to delineate the impact of medicinal cannabis on the various phases of wound healing. This study was registered in PROSPERO (CRD42021255413).
Collapse
Affiliation(s)
- Dhakshila Niyangoda
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Mohammed Muayad
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
| | - Wubshet Tesfaye
- School of Pharmacy, Faculty of Health and Behavioural Sciences, University of Queensland, Queensland, QLD 4072, Australia;
| | - Mary Bushell
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
| | - Danish Ahmad
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia;
| | | | - Justin Sinclair
- Australian Natural Therapeutics Group, Byron Bay, NSW 2481, Australia;
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Shida Kebriti
- Eczanes Pharmaceuticals, Rydalmere, NSW 2116, Australia;
| | - Vincent Maida
- Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Hospice Vaughan, Woodbridge, ON L4H 3G7, Canada
| | - Jackson Thomas
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
| |
Collapse
|
4
|
Shah P, Holmes K, Chibane F, Wang P, Chagas P, Salles E, Jones M, Palines P, Masoumy M, Baban B, Yu J. Cutaneous Wound Healing and the Effects of Cannabidiol. Int J Mol Sci 2024; 25:7137. [PMID: 39000244 PMCID: PMC11241632 DOI: 10.3390/ijms25137137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Cutaneous wounds, both acute and chronic, begin with loss of the integrity, and thus barrier function, of the skin. Surgery and trauma produce acute wounds. There are 22 million surgical procedures per year in the United States alone, based on data from the American College of Surgeons, resulting in a prevalence of 6.67%. Acute traumatic wounds requiring repair total 8 million per year, 2.42% or 24.2 per 1000. The cost of wound care is increasing; it approached USD 100 billion for just Medicare in 2018. This burden for wound care will continue to rise with population aging, the increase in metabolic syndrome, and more elective surgeries. To heal a wound, an orchestrated, evolutionarily conserved, and complex series of events involving cellular and molecular agents at the local and systemic levels are necessary. The principal factors of this important function include elements from the neurological, cardiovascular, immune, nutritional, and endocrine systems. The objectives of this review are to provide clinicians engaged in wound care and basic science researchers interested in wound healing with an updated synopsis from recent publications. We also present data from our primary investigations, testing the hypothesis that cannabidiol can alter cutaneous wound healing and documenting their effects in wild type (C57/BL6) and db/db mice (Type 2 Diabetes Mellitus, T2DM). The focus is on the potential roles of the endocannabinoid system, cannabidiol, and the important immune-regulatory wound cytokine IL-33, a member of the IL-1 family, and connective tissue growth factor, CTGF, due to their roles in both normal and abnormal wound healing. We found an initial delay in the rate of wound closure in B6 mice with CBD, but this difference disappeared with time. CBD decreased IL-33 + cells in B6 by 70% while nearly increasing CTGF + cells in db/db mice by two folds from 18.6% to 38.8% (p < 0.05) using a dorsal wound model. We review the current literature on normal and abnormal wound healing, and document effects of CBD in B6 and db/db dorsal cutaneous wounds. CBD may have some beneficial effects in diabetic wounds. We applied 6-mm circular punch to create standard size full-thickness dorsal wounds in B6 and db/db mice. The experimental group received CBD while the control group got only vehicle. The outcome measures were rate of wound closure, wound cells expressing IL-33 and CTGF, and ILC profiles. In B6, the initial rate of wound closure was slower but there was no delay in the time to final closure, and cells expressing IL-33 was significantly reduced. CTGF + cells were higher in db/bd wounds treated with CBD. These data support the potential use of CBD to improve diabetic cutaneous wound healing.
Collapse
Affiliation(s)
- Pearl Shah
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| | - Kathryne Holmes
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| | - Fairouz Chibane
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| | - Phillip Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.W.); (P.C.); (E.S.)
| | - Pablo Chagas
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.W.); (P.C.); (E.S.)
| | - Evila Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.W.); (P.C.); (E.S.)
| | - Melanie Jones
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| | - Patrick Palines
- School of Medicine, Louisiana State University Health Sciences, New Orleans, LA 70112, USA; (P.P.); (M.M.)
| | - Mohamad Masoumy
- School of Medicine, Louisiana State University Health Sciences, New Orleans, LA 70112, USA; (P.P.); (M.M.)
