1
|
Li Y, Peng Q, Shang J, Dong W, Wu S, Guo X, Xie Z, Chen C. The role of taurine in male reproduction: Physiology, pathology and toxicology. Front Endocrinol (Lausanne) 2023; 14:1017886. [PMID: 36742382 PMCID: PMC9889556 DOI: 10.3389/fendo.2023.1017886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Taurine, a sulfur-containing amino acid, has a wide range of biological effects, such as bile salt formation, osmotic regulation, oxidative stress inhibition, immunomodulation and neuromodulation. Taurine has been proved to be synthesized and abundant in male reproductive organs. Recently, accumulating data showed that taurine has a potential protective effect on reproductive function of male animals. In physiology, taurine can promote the endocrine function of the hypothalamus-pituitary-testis (HPT) axis, testicular tissue development, spermatogenesis and maturation, delay the aging of testicular structure and function, maintain the homeostasis of the testicular environment, and enhance sexual ability. In pathology, taurine supplement may be beneficial to alleviate pathological damage of male reproductive system, including oxidative damage of sperm preservation in vitro, testicular reperfusion injury and diabetes -induced reproductive complications. In addition, taurine acts as a protective agent against toxic damage to the male reproductive system by exogenous substances (e.g., therapeutic drugs, environmental pollutants, radiation). Related mechanisms include reduced oxidative stress, increased antioxidant capacity, inhibited inflammation and apoptosis, restored the secretory activity of the HPT axis, reduced chromosomal variation, enhanced sperm mitochondrial energy metabolism, cell membrane stabilization effect, etc. Therefore, this article reviewed the protective effect of taurine on male reproductive function and its detailed mechanism, in order to provide reference for further research and clinical application.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Jia Shang
- Arts Department, School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Wanglin Dong
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Sijia Wu
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Xiajun Guo
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Henan, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| |
Collapse
|
2
|
AlSabagh AT, Rao MS, Renno WM. The impact of heat therapy on neuromuscular function and muscle atrophy in diabetic rats. Front Physiol 2023; 13:1039588. [PMID: 36685197 PMCID: PMC9849254 DOI: 10.3389/fphys.2022.1039588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Diabetes Mellitus (DM) is the most common metabolic disease worldwide and is associated with many systemic complications. Muscle atrophy is one of the significant complications in DM patients, making routine tasks laborious as atrophy continues. It is known that heat stress stimulates heat shock proteins and other proteins that maintain muscle mass; however, it is not thoroughly studied in diabetic conditions. This study addressed whether heat therapy can attenuate muscle atrophy in STZ-induced diabetic rats and explored its mechanism of action on specific muscle proteins. Methods: Male Sprague Dawley rats were randomly divided into short-term (3 weeks) and long-term (6 weeks) experiments. In each experiment rats were divided into control, heat therapy, diabetic and diabetic + heat therapy groups. Rats in heat therapy groups were exposed to heat therapy for 30 min daily for three or six weeks in a temperature-controlled (42°C) chamber. Results: The attenuation of neuromuscular functions assessed by Rotarod, Kondziella's inverted screen, and extensor postural thrust tests showed that diabetic rats exposed to heat therapy performed significantly better than diabetic controls. Muscle cross sectional area data established that heat therapy reduced muscle atrophy by 34.3% within 3 weeks and 44.1% within 6 weeks in the diabetic groups. Further, heat therapy significantly decreased muscle atrophy markers (CD68, KLF, and MAFbx) and significantly elevated muscle hypertrophy markers (AKT, mTOR, and HSP70). Conclusions: This study shows the relevance and clinical significance of utilizing heat therapy as a viable treatment to attenuate muscle atrophy in diabetic patients.
