1
|
Patil R, Wang H, Kazaleh M, Ailawadi G, Salmon M. Dysregulation of Mitochondrial Homeostasis in Cardiovascular Diseases. Pharmaceuticals (Basel) 2025; 18:112. [PMID: 39861173 PMCID: PMC11768260 DOI: 10.3390/ph18010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Mitochondria dysfunction plays a central role in the development of vascular diseases as oxidative stress promotes alterations in mitochondrial morphology and function that contribute to disease progression. Redox imbalances can affect normal cellular processes including mitochondrial biogenesis, electrochemical equilibrium, and the regulation of mitochondrial DNA. In this review, we will discuss these imbalances and, in particular, the potential role of mitochondrial fusion, fission, biogenesis, and mitophagy in the context of vascular diseases and how the dysregulation of normal function might contribute to disease progression. We will also discuss potential implications of targeting mitochondrial regulation as therapeutic targets to treat vascular disease formation.
Collapse
Affiliation(s)
- Ricky Patil
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
| | - Hui Wang
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
| | - Matthew Kazaleh
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
| | - Gorav Ailawadi
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
- Frankel Cardiovascular Center, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
- Frankel Cardiovascular Center, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Kim K, Fazzone B, Cort TA, Kunz EM, Alvarez S, Moerschel J, Palzkill VR, Dong G, Anderson EM, O'Malley KA, Berceli SA, Ryan TE, Scali ST. Mitochondrial targeted catalase improves muscle strength following arteriovenous fistula creation in mice with chronic kidney disease. Sci Rep 2024; 14:8288. [PMID: 38594299 PMCID: PMC11004135 DOI: 10.1038/s41598-024-58805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Hand dysfunction is a common observation after arteriovenous fistula (AVF) creation for hemodialysis access and has a variable clinical phenotype; however, the underlying mechanism responsible is unclear. Grip strength changes are a common metric used to assess AVF-associated hand disability but has previously been found to poorly correlate with the hemodynamic perturbations post-AVF placement implicating other tissue-level factors as drivers of hand outcomes. In this study, we sought to test if expression of a mitochondrial targeted catalase (mCAT) in skeletal muscle could reduce AVF-related limb dysfunction in mice with chronic kidney disease (CKD). Male and female C57BL/6J mice were fed an adenine-supplemented diet to induce CKD prior to placement of an AVF in the iliac vascular bundle. Adeno-associated virus was used to drive expression of either a green fluorescent protein (control) or mCAT using the muscle-specific human skeletal actin (HSA) gene promoter prior to AVF creation. As expected, the muscle-specific AAV-HSA-mCAT treatment did not impact blood urea nitrogen levels (P = 0.72), body weight (P = 0.84), or central hemodynamics including infrarenal aorta and inferior vena cava diameters (P > 0.18) or velocities (P > 0.38). Hindlimb perfusion recovery and muscle capillary densities were also unaffected by AAV-HSA-mCAT treatment. In contrast to muscle mass and myofiber size which were not different between groups, both absolute and specific muscle contractile forces measured via a nerve-mediated in-situ preparation were significantly greater in AAV-HSA-mCAT treated mice (P = 0.0012 and P = 0.0002). Morphological analysis of the post-synaptic neuromuscular junction uncovered greater acetylcholine receptor cluster areas (P = 0.0094) and lower fragmentation (P = 0.0010) in AAV-HSA-mCAT treated mice. Muscle mitochondrial oxidative phosphorylation was not different between groups, but AAV-HSA-mCAT treated mice had lower succinate-fueled mitochondrial hydrogen peroxide emission compared to AAV-HSA-GFP mice (P < 0.001). In summary, muscle-specific scavenging of mitochondrial hydrogen peroxide significantly improves neuromotor function in mice with CKD following AVF creation.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Brian Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Tomas A Cort
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Eric M Kunz
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Samuel Alvarez
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Jack Moerschel
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Victoria R Palzkill
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Erik M Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Kerri A O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA.
- Center for Exercise Science, University of Florida, Gainesville, FL, USA.
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA.
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA.
| |
Collapse
|
3
|
Dl-3-n-Butylphthalide (NBP) Mitigates Muscular Injury Induced by Limb Ischemia/Reperfusion in Mice through the HMGB1/TLR4/NF-κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5556067. [PMID: 36199552 PMCID: PMC9529425 DOI: 10.1155/2022/5556067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/05/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022]
Abstract
Objective Limb ischemia/reperfusion (I/R) injury is a clinical syndrome associated with severe damages to skeletal muscles and other fatal outcomes. Oxidative stress and inflammatory response play vital roles in the development of limb I/R injury. Existing evidence further indicates that Dl-3-n-butylphthalide (NBP) has anti-inflammatory and antioxidative properties. However, whether NBP can protect skeletal muscles from limb I/R injury and the mechanism in mediating the action of NBP treatment still remain to be investigated, which are the focuses of the current study. Methods The model of limb I/R injury was established and H&E staining was adopted to assess the pathological changes in skeletal muscles following limb I/R injury. Additionally, the W/D ratio of muscle tissue was also measured. ELISA and biochemical tests were carried out to measure the levels of inflammatory cytokines and oxidative stress in mouse models of limb I/R injury. Moreover, the levels of the HMGB1/TLR4/NF-κB pathway-related proteins were also determined using immunohistochemistry and immunoblotting. Results It was established that NBP treatment alleviated I/R-induced pathological changes in muscular tissue of mice, accompanied by lower W/D ratio of skeletal muscular tissue. Meanwhile, the limb I/R-induced inflammation and oxidative stress in skeletal muscles of mice were also inhibited by NBP. Mechanistic study indicated that the alleviatory effect of NBP was ascribed to inactivation of the HMGB1/TLR4/NF-κB pathway. Conclusions Our findings highlighted the potential of NBP as a novel strategy for limb I/R-driven muscle tissue damages by suppressing inflammatory response and oxidative stress via the HMGB1/TLR4/NF-κB pathway.
Collapse
|
4
|
Sun H, Wang J, Bi W, Zhang F, Chi K, Shi L, Yuan T, Ma K, Gao X. Sulforaphane Ameliorates Limb Ischemia/Reperfusion-Induced Muscular Injury in Mice by Inhibiting Pyroptosis and Autophagy via the Nrf2-ARE Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4653864. [PMID: 35600947 PMCID: PMC9117032 DOI: 10.1155/2022/4653864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Background Limb ischemia/reperfusion (I/R) injury, as a life-threatening syndrome, is commonly caused by skeletal muscle damage resulting from oxidative stress. Additionally, inflammation-induced pyroptosis and dysregulated autophagy are vital factors contributing to the aggravation of I/R injury. Of note, sulforaphane (SFN) is a natural antioxidant, but whether it worked in limb I/R injury and the possible mechanism behind its protection for skeletal muscle has not been clearly established. Methods Effects of SFN on limb I/R-injured skeletal muscle were assessed by HE staining, followed by assessment of wet weight/dry weight (W/D) ratio of muscle tissues. Next, ELISA and biochemical tests were used to measure the inflammatory cytokine production and oxidative stress. Immunofluorescent analysis and Western blot were adopted to examine the level of pyroptosis- and autophagy-related proteins in vivo. Moreover, protein levels of Nrf2-ARE pathway-related factors were also examined using Western blot. Results SFN treatment could protect skeletal muscle against limb I/R injury, as evidenced by diminished inflammation, pyroptosis, autophagy, and oxidative stress in skeletal muscles of mice. Further mechanistic exploration confirmed that antioxidative protection of SFN was associated with the Nrf2-ARE pathway activation. Conclusions SFN activates the Nrf2-ARE pathway, and thereby inhibits pyroptosis and autophagy and provides a novel therapeutic strategy for the limb I/R-induced muscle tissue damage.
Collapse
Affiliation(s)
- Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jueqiong Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Wei Bi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Feng Zhang
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Kui Chi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Long Shi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Tao Yuan
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Kai Ma
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| |
Collapse
|
5
|
Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol 2022; 23:266-285. [PMID: 34880425 DOI: 10.1038/s41580-021-00433-y] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial permeability transition (mPT) is a phenomenon that abruptly causes the flux of low molecular weight solutes (molecular weight up to 1,500) across the generally impermeable inner mitochondrial membrane. The mPT is mediated by the so-called mitochondrial permeability transition pore (mPTP), a supramolecular entity assembled at the interface of the inner and outer mitochondrial membranes. In contrast to mitochondrial outer membrane permeabilization, which mostly activates apoptosis, mPT can trigger different cellular responses, from the physiological regulation of mitophagy to the activation of apoptosis or necrosis. Although there are several molecular candidates for the mPTP, its molecular nature remains contentious. This lack of molecular data was a significant setback that prevented mechanistic insight into the mPTP, pharmacological targeting and the generation of informative animal models. In recent years, experimental evidence has highlighted mitochondrial F1Fo ATP synthase as a participant in mPTP formation, although a molecular model for its transition to the mPTP is still lacking. Recently, the resolution of the F1Fo ATP synthase structure by cryogenic electron microscopy led to a model for mPTP gating. The elusive molecular nature of the mPTP is now being clarified, marking a turning point for understanding mitochondrial biology and its pathophysiological ramifications. This Review provides an up-to-date reference for the understanding of the mammalian mPTP and its cellular functions. We review current insights into the molecular mechanisms of mPT and validated observations - from studies in vivo or in artificial membranes - on mPTP activity and functions. We end with a discussion of the contribution of the mPTP to human disease. Throughout the Review, we highlight the multiple unanswered questions and, when applicable, we also provide alternative interpretations of the recent discoveries.
Collapse
|
6
|
Gratl A, Pesta D, Gruber L, Speichinger F, Raude B, Omran S, Greiner A, Frese JP. The effect of revascularization on recovery of mitochondrial respiration in peripheral artery disease: a case control study. J Transl Med 2021; 19:244. [PMID: 34088309 PMCID: PMC8178834 DOI: 10.1186/s12967-021-02908-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background Peripheral arterial disease (PAD) is accompanied by myopathy characterized by mitochondrial dysfunction. The aim of this experimental study was to investigate the effect of revascularization procedures on mitochondrial function in ischemic and non-ischemic muscle. Methods Muscle biopsies from patients with symptomatic stage IIB/III PAD caused by isolated pathologies of the superficial femoral artery were obtained from muscle regions within the chronic ischemic muscle (gastrocnemius) and from non-ischemic muscle (vastus lateralis) before and 6 weeks after invasive revascularization. High-resolution respirometry was used to investigate mitochondrial function and results were normalized to citrate synthase activity (CSA). Results are given in absolute values and fold over basal (FOB). Results Respiratory states (OXPHOS (P) and electron transfer (E) capacity) normalized to CSA decreased while CSA was increased in chronic ischemic muscle after revascularization. There were no changes in in non-ischemic muscle. The FOB of chronic ischemic muscle was significantly higher for CSA (chronic ischemic 1.37 (IQR 1.10–1.64) vs. non-ischemic 0.93 (IQR 0.69–1.16) p = 0.020) and significantly lower for respiratory states normalized to CSA when compared to the non-ischemic muscle (P per CSA chronic ischemic 0.64 (IQR 0.46–0.82) vs non-ischemic 1.16 (IQR 0.77–1.54) p = 0.011; E per CSA chronic ischemic 0.61 (IQR 0.47–0.76) vs. non-ischemic 1.02 (IQR 0.64–1.40) p = 0.010). Conclusions Regeneration of mitochondrial content and function following revascularization procedures only occur in muscle regions affected by malperfusion. This indicates that the restoration of blood and oxygen supply are important mediators aiding mitochondrial recovery. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02908-0.
Collapse
Affiliation(s)
- Alexandra Gratl
- Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.,Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Sports Science, Medical Section, Innsbruck, Austria.,German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Leonhard Gruber
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fiona Speichinger
- Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Ben Raude
- Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Safwan Omran
- Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Andreas Greiner
- Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Jan Paul Frese
- Department of Vascular Surgery, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
7
|
Skeletal Muscle Mitochondrial Dysfunction and Oxidative Stress in Peripheral Arterial Disease: A Unifying Mechanism and Therapeutic Target. Antioxidants (Basel) 2020; 9:antiox9121304. [PMID: 33353218 PMCID: PMC7766400 DOI: 10.3390/antiox9121304] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) is caused by atherosclerosis in the lower extremities, which leads to a spectrum of life-altering symptomatology, including claudication, ischemic rest pain, and gangrene requiring limb amputation. Current treatments for PAD are focused primarily on re-establishing blood flow to the ischemic tissue, implying that blood flow is the decisive factor that determines whether or not the tissue survives. Unfortunately, failure rates of endovascular and revascularization procedures remain unacceptably high and numerous cell- and gene-based vascular therapies have failed to demonstrate efficacy in clinical trials. The low success of vascular-focused therapies implies that non-vascular tissues, such as skeletal muscle and oxidative stress, may substantially contribute to PAD pathobiology. Clues toward the importance of skeletal muscle in PAD pathobiology stem from clinical observations that muscle function is a strong predictor of mortality. Mitochondrial impairments in muscle have been documented in PAD patients, although its potential role in clinical pathology is incompletely understood. In this review, we discuss the underlying mechanisms causing mitochondrial dysfunction in ischemic skeletal muscle, including causal evidence in rodent studies, and highlight emerging mitochondrial-targeted therapies that have potential to improve PAD outcomes. Particularly, we will analyze literature data on reactive oxygen species production and potential counteracting endogenous and exogenous antioxidants.
Collapse
|
8
|
Li Y, Jiang J, Tong L, Gao T, Bai L, Xue Q, Xing J, Wang Q, Lyu H, Cai M, Sun Z. Bilobalide protects against ischemia/reperfusion-induced oxidative stress and inflammatory responses via the MAPK/NF-휅B pathways in rats. BMC Musculoskelet Disord 2020; 21:449. [PMID: 32646398 PMCID: PMC7350583 DOI: 10.1186/s12891-020-03479-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Background Clinically, skeletal muscle ischemia/reperfusion injury is a life-threatening syndrome that is often caused by skeletal muscle damage and is characterized by oxidative stress and inflammatory responses. Bilobalide has been found to have antioxidative and anti-inflammatory effects. However, it is unclear whether bilobalide can protect skeletal muscle from ischemia/reperfusion injury. Methods The effects of bilobalide on ischemia/reperfusion-injured skeletal muscle were investigated by performing hematoxylin and eosin staining and assessing the wet weight/dry weight ratio of muscle tissue. Then, we measured lipid peroxidation, antioxidant activity and inflammatory cytokine levels. Moreover, Western blotting was conducted to examine the protein levels of MAPK/NF-휅B pathway members. Results Bilobalide treatment could protected hind limb skeletal muscle from ischemia/reperfusion injury by alleviating oxidative stress and inflammatory responses via the MAPK/NF-휅B pathways. Conclusions Bilobalide may be a promising drug for I/R-injured muscle tissue. However, the specific mechanisms for the protective effects still need further study.
Collapse
Affiliation(s)
- Ying Li
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Jiliang Jiang
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Liangcheng Tong
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Tingting Gao
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Lei Bai
- Department of Neurosurgery, