1
|
Levra Levron C, Elettrico L, Duval C, Piacenti G, Proserpio V, Donati G. Bridging tissue repair and epithelial carcinogenesis: epigenetic memory and field cancerization. Cell Death Differ 2025; 32:78-89. [PMID: 38228801 PMCID: PMC11742435 DOI: 10.1038/s41418-023-01254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
The epigenome coordinates spatial-temporal specific gene expression during development and in adulthood, for the maintenance of homeostasis and upon tissue repair. The upheaval of the epigenetic landscape is a key event in the onset of many pathologies including tumours, where epigenetic changes cooperate with genetic aberrations to establish the neoplastic phenotype and to drive cell plasticity during its evolution. DNA methylation, histone modifiers and readers or other chromatin components are indeed often altered in cancers, such as carcinomas that develop in epithelia. Lining the surfaces and the cavities of our body and acting as a barrier from the environment, epithelia are frequently subjected to acute or chronic tissue damages, such as mechanical injuries or inflammatory episodes. These events can activate plasticity mechanisms, with a deep impact on cells' epigenome. Despite being very effective, tissue repair mechanisms are closely associated with tumour onset. Here we review the similarities between tissue repair and carcinogenesis, with a special focus on the epigenetic mechanisms activated by cells during repair and opted by carcinoma cells in multiple epithelia. Moreover, we discuss the recent findings on inflammatory and wound memory in epithelia and describe the epigenetic modifications that characterise them. Finally, as wound memory in epithelial cells promotes carcinogenesis, we highlight how it represents an early step for the establishment of field cancerization.
Collapse
Affiliation(s)
- Chiara Levra Levron
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Luca Elettrico
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Carlotta Duval
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Gabriele Piacenti
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Valentina Proserpio
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy.
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy.
| |
Collapse
|
2
|
Snowball JM, Jarrold BB, DeAngelis Y, Li C, Rovito HA, Hare MC, Laughlin T, Evdokiou AL, Oblong JE. Integration of transcriptomics and spatial biology analyses reveals Galactomyces ferment filtrate promotes epidermal interconnectivity via induction of keratinocyte differentiation, proliferation and cellular bioenergetics. Int J Cosmet Sci 2024; 46:927-940. [PMID: 38924095 DOI: 10.1111/ics.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Human skin is the first line of defence from environmental factors such as solar radiation and is susceptible to premature ageing, including a disruption in epidermal differentiation and homeostasis. We evaluated the impact of a Galactomyces Ferment Filtrate (GFF) on epidermal differentiation and response to oxidative stress. METHODS We used transcriptomics, both spatial and traditional, to assess the impact of GFF on epidermal biology and homeostasis in keratinocytes (primary or immortalized) and in ex vivo skin explant tissue. The effect of GFF on cell adhesion rates, cellular ATP levels and proliferation rates were quantitated. Oxidative phosphorylation and glycolytic rates were measured under normal and stress-induced conditions. RESULTS Transcriptomics from keratinocytes and ex vivo skin explants from multiple donors show GFF induces keratinocyte differentiation, skin barrier development and cell adhesion while simultaneously repressing cellular stress and inflammatory related processes. Spatial transcriptomics profiling of ex vivo skin indicated basal keratinocytes at the epidermal-dermal junction and cornifying keratinocytes in the top layer of the epidermis as the primary cell types influenced by GFF treatment. Additionally, GFF significantly increases crosstalk between suprabasal and basal keratinocytes. To support these findings, we show that GFF can significantly increase cell adhesion and proliferation in keratinocytes. GFF also protected overall cellular bioenergetics under metabolic or oxidative stress conditions. CONCLUSION Our findings provide novel insights into cellular differences and epidermal spatial localization in response to GFF, supporting previous findings that this filtrate has a significant impact on epidermal biology and homeostasis, particularly on spatially defined crosstalk. We propose that GFF can help maintain epidermal health by enhancing keratinocyte crosstalk and differentiation/proliferation balance as well as promoting an enhanced response to stress.
Collapse
Affiliation(s)
| | | | | | - Chuiying Li
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
3
|
Porter DF, Meyers RM, Miao W, Reynolds DL, Hong AW, Yang X, Mondal S, Siprashvili Z, Srinivasan S, Ducoli L, Meyers JM, Nguyen DT, Ko LA, Kellman L, Elfaki I, Guo M, Winge MC, Lopez-Pajares V, Porter IE, Tao S, Khavari PA. Disease-Linked Regulatory DNA Variants and Homeostatic Transcription Factors in Epidermis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622542. [PMID: 39605549 PMCID: PMC11601284 DOI: 10.1101/2024.11.07.622542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Identifying noncoding single nucleotide variants ( SNVs ) in regulatory DNA linked to polygenic disease risk, the transcription factors ( TFs ) they bind, and the target genes they dysregulate is a goal in polygenic disease research. Massively parallel reporter gene analysis ( MPRA ) of 3,451 SNVs linked to risk for polygenic skin diseases characterized by disrupted epidermal homeostasis identified 355 differentially active SNVs ( daSNVs ). daSNV target gene analysis, combined with daSNV editing, underscored dysregulated epidermal differentiation as a pathomechanism shared across common polygenic skin diseases. CRISPR knockout screens of 1772 human TFs revealed 108 TFs essential for epidermal progenitor differentiation, uncovering novel roles for ZNF217, CXXC1, FOXJ2, IRX2 and NRF1. Population sampling CUT&RUN of 27 homeostatic TFs identified allele-specific DNA binding ( ASB ) differences at daSNVs enriched near epidermal homeostasis and monogenic skin disease genes, with notable representation of SP/KLF and AP-1/2 TFs. This resource implicates dysregulated differentiation in risk for diverse polygenic skin diseases.
Collapse
|
4
|
Wang T, Song Y, Yang L, Liu W, He Z, Shi Y, Song B, Yu Z. Photobiomodulation Facilitates Rat Cutaneous Wound Healing by Promoting Epidermal Stem Cells and Hair Follicle Stem Cells Proliferation. Tissue Eng Regen Med 2024; 21:65-79. [PMID: 37882982 PMCID: PMC10764690 DOI: 10.1007/s13770-023-00601-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Cutaneous wound healing represents a common fundamental phenomenon requiring the participation of cells of distinct types and a major concern for the public. Evidence has confirmed that photobiomodulation (PBM) using near-infrared (NIR) can promote wound healing, but the cells involved and the precise molecular mechanisms remain elusive. METHODS Full-thickness skin defects with a diameter of 1.0 cm were made on the back of rats and randomly divided into the control group, 10 J, 15 J, and 30 J groups. The wound healing rate at days 4, 8, and 12 postoperatively was measured. HE and Masson staining was conducted to reveal the histological characteristics. Immunofluorescence staining was performed to label the epidermal stem cells (ESCs) and hair follicle stem cells (HFSCs). Western blot was performed to detect the expressions of proteins associated with ESCs and HFSCs. Cutaneous wound tissues were collected for RNA sequencing. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes analysis was performed, and the hub genes were identified using CytoHubba and validated by qRT-PCR. RESULTS PBM can promote reepithelialization, extracellular matrix deposition, and wound healing, increase the number of KRT14+/PCNA+ ESCs and KRT15+/PCNA+ HFSCs, and upregulate the protein expression of P63, Krt14, and PCNA. Three hundred and sixty-six differentially expressed genes (DEGs) and 7 hub genes including Sox9, Krt5, Epcam, Cdh1, Cdh3, Dsp, and Pkp3 were identified. These DEGs are enriched in skin development, cell junction, and cadherin binding involved in cell-cell adhesion etc., while these hub genes are related to skin derived stem cells and cell adhesion. CONCLUSION PBM accelerates wound healing by enhancing reepithelialization through promoting ESCs and HFSCs proliferation and elevating the expression of genes associated with stem cells and cell adhesion. This may provide a valuable alternative strategy to promote wound healing and reepithelialization by modulating the proliferation of skin derived stem cells and regulating genes related to cell adhesion.
Collapse
Affiliation(s)
- Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Liu Yang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Zhen'an He
- Shaanxi Institute of Medical Device Quality Inspection, Xi'an, 712046, China
| | - Yi Shi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
5
|
Eyermann CE, Chen X, Somuncu OS, Li J, Joukov AN, Chen J, Alexandrova EM. ΔNp63 Regulates Homeostasis, Stemness, and Suppression of Inflammation in the Adult Epidermis. J Invest Dermatol 2024; 144:73-83.e10. [PMID: 37543242 DOI: 10.1016/j.jid.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
The p63 transcription factor is critical for epidermis formation in embryonic development, but its role in the adult epidermis is poorly understood. In this study, we show that acute genetic ablation of ΔNp63, the main p63 isoform, in adult epidermis disrupts keratinocyte proliferation and self-maintenance and, unexpectedly, triggers an inflammatory psoriasis-like condition. Mechanistically, single-cell RNA sequencing revealed the downregulation of cell cycle genes, upregulation of differentiation markers, and induction of several proinflammatory pathways in ΔNp63-ablated keratinocytes. Intriguingly, ΔNp63-ablated cells disappear by 3 weeks after ablation, at the expense of the remaining nonablated cells. This is not associated with active cell death and is likely due to reduced self-maintenance and enhanced differentiation. Indeed, in vivo wound healing, a physiological readout of the epidermal stem cell function, is severely impaired upon ΔNp63 ablation. We found that the Wnt signaling pathway (Wnt10A, Fzd6, Fzd10) and the activator protein 1 (JunB, Fos, FosB) factors are the likely ΔNp63 effectors responsible for keratinocyte proliferation/stemness and suppression of differentiation, respectively, whereas IL-1a, IL-18, IL-24, and IL-36γ are the likely negative effectors responsible for suppression of inflammation. These data establish ΔNp63 as a critical node that coordinates epidermal homeostasis, stemness, and suppression of inflammation, upstream of known regulatory pathways.
Collapse
Affiliation(s)
- Christopher E Eyermann
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Xi Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Ozge S Somuncu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | | | - Jiang Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Evguenia M Alexandrova
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA.
| |
Collapse
|
6
|
Mancini M, Sergio S, Cappello A, Farkas T, Bernassola F, Scarponi C, Albanesi C, Melino G, Candi E. Involvement of transcribed lncRNA uc.291 in hyperproliferative skin disorders. Biol Direct 2023; 18:82. [PMID: 38041107 PMCID: PMC10693168 DOI: 10.1186/s13062-023-00435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023] Open
Abstract
The uc.291 transcript controls keratinocytes differentiation by physical interaction with ACTL6A and subsequent induction of transcription of the genes belonging to the epidermal differentiation complex (EDC). Uc.291 is also implicated in the dedifferentiation phenotype seen in poorly differentiated cutaneous squamous cell carcinomas. Here, we would like to investigate the contribution of uc.291 to the unbalanced differentiation state of keratinocytes observed in hyperproliferative skin disorders, e. g., psoriasis. Psoriasis is a multifactorial inflammatory disease, caused by alteration of keratinocytes homeostasis. The imbalanced differentiation state, triggered by the infiltration of immune cells, represents one of the events responsible for this pathology. In the present work, we explore the role of uc.291 and its interactor ACTL6A in psoriasis skin, using quantitative real-time PCR (RT-qPCR), immunohistochemistry and bioinformatic analysis of publicly available datasets. Our data suggest that the expression of the uc.291 and of EDC genes loricrin and filaggrin (LOR, FLG) is reduced in lesional skin compared to nonlesional skin of psoriatic patients; conversely, the mRNA and protein level of ACTL6A are up-regulated. Furthermore, we provide evidence that the expression of uc.291, FLG and LOR is reduced, while ACTL6A mRNA is up-regulated, in an in vitro psoriasis-like model obtained by treating differentiated keratinocytes with interleukin 22 (IL-22). Furthermore, analysis of a publicly available dataset of human epidermal keratinocytes treated with IL-22 (GSE7216) confirmed our in vitro results. Taken together, our data reveal a novel role of uc.291 and its functional axis with ACTL6A in psoriasis disorder and a proof of concept that biological inhibition of this molecular axis could have a potential pharmacological effect against psoriasis and, in general, in skin diseases with a suppressed differentiation programme.
Collapse
Affiliation(s)
- Mara Mancini
- Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Simone Sergio
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Angela Cappello
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - Timea Farkas
- Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Claudia Scarponi
- Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy.
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy.
| |
Collapse
|
7
|
Henriet E, Abdallah F, Laurent Y, Guimpied C, Clement E, Simon M, Pichon C, Baril P. Targeting TGF-β1/miR-21 pathway in keratinocytes reveals protective effects of silymarin on imiquimod-induced psoriasis mouse model. JID INNOVATIONS 2022; 3:100175. [PMID: 36968096 PMCID: PMC10034514 DOI: 10.1016/j.xjidi.2022.100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Epidermal cells integrate multiple signals that activate the signaling pathways involved in skin homeostasis. TGF-β1 signaling pathway upregulates microRNA (miR)-21-5p in keratinocytes and is often deregulated in skin diseases. To identify the bioactive compounds that enable to modulate the TGF-β1/miR-21-5p signaling pathway, we screened a library of medicinal plant extracts using our miR-ON RILES luciferase reporter system placed under the control of the miR-21-5p in keratinocytes treated with TGF-β1. We identified silymarin, a mixture of flavonolignans extracted from Silybum marianum (L.) Gaertn., as the most potent regulator of miR-21-5p expression. Using Argonaute 2 immunoprecipitation and RT-qPCR, we showed that silymarin regulates the expression of miR-21-5p through a noncanonical TGF-β1 signaling pathway, whereas RNA-sequencing analysis revealed three unexpected transcriptomic signatures associated with keratinocyte differentiation, cell cycle, and lipid metabolism. Mechanistically, we demonstrated that SM blocks cell cycle progression, inhibits keratinocyte differentiation through repression of Notch3 expression, stimulates lipid synthesis via activation of PPARγ signaling and inhibits inflammatory responses by suppressing the transcriptional activity of NF-κB. We finally showed that topical application of silymarin alleviates the development of imiquimod-induced psoriasiform lesions in mice by abrogating the altered expression levels of markers involved in inflammation, proliferation, differentiation, and lipid metabolism.
Collapse
|
8
|
Howard A, Bojko J, Flynn B, Bowen S, Jungwirth U, Walko G. Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers. Exp Dermatol 2022; 31:1477-1499. [PMID: 35913427 PMCID: PMC9804452 DOI: 10.1111/exd.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Skin cancers are by far the most frequently diagnosed human cancers. The closely related transcriptional co-regulator proteins YAP and TAZ (WWTR1) have emerged as important drivers of tumour initiation, progression and metastasis in melanoma and non-melanoma skin cancers. YAP/TAZ serve as an essential signalling hub by integrating signals from multiple upstream pathways. In this review, we summarize the roles of YAP/TAZ in skin physiology and tumorigenesis and discuss recent efforts of therapeutic interventions that target YAP/TAZ in in both preclinical and clinical settings, as well as their prospects for use as skin cancer treatments.
Collapse
Affiliation(s)
| | - Jodie Bojko
- Department of Life SciencesUniversity of BathBathUK
| | | | - Sophie Bowen
- Department of Life SciencesUniversity of BathBathUK
| | - Ute Jungwirth
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| | - Gernot Walko
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| |
Collapse
|
9
|
Lyu Y, Guan Y, Deliu L, Humphrey E, Frontera JK, Yang YJ, Zamler D, Kim KH, Mohanty V, Jin K, Mohanty V, Liu V, Dou J, Veillon LJ, Kumar SV, Lorenzi PL, Chen Y, McAndrews KM, Grivennikov S, Song X, Zhang J, Xi Y, Wang J, Chen K, Nagarajan P, Ge Y. KLF5 governs sphingolipid metabolism and barrier function of the skin. Genes Dev 2022; 36:gad.349662.122. [PMID: 36008138 PMCID: PMC9480852 DOI: 10.1101/gad.349662.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 01/03/2023]
Abstract
Stem cells are fundamental units of tissue remodeling whose functions are dictated by lineage-specific transcription factors. Home to epidermal stem cells and their upward-stratifying progenies, skin relies on its secretory functions to form the outermost protective barrier, of which a transcriptional orchestrator has been elusive. KLF5 is a Krüppel-like transcription factor broadly involved in development and regeneration whose lineage specificity, if any, remains unclear. Here we report KLF5 specifically marks the epidermis, and its deletion leads to skin barrier dysfunction in vivo. Lipid envelopes and secretory lamellar bodies are defective in KLF5-deficient skin, accompanied by preferential loss of complex sphingolipids. KLF5 binds to and transcriptionally regulates genes encoding rate-limiting sphingolipid metabolism enzymes. Remarkably, skin barrier defects elicited by KLF5 ablation can be rescued by dietary interventions. Finally, we found that KLF5 is widely suppressed in human diseases with disrupted epidermal secretion, and its regulation of sphingolipid metabolism is conserved in human skin. Altogether, we established KLF5 as a disease-relevant transcription factor governing sphingolipid metabolism and barrier function in the skin, likely representing a long-sought secretory lineage-defining factor across tissue types.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lisa Deliu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ericka Humphrey
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Joanna K Frontera
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Youn Joo Yang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Daniel Zamler
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kun Hee Kim
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kevin Jin
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Vakul Mohanty
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Virginia Liu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lucas J Veillon
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sergei Grivennikov
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Department of Biomedical Sciences, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Lyu Y, Ge Y. Toward Elucidating Epigenetic and Metabolic Regulation of Stem Cell Lineage Plasticity in Skin Aging. Front Cell Dev Biol 2022; 10:903904. [PMID: 35663405 PMCID: PMC9160930 DOI: 10.3389/fcell.2022.903904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Skin is the largest organ in human body, harboring a plethora of cell types and serving as the organismal barrier. Skin aging such as wrinkling and hair graying is graphically pronounced, and the molecular mechanisms behind these phenotypic manifestations are beginning to unfold. As in many other organs and tissues, epigenetic and metabolic deregulations have emerged as key aging drivers. Particularly in the context of the skin epithelium, the epigenome and metabolome coordinately shape lineage plasticity and orchestrate stem cell function during aging. Our review discusses recent studies that proposed molecular mechanisms that drive the degeneration of hair follicles, a major appendage of the skin. By focusing on skin while comparing it to model organisms and adult stem cells of other tissues, we summarize literature on genotoxic stress, nutritional sensing, metabolic rewiring, mitochondrial activity, and epigenetic regulations of stem cell plasticity. Finally, we speculate about the rejuvenation potential of rate-limiting upstream signals during aging and the dominant role of the tissue microenvironment in dictating aged epithelial stem cell function.
Collapse
Affiliation(s)
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
11
|
Akamatsu H, Yamada T, Sanada A, Ishii Y, Iwata Y, Arima M, Hasegawa S, Sugiura K. Age-related decrease in responsiveness of CD271-positive skin stem cells to growth factors. Exp Dermatol 2022; 31:1264-1269. [PMID: 35524485 DOI: 10.1111/exd.14601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated that the numbers of interfollicular epidermal stem cells (IFE-SCs) and dermal stem cells (DSCs) decrease with age and that this decrease is attributed to the age-related deterioration of skin homeostatic functions and the delay in wound healing. Meanwhile, functional decline in the stem cells is also considered to be responsible for the deteriorated skin homeostatic functions and the delayed wound healing associated with aging. In the present study, we focused on epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) signaling and fibroblast growth factor-2/fibroblast growth factor receptor (FGF2/FGFR) signaling to analyze the age-related changes. Immunohistological analysis revealed that the expressions of EGFR and FGFR1 declined in IFE-SCs and DSCs with age, respectively. Additionally, IFE-SCs and DSCs isolated from the skin samples of elderly subjects exhibited lowered responsiveness to EGF and FGF2, respectively. These results suggest that the lowered responsiveness of the skin stem cells to growth factors may be a factor involved in the age-related deterioration of skin regenerative functions during wound healing and skin homeostatic functions. We hope that homeostatic and wound healing functions in the skin could be maintained if the decreased expressions of EGFR and FGFR1 in IFE-SCs and DSCs, respectively, can be suppressed.
Collapse
Affiliation(s)
- Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| | - Takaaki Yamada
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan.,Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan.,Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| | - Ayumi Sanada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan
| | - Yoshie Ishii
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan.,Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan
| | - Yohei Iwata
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| | - Masaru Arima
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan.,Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan.,Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| |
Collapse
|
12
|
Affiliation(s)
- Bogi Andersen
- Departments of Medicine and Biological Chemistry, University of California, Irvine
| | - Sarah Millar
- Black Family Stem Cell Institute, Departments of Cell, Developmental and Regenerative Biology and Dermatology, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
13
|
The METTL3-m 6A Epitranscriptome: Dynamic Regulator of Epithelial Development, Differentiation, and Cancer. Genes (Basel) 2021; 12:genes12071019. [PMID: 34209046 PMCID: PMC8303600 DOI: 10.3390/genes12071019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Dynamic modifications on RNA, frequently termed both, “RNA epigenetics” and “epitranscriptomics”, offer one of the most exciting emerging areas of gene regulation and biomedicine. Similar to chromatin-based epigenetic mechanisms, writers, readers, and erasers regulate both the presence and interpretation of these modifications, thereby adding further nuance to the control of gene expression. In particular, the most abundant modification on mRNAs, N6-methyladenosine (m6A), catalyzed by methyltransferase-like 3 (METTL3) has been shown to play a critical role in self-renewing somatic epithelia, fine-tuning the balance between development, differentiation, and cancer, particularly in the case of squamous cell carcinomas (SCCs), which in aggregate, outnumber all other human cancers. Along with the development of targeted inhibitors of epitranscriptomic modulators (e.g., METTL3) now entering clinical trials, the field holds significant promise for treating these abundant cancers. Here, we present the most current summary of this work, while also highlighting the therapeutic potential of these discoveries.
Collapse
|
14
|
Hsu YC, Rendl M. Skin stem cells in health and in disease. Exp Dermatol 2021; 30:424-429. [PMID: 33792993 DOI: 10.1111/exd.14318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|