Collapse
|
3
|
Fujimoto K, Hashimoto D, Kashimada K, Kumegawa S, Ueda Y, Hyuga T, Hirashima T, Inoue N, Suzuki K, Hara I, Asamura S, Yamada G. A visualization system for erectile vascular dynamics. Front Cell Dev Biol 2022; 10:1000342. [PMID: 36313553 PMCID: PMC9615422 DOI: 10.3389/fcell.2022.1000342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Erection is an essential process which requires the male penis for copulation. This copulatory process depends on the vascular dynamic regulation of the penis. The corpus cavernosum (CC) in the upper (dorsal) part of the penis plays a major role in regulating blood flow inside the penis. When the CC is filled with blood, the sinusoids, including micro-vessels, dilate during erection. The CC is an androgen-dependent organ, and various genital abnormalities including erectile dysfunction (ED) are widely known. Previous studies have shown that androgen deprivation by castration results in significantly decreased smooth muscles of the CC. Experimental works in erectile biology have previously measured intracavernosal penile pressure and mechanical tension. Such reports analyze limited features without assessing the dynamic aspects of the erectile process. In the current study, we established a novel explant system enabling direct visual imaging of the sinusoidal lumen to evaluate the dynamic movement of the cavernous space. To analyze the alternation of sinusoidal spaces, micro-dissected CC explants by patent blue dye injection were incubated and examined for their structural alternations during relaxation/contraction. The dynamic process of relaxation/contraction was analyzed with various external factors administered to the CC. The system enabled the imaging of relaxation/contraction of the lumens of the sinusoids and the collagen-containing tissues. Histological analysis on the explant system also showed the relaxation/contraction. Thus, the system mimics the regulatory process of dynamic relaxation/contraction in the erectile response. The current system also enabled evaluating the erectile pathophysiology. In the current study, the lumen of sinusoids relaxed/contracted in castrated mice similarly with normal mice. These results suggested that the dynamic erectile relaxation/contraction process was similarly retained in castrated mice. However, the system also revealed decreased duration time of erection in castrated mice. The current study is expected to promote further understanding of the pathophysiology of ED, which will be useful for new treatments in the future. Hence, the current system provides unique information to investigate the novel regulations of erectile function, which can provide tools for analyzing the pathology of ED.
Collapse
Affiliation(s)
- Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
| | - Daiki Hashimoto
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Kumegawa
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ueda
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Taiju Hyuga
- Department of Pediatric Urology, Children’s Medical Center Tochigi, Jichi Medical University, Tochigi, Japan
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Gen Yamada,
| |
Collapse
|
4
|
Olabiyi AA, Oboh G, Ishola AO, Adeniyi PA, Boligon AA. Tetracarpidium conophorum Müll. Arg modulates sexual behaviour and biochemical parameters relevant to sexual function in male Wistar rats. ACTA ACUST UNITED AC 2018; 26:61-68. [PMID: 30391101 DOI: 10.1016/j.pathophys.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 01/23/2023]
Abstract
Walnut (Tetracarpidium conophorum Müll. Arg) has been reported to be an essential ingredient in folklore medicine for sexual enhancement with little scientific validation. Hence, this study investigated the effects of walnut supplemented diet on sexual behaviour and biochemical parameters relevant to erection in male Wistar rats. Forty animals used in this study were divided into five groups (n = 8); Group 1 - normal control rats fed with basal diet, Group II - rats fed diet supplemented with 10% processed walnut, Group III - rats fed diet supplemented with 10% raw walnut, Group IV - rats fed diet supplemented with 20% processed walnut and Group V - rats fed diet supplemented with 20% raw walnut. Behavioural studies (copulation tendency and anxiety) associated with sexual function, measurement of nitric oxide (NO) levels, adenosine deaminase (ADA), arginase and acetylcholinesterase (AChE) activities in the Corpus cavernosum as well as characterization of bioactive components of the nut were evaluated. Marked reductions in ADA and arginase activities and a concomitant increase (% inclusion dependent) in the level of NO as well as enhanced sexual behaviours were observed in rat fed supplemented walnut when compared to the control. Furthermore, analysis of the walnut using high performance liquid chromatography indicated the presence of some polyphenols. From our findings, it showed that walnut improves sexual behaviour and modulates activities of key enzymes relevant to erection in male rats which may justify its used in traditional medicine.
Collapse
Affiliation(s)
- Ayodeji Augustine Olabiyi
- Functional Food and Nutraceutical Unit, Biochemistry Department, Federal University of Technology, Private Mail Bag 704, Akure, 340001, Nigeria; Medical Biochemistry Department, Afe Babalola University, Ado Ekiti, Private Mail Bag 5454, Nigeria
| | - Ganiyu Oboh
- Functional Food and Nutraceutical Unit, Biochemistry Department, Federal University of Technology, Private Mail Bag 704, Akure, 340001, Nigeria.
| | - Azeez Olakunle Ishola
- Cell Biology and Neurotoxicity Unit, Department of Anatomy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Philip Adeyemi Adeniyi
- Cell Biology and Neurotoxicity Unit, Department of Anatomy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Aline Augusti Boligon
- Phytochemical Research Laboratory, Department of Industrial Pharmacy, Federal University of Santa Maria, Build 26, Room 1115, Santa Maria, CEP 97105-900, Brazil
| |
Collapse
|
5
|
Yang J, Lin S, Zhang Y, Wu G, Yang Q, Lv Q, Hu J. Taurine Improves Sexual Function in Streptozotocin-Induced Diabetic Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:307-318. [PMID: 28849465 DOI: 10.1007/978-94-024-1079-2_27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies have identified that diabetic erectile dysfunction is associated with androgen and nitric oxide deficiency resulting from hyperglycemia. It has been demonstrated that taurine can stimulate testosterone secretion, increase nitric oxide synthase (NOS) activity and nitric oxide (NO) production, and reduce blood glucose levels in the diabetic animals. Furthermore, recent studies have found that taurine relaxes both the corpus cavernosum and the vasculature. Accordingly, we hypothesized that taurine might exert beneficial effects on erectile function of the diabetic rats. Here, we assessed the effects of taurine on sexual function in streptozotocin (STZ) -induced diabetic male rats. We observed that taurine treatment could markedly increase sexual response and mating ability of STZ-diabetic rats. The serum concentration of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone (T) were also significantly increased by taurine administration. Importantly, taurine supplementation notably increased mRNA levels and activity of endothelial NOS (eNOS) and neuronal NOS (nNOS), as well as NO and cGMP content, in the corpus cavernosum of the diabetic rats. In conclusion, the present data indicate that taurine can increase sexual function of STZ-induced diabetic male rats mainly by correcting the diabetes, increasing sexual desire, which is implicated in ameliorating the hypothalamic-pituitary-testicular axis function, and by improving penile erection, which requires increased signaling from the penile endothelial- and neuronal-dependent NO-cGMP pathway.
Collapse
Affiliation(s)
- Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Shumei Lin
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Yu Zhang
- Agricultural College of Eastern Liaoning University, Dandong, Liaoning, 118003, People's Republic of China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Qunhui Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Qiufeng Lv
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China.
| |
Collapse
|
6
|
Sarkar P, Basak P, Ghosh S, Kundu M, Sil PC. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications. Food Chem Toxicol 2017; 110:109-121. [PMID: 29050977 DOI: 10.1016/j.fct.2017.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/08/2023]
Abstract
Taurine is a conditionally essential amino acid present in the body in free form. Mammalian taurine is synthesized in the pancreas via the cysteine sulfinic acid pathway. Anti-oxidation and anti-inflammation are two main properties through which it exerts its therapeutic effects. Many studies have shown its excellent therapeutic potential against diabetes mellitus and related complications like diabetic neuropathy, retinopathy, nephropathy, hematological dysfunctions, reproductive dysfunctions, liver and pancreas related complications etc. Not only taurine, a number of its derivatives have also been reported to be important in ameliorating diabetic complications. The present review has been aimed to describe the importance of taurine and its derivatives against diabetic metabolic syndrome and related complications.
Collapse
Affiliation(s)
- Poulami Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Priyanka Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India.
| |
Collapse
|
7
|
Ruan Y, Li M, Wang T, Yang J, Rao K, Wang S, Yang W, Liu J, Ye Z. Taurine Supplementation Improves Erectile Function in Rats with Streptozotocin-induced Type 1 Diabetes via Amelioration of Penile Fibrosis and Endothelial Dysfunction. J Sex Med 2016; 13:778-85. [DOI: 10.1016/j.jsxm.2016.02.164] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
|
8
|
Boydens C, Pauwels B, Vanden Daele L, Van de Voorde J. Protective effect of resveratrol and quercetin on in vitro-induced diabetic mouse corpus cavernosum. Cardiovasc Diabetol 2016; 15:46. [PMID: 26993793 PMCID: PMC4797116 DOI: 10.1186/s12933-016-0366-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/11/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Hyperglycemia and increased levels of methylglyoxal (MGO) can trigger the development of vascular complications in diabetes. Resveratrol and quercetin are red wine polyphenols with known beneficial cardiovascular properties, including an antioxidant capacity. This study evaluated whether resveratrol and/or quercetin could prevent in vitro-induced diabetic changes in neurogenic and vascular relaxant responses of mouse arteries and corpora cavernosa. METHODS Isometric tension of isolated aorta, mesenteric arteries and corpora cavernosa was measured using organ bath systems. Diabetic conditions were mimicked in vitro by co-incubating the tissues for 2 h with high glucose (HG, 30 mM) and MGO (120 µM). RESULTS The presence of HG and MGO significantly blunted acetylcholine (Ach)-induced relaxations in corpora cavernosa and mesenteric arteries but not in aorta. Electrical field stimulated (EFS) responses of corpora cavernosa were also significantly inhibited by these diabetic conditions. In corpora cavernosa 2 h co-incubation with resveratrol (30 µM) or quercetin (30 µM) significantly attenuated HG and MGO-induced deficits in Ach- and EFS-responses. CONCLUSIONS Our study demonstrates that in mouse arteries, HG and MGO rather affect endothelium derived hyperpolarizing factor-mediated than nitric oxide (NO)-mediated relaxations. In corpora cavernosa HG and MGO interfere with NO release. Resveratrol and quercetin protect mouse corpora cavernosa from diabetic-induced damage to NO-mediated relaxant responses. This might rely on their antioxidant capacity.
Collapse
Affiliation(s)
- Charlotte Boydens
- Department of Pharmacology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Bart Pauwels
- Department of Pharmacology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Laura Vanden Daele
- Department of Pharmacology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Johan Van de Voorde
- Department of Pharmacology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| |
Collapse
|
9
|
Maia AR, Batista TM, Victorio JA, Clerici SP, Delbin MA, Carneiro EM, Davel AP. Taurine supplementation reduces blood pressure and prevents endothelial dysfunction and oxidative stress in post-weaning protein-restricted rats. PLoS One 2014; 9:e105851. [PMID: 25170895 PMCID: PMC4149434 DOI: 10.1371/journal.pone.0105851] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/27/2014] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. METHODS AND RESULTS Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. CONCLUSION Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability.
Collapse
Affiliation(s)
- Aline R Maia
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thiago M Batista
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jamaira A Victorio
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Stefano P Clerici
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maria A Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Everardo M Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ana P Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
10
|
Yetik-Anacak G, Sorrentino R, Linder AE, Murat N. Gas what: NO is not the only answer to sexual function. Br J Pharmacol 2014; 172:1434-54. [PMID: 24661203 DOI: 10.1111/bph.12700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023] Open
Abstract
The ability to get and keep an erection is important to men for several reasons and the inability is known as erectile dysfunction (ED). ED has started to be accepted as an early indicator of systemic endothelial dysfunction and subsequently of cardiovascular diseases. The role of NO in endothelial relaxation and erectile function is well accepted. The discovery of NO as a small signalling gasotransmitter led to the investigation of the role of other endogenously derived gases, carbon monoxide (CO) and hydrogen sulphide (H2 S) in physiological and pathophysiological conditions. The role of NO and CO in sexual function and dysfunction has been investigated more extensively and, recently, the involvement of H2 S in erectile function has also been confirmed. In this review, we focus on the role of these three sister gasotransmitters in the physiology, pharmacology and pathophysiology of sexual function in man, specifically erectile function. We have also reviewed the role of soluble guanylyl cyclase/cGMP pathway as a common target of these gasotransmitters. Several studies have proposed alternative therapies targeting different mechanisms in addition to PDE-5 inhibition for ED treatment, since some patients do not respond to these drugs. This review highlights complementary and possible coordinated roles for these mediators and treatments targeting these gasotransmitters in erectile function/ED.
Collapse
Affiliation(s)
- G Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | | | | | | |
Collapse
|
11
|
Decaluwé K, Pauwels B, Boydens C, Van de Voorde J. Treatment of erectile dysfunction: new targets and strategies from recent research. Pharmacol Biochem Behav 2013; 121:146-57. [PMID: 24291648 DOI: 10.1016/j.pbb.2013.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/18/2013] [Indexed: 12/15/2022]
Abstract
In recent years, research on penile erection has increasingly been centered on the molecular mechanisms involved. Major progress has been made in the field and at present a whole number of neurotransmitters, chemical effectors, growth factors, second-messenger molecules, ions, intercellular proteins, and hormones have been characterized as components of the complex process of erection. This knowledge has led to the discovery of several new therapeutic targets and multiple medical approaches for the treatment of erectile dysfunction (ED). This review focuses on the progress made in this field within the last few years.
Collapse
Affiliation(s)
- K Decaluwé
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | - B Pauwels
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | - C Boydens
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | - J Van de Voorde
- Department of Pharmacology, Ghent University, Ghent, Belgium.
| |
Collapse
|