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.W.); (P.C.); (E.S.)
| | - Jack Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| |
Collapse
|
5
|
Christy S, Carlsson AH, Larson D, Davenport GJ, Glenn JF, Brumfield R, Avina G, Jockheck-Clark A, Christy RJ, Nuutila K. Topical Noneuphoric Phytocannabinoid Elixir 14 Reduces Inflammation and Mitigates Burn Progression. J Surg Res 2024; 296:447-455. [PMID: 38320364 DOI: 10.1016/j.jss.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Thermal injuries are caused by exposure to a wide variety of agents including heat, electricity, radiation, chemicals, and friction. Early intervention can decrease injury severity by preventing excess inflammation and mitigating burn wound progression for improved healing outcomes. Previous studies have demonstrated that cannabinoids can trigger anti-inflammatory responses and promote wound closure. Therefore, the purpose of this study was to investigate whether a topical application of Noneuphoric Phytocannabinoid Elixir 14 (NEPE14) containing a full complement of phytocannabinoids (< 0.3% delta-9-tetrahydrocannabinol or cannabidiol) and other phytochemicals would mitigate burn wound progression in the treatment of deep partial-thickness burn wounds. METHODS Deep partial-thickness burns were created on the dorsum of four anesthetized pigs and treated with NEPE14, Vehicle control, Silverlon, or gauze. The burns were assessed on postburn days 4, 7, and 14. Assessments consisted of digital photographs, Laser-Speckle imagery (blood perfusion), MolecuLight imagery (qualitative bacterial load), and biopsies for histology and immunohistochemistry (interleukin six and tumor necrosis factor-α). RESULTS Topical treatment with NEPE14 significantly (P < 0.001) decreased inflammation (interleukin six and tumor necrosis factor-α) in comparison to control groups. It was also demonstrated that the reduction in inflammation led to mitigation of burn wound progression. In terms of wound healing and presence of bacteria, no statistically significant differences were observed. CONCLUSIONS Topical treatment of deep partial-thickness burns with NEPE14 decreased wound inflammation and mitigated burn wound progression in comparison to control treatments.
Collapse
Affiliation(s)
| | - Anders H Carlsson
- Metis Foundation, San Antonio, Texas; United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - David Larson
- Metis Foundation, San Antonio, Texas; United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | | | | | | | | | | | - Robert J Christy
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Kristo Nuutila
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas.
| |
Collapse
|
6
|
Healy CR, Gethin G, Pandit A, Finn DP. Chronic wound-related pain, wound healing and the therapeutic potential of cannabinoids and endocannabinoid system modulation. Biomed Pharmacother 2023; 168:115714. [PMID: 37865988 DOI: 10.1016/j.biopha.2023.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic wounds represent a significant burden on the individual, and the healthcare system. Individuals with chronic wounds report pain to be the most challenging aspect of living with a chronic wound, with current therapeutic options deemed insufficient. The cutaneous endocannabinoid system is an important regulator of skin homeostasis, with evidence of system dysregulation in several cutaneous disorders. Herein, we describe the cutaneous endocannabinoid system, chronic wound-related pain, and comorbidities, and review preclinical and clinical evidence investigating endocannabinoid system modulation for wound-related pain and wound healing. Based on the current literature, there is some evidence to suggest efficacy of endocannabinoid system modulation for promotion of wound healing, attenuation of cutaneous disorder-related inflammation, and for the management of chronic wound-related pain. However, there is 1) a paucity of preclinical studies using validated models, specific for the study of chronic wound-related pain and 2) a lack of randomised control trials and strong clinical evidence relating to endocannabinoid system modulation for wound-related pain. In conclusion, while there is some limited evidence of benefit of endocannabinoid system modulation in wound healing and wound-related pain management, further research is required to better realise the potential of targeting the endocannabinoid system for these therapeutic applications.
Collapse
Affiliation(s)
- Catherine R Healy
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway City, Ireland; Galway Neuroscience Centre, University of Galway, Galway City, Ireland; Centre for Pain Research, University of Galway, Galway City, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland
| | - Georgina Gethin
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland; School of Nursing and Midwifery, University of Galway, Galway City, Ireland; Alliance for Research and Innovation in Wounds, University of Galway, Galway City, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway City, Ireland; Galway Neuroscience Centre, University of Galway, Galway City, Ireland; Centre for Pain Research, University of Galway, Galway City, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland.
| |
Collapse
|
7
|
Park C, Zuo J, Gil MC, Löbenberg R, Lee BJ. Investigation of Cannabinoid Acid/Cyclodextrin Inclusion Complex for Improving Physicochemical and Biological Performance. Pharmaceutics 2023; 15:2533. [PMID: 38004513 PMCID: PMC10675134 DOI: 10.3390/pharmaceutics15112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to investigate the enhancement of cannabinoid acid solubility and stability through the formation of a cannabinoid acid/cyclodextrin (CD) inclusion complex. Two cannabinoid acids, tetrahydro-cannabinolic acid (THCA) and cannabidiolic acid (CBDA), were selected as a model drug along with five types of CD: α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), and methylated-β-cyclodextrin (M-β-CD). Phase solubility studies were conducted using various types of CD to determine the complex stoichiometry. The preparation methods of the CD inclusion complex were optimized by adjusting the loading pH solution and the drying processes (spray-drying, freeze-drying, spray-freeze-drying). The drying process of the cannabinoid acid/M-β-CD inclusion complex was further optimized through the spray-freeze-drying method. These CD complexes were characterized using solubility determination, differential scanning calorimetry (DSC), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and 1H NMR spectroscopy. DSC, XRD, and FE-SEM studies confirmed the non-crystalline state of the cannabinoid acid/CD inclusion complex. The permeation of THCA or CBDA from the M-β-CD spray-freeze-dried inclusion complex was highly improved compared to those of cannabis ethanolic extracts under simulated physiological conditions. The stability of the cannabinoid acid/M-β-CD inclusion complex was maintained for 7 days in a simulated physiological condition. Furthermore, the minimum inhibitory concentration of cannabinoid acid/M-β-CD inclusion complex had superior anti-cancer activity in MCF-7 breast cancer cell lines compared to cannabinoid acid alone. The improved physicochemical and biological performances indicated that these CD inclusion complexes could provide a promising option for loading lipophilic cannabinoids in cannabis-derived drug products.
Collapse
Affiliation(s)
- Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea;
| | - Jieyu Zuo
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.Z.); (R.L.)
| | - Myung-Chul Gil
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
- PLUTO Inc., Seongnam 13453, Republic of Korea
| | - Raimar Löbenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.Z.); (R.L.)
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
| |
Collapse
|
8
|
Zhao K, Hu Z, Zhou M, Chen Y, Zhou F, Ding Z, Zhu B. Bletilla striata composite nanofibrous membranes prepared by emulsion electrospinning for enhanced healing of diabetic wounds. J Biomater Appl 2023; 38:424-437. [PMID: 37599387 DOI: 10.1177/08853282231197901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Diabetic wounds impose enormous distress and financial burden on patients, and finding effective dressings to manage wounds is critical. As a Chinese herbal medicine with a long history of Clinical application, Bletilla striata has significant medicinal effects in the therapy of various wounds. In this study, PLA and the pharmacodynamic substances of Bletilla striata were prepared into fibrous scaffolds by emulsion electrospinning technology for the management of diabetic wounds in mice. The results of scanning electron microscopy showed that the core-shell structure fibre was successfully obtained by emulsion electrospinning. The fibre membrane exhibited excellent water absorption capability and water vapor transmission rate, could inhibit the growth of Staphylococcus aureus and Pseudomonas aeruginosa, had good compatibility, and achieved excellent healing effect on diabetic wounds. Especially in the in vivo wound healing experiment, the wound healing rate of composite fibre membrane treatment reached 98.587 ± 2.149% in 16 days. This work demonstrated the good therapeutic effect of the developed fibrous membrane to diabetic wound, and this membrane could be potentially applied to chronic wound healing.
Collapse
Affiliation(s)
- Kai Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengbo Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Ramer R, Hinz B. Cannabinoid Compounds as a Pharmacotherapeutic Option for the Treatment of Non-Cancer Skin Diseases. Cells 2022; 11:4102. [PMID: 36552866 PMCID: PMC9777118 DOI: 10.3390/cells11244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The endocannabinoid system has been shown to be involved in various skin functions, such as melanogenesis and the maintenance of redox balance in skin cells exposed to UV radiation, as well as barrier functions, sebaceous gland activity, wound healing and the skin's immune response. In addition to the potential use of cannabinoids in the treatment and prevention of skin cancer, cannabinoid compounds and derivatives are of interest as potential systemic and topical applications for the treatment of various inflammatory, fibrotic and pruritic skin conditions. In this context, cannabinoid compounds have been successfully tested as a therapeutic option for the treatment of androgenetic alopecia, atopic and seborrhoeic dermatitis, dermatomyositis, asteatotic and atopic eczema, uraemic pruritis, scalp psoriasis, systemic sclerosis and venous leg ulcers. This review provides an insight into the current literature on cannabinoid compounds as potential medicines for the treatment of skin diseases.
Collapse
Affiliation(s)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, D-18057 Rostock, Germany
| |
Collapse
|
10
|
Swindell WR, Bojanowski K, Singh P, Randhawa M, Chaudhuri RK. Bakuchiol and ethyl (linoleate/oleate) synergistically modulate endocannabinoid tone in keratinocytes and repress inflammatory pathway mRNAs. JID INNOVATIONS 2022; 3:100178. [PMID: 36992949 PMCID: PMC10041561 DOI: 10.1016/j.xjidi.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid (eCB) system plays an active role in epidermal homeostasis. Phytocannabinoids such as cannabidiol modulate this system but also act through eCB-independent mechanisms. This study evaluated the effects of cannabidiol, bakuchiol (BAK), and ethyl (linoleate/oleate) (ELN) in keratinocytes and reconstituted human epidermis. Molecular docking simulations showed that each compound binds the active site of the eCB carrier FABP5. However, BAK and ethyl linoleate bound this site with the highest affinity when combined 1:1 (w/w), and in vitro assays showed that BAK + ELN most effectively inhibited FABP5 and fatty acid amide hydrolase. In TNF-stimulated keratinocytes, BAK + ELN reversed TNF-induced expression shifts and uniquely downregulated type I IFN genes and PTGS2 (COX2). BAK + ELN also repressed expression of genes linked to keratinocyte differentiation but upregulated those associated with proliferation. Finally, BAK + ELN inhibited cortisol secretion in reconstituted human epidermis skin (not observed with cannabidiol). These results support a model in which BAK and ELN synergistically interact to inhibit eCB degradation, favoring eCB mobilization and inhibition of downstream inflammatory mediators (e.g., TNF, COX-2, type I IFN). A topical combination of these ingredients may thus enhance cutaneous eCB tone or potentiate other modulators, suggesting novel ways to modulate the eCB system for innovative skincare product development.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Correspondence: William R. Swindell, Department of Internal Medicine, UT Southwestern Medical Center, 5959 Harry Hines Boulevard, Ste 7.700, Dallas, Texas 75390-9175, USA.
| | | | - Parvesh Singh
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville, South Africa
| | | | | |
Collapse
|
11
|
Sharma P, Kumar A, Dey AD. Cellular Therapeutics for Chronic Wound Healing: Future for Regenerative Medicine. Curr Drug Targets 2022; 23:1489-1504. [PMID: 35748548 DOI: 10.2174/138945012309220623144620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 01/25/2023]
Abstract
Chronic wounds are associated with significant morbidity and mortality, which demand long-term effective treatment and represent a tremendous financial strain on the global healthcare systems. Regenerative medicines using stem cells have recently become apparent as a promising approach and are an active zone of investigation. They hold the potential to differentiate into specific types of cells and thus possess self-renewable, regenerative, and immune-modulatory effects. Furthermore, with the rise of technology, various cell therapies and cell types such as Bone Marrow and Adipose-derived Mesenchymal Cell (ADMSC), Endothelial Progenitor Cells (EPCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cell (MSCs), and Pluripotent Stem Cells (PSCs) are studied for their therapeutic impact on reparative processes and tissue regeneration. Cell therapy has proven to have substantial control over enhancing the quality and rate of skin regeneration and wound restoration. The literature review brings to light the mechanics of wound healing, abnormalities resulting in chronic wounds, and the obstacles wound care researchers face, thus exploring the multitude of opportunities for potential improvement. Also, the review is focused on providing particulars on the possible cell-derived therapeutic choices and their associated challenges in healing, in the context of clinical trials, as solutions to these challenges will provide fresh and better future opportunities for improved study design and therefore yield a substantial amount of data for the development of more specialized treatments.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.,Government Pharmacy College Kangra, Nagrota Bhagwan, Himachal Pradesh, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
12
|
Antezana PE, Municoy S, Orive G, Desimone MF. Design of a New 3D Gelatin-Alginate Scaffold Loaded with Cannabis sativa Oil. Polymers (Basel) 2022; 14:4506. [PMID: 36365500 PMCID: PMC9658303 DOI: 10.3390/polym14214506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 09/20/2023] Open
Abstract
There is an increasing medical need for the development of new materials that could replace damaged organs, improve healing of critical wounds or provide the environment required for the formation of a new healthy tissue. The three-dimensional (3D) printing approach has emerged to overcome several of the major deficiencies of tissue engineering. The use of Cannabis sativa as a therapy for some diseases has spread throughout the world thanks to its benefits for patients. In this work, we developed a bioink made with gelatin and alginate that was able to be printed using an extrusion 3D bioprinter. The scaffolds obtained were lyophilized, characterized and the swelling was assessed. In addition, the scaffolds were loaded with Cannabis sativa oil extract. The presence of the extract provided antimicrobial and antioxidant activity to the 3D scaffolds. Altogether, our results suggest that the new biocompatible material printed with 3D technology and with the addition of Cannabis sativa oil could become an attractive alternative to common treatments of soft-tissue infections and wound repair.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Sofía Municoy
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Martín Federico Desimone
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| |
Collapse
|
13
|
Fabrication and Preliminary In Vitro Evaluation of 3D-Printed Alginate Films with Cannabidiol (CBD) and Cannabigerol (CBG) Nanoparticles for Potential Wound-Healing Applications. Pharmaceutics 2022; 14:pharmaceutics14081637. [PMID: 36015263 PMCID: PMC9416381 DOI: 10.3390/pharmaceutics14081637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, drug carrier nanoparticles comprised of Pluronic-F127 and cannabidiol (CBD) or cannabigerol (CBG) were developed, and their wound healing action was studied. They were further incorporated in 3D printed films based on sodium alginate. The prepared films were characterized morphologically and physicochemically and used to evaluate the drug release profiles of the nanoparticles. Additional studies on their water loss rate, water retention capacity, and 3D-printing shape fidelity were performed. Nanoparticles were characterized physicochemically and for their drug loading performance. They were further assessed for their cytotoxicity (MTT Assay) and wound healing action (Cell Scratch Assay). The in vitro wound-healing study showed that the nanoparticles successfully enhanced wound healing in the first 6 h of application, but in the following 6 h they had an adverse effect. MTT assay studies revealed that in the first 24 h, a concentration of 0.1 mg/mL nanoparticles resulted in satisfactory cell viability, whereas CBG nanoparticles were safe even at 48 h. However, in higher concentrations and after a threshold of 24 h, the cell viability was significantly decreased. The results also presented mono-disperse nano-sized particles with diameters smaller than 200 nm with excellent release profiles and enhanced thermal stability. Their entrapment efficiency and drug loading properties were higher than 97%. The release profiles of the active pharmaceutical ingredients from the films revealed a complete release within 24 h. The fabricated 3D-printed films hold promise for wound healing applications; however, more studies are needed to further elucidate their mechanism of action.
Collapse
|
14
|
Evidence-based Potential Therapeutic Applications of Cannabinoids in Wound Management. Adv Skin Wound Care 2022; 35:447-453. [PMID: 35588193 DOI: 10.1097/01.asw.0000831920.15801.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although wound management is a major component of all domains of healthcare, conventional therapeutics have numerous limitations. The endocannabinoid system of the skin, one of the major endogenous systems, has recently been connected to wound healing. Cannabinoids and their interactions with the endogenous chemical signaling system may be a promising therapeutic option because they address some of the fundamental pathways for physiologic derangement that underpin chronic integumentary wounds. RECENT ADVANCES The therapeutic applications of cannabinoids are increasing because of their legalization and resulting market expansion. Recently, their immunosuppressive and anti-inflammatory properties have been explored for the treatment of wounds that are not effectively managed by conventional medicines. CRITICAL ISSUES Failure to manage wounds effectively is associated with reduced quality of life, disability, mortality, and increased healthcare expenditures. Therapeutic options that can manage wounds effectively and efficiently are needed. In this review, the authors summarize recent advances on the use of cannabinoids to treat skin disorders with an emphasis on wound management. FUTURE DIRECTIONS Effective wound management requires medicines with good therapeutic outcomes and minimal adverse effects. Despite the promising results of cannabinoids in wound management, further controlled clinical studies are required to establish the definitive role of these compounds in the pathophysiology of wounds and their usefulness in the clinical setting.
Collapse
|
15
|
Ocaña-Rios I, Okano L, Figueroa CG, Urban J, Church JS, Devedec FL, Urban KJ, Donkor KK. An improved method for the determination of cannabidiol in topical products using ultrasound-assisted extraction and gas chromatography-mass spectrometry. J Pharm Biomed Anal 2022; 217:114840. [DOI: 10.1016/j.jpba.2022.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
|
16
|
Schräder NHB, Gorell ES, Stewart RE, Duipmans JC, Harris N, Perez VA, Tang JY, Wolff AP, Bolling MC. Cannabinoid use and effects in patients with epidermolysis bullosa: an international cross-sectional survey study. Orphanet J Rare Dis 2021; 16:377. [PMID: 34488820 PMCID: PMC8419930 DOI: 10.1186/s13023-021-02010-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/24/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Epidermolysis bullosa (EB) patient anecdotes and case reports indicate that cannabinoid-based medicines (CBMs) may alleviate pain and pruritus and improve wound healing. CBM use has not been characterized in the EB patient population. OBJECTIVES To evaluate CBM use among EB patients, including CBM types, effects on symptoms (e.g., pain and pruritus), disease process (e.g., blistering, wounds, and inflammation), well-being (e.g., sleep, appetite) and concomitant medications. METHODS English-speaking EB patients or caregivers completed an online international, anonymous, cross-sectional survey regarding CBM use. Respondents reported the types of CBMs, subsequent effects including perceived EB symptom alteration, changes in medication use, and side effects. RESULTS Seventy-one EB patients from five continents reported using or having used CBMs to treat their EB. Missing question responses ranged between 0 (0%) and 33 (46%). Most used more than one CBM preparation (mean: 2.4 ± 1.5) and route of administration (mean: 2.1 ± 1.1). Topical and ingested were the most common routes. Pain and pruritus were reported retrospectively to decrease by 3 points (scale: 0-10; p < 0.001 for both) after CBM use. Most reported that CBM use improved their overall EB symptoms (95%), pain (94%), pruritus (91%) and wound healing (81%). Most participants (79%) reported decreased use of pain medications. The most common side-effect was dry mouth (44%). CONCLUSIONS CBMs improve the perception of pain, pruritus, wound healing, and well-being in EB patients and reduced concomitant medication use. Nevertheless, a direct relation between the use of CBMs and reduction of the above-mentioned symptoms cannot be proven by these data. Therefore, future controlled studies using pharmaceutically standardised CBM preparations in EB are warranted to delineate the risks and benefits of CBMs.
Collapse
Affiliation(s)
- Nicholas H. B. Schräder
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Emily S. Gorell
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH USA
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA USA
| | - Roy E. Stewart
- Department of Health Sciences, Community and Occupational Medicine, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - José C. Duipmans
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Nicole Harris
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA USA
| | | | - Jean Y. Tang
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA USA
| | - André P. Wolff
- Anaesthesiology Pain Centre, Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marieke C. Bolling
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Fazzari FGT, Maida V. Comment on "Cannabinoids in dermatologic surgery". J Am Acad Dermatol 2021; 85:e409-e410. [PMID: 34403714 DOI: 10.1016/j.jaad.2021.05.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Affiliation(s)
| | - Vincent Maida
- University of Toronto, Toronto, Ontario, Canada; Hospice Vaughan, Vaughan, Ontario, Canada
| |
Collapse
|
18
|
Criscuolo E, De Sciscio ML, Fezza F, Maccarrone M. In Silico and In Vitro Analysis of Major Cannabis-Derived Compounds as Fatty Acid Amide Hydrolase Inhibitors. Molecules 2020; 26:molecules26010048. [PMID: 33374180 PMCID: PMC7795171 DOI: 10.3390/molecules26010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulated evidence suggests that enhancing the endocannabinoid (eCB) tone, in particular of anandamide (N-arachidonoylethanolamine, AEA), has therapeutic potential in many human diseases. Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme principally responsible for the degradation of AEA, and thus it represents a relevant target to increase signaling thereof. In recent years, different synthetic and natural compounds have been developed and tested on rat FAAH, but little is known of their effect on the human enzyme. Here, we sought to investigate six major cannabis-derived compounds to compare their action on rat and human FAAHs. To this aim, we combined an in silico analysis of their binding mode and affinity, with in vitro assays of their effect on enzyme activity. This integrated approach allowed to disclose differences in efficacy towards rat and human FAAHs, and to highlight the role of key residues involved in the inhibition of both enzymes. This study suggests that the therapeutic efficacy of compounds targeted towards FAAH should be always tested in vitro on both rat and human enzymes.
Collapse
Affiliation(s)
- Emanuele Criscuolo
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy;
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Maria Laura De Sciscio
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy;
- Correspondence: (F.F.); (M.M.)
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio snc, 67100 L’Aquila, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 54, 00143 Rome, Italy
- Correspondence: (F.F.); (M.M.)
| |
Collapse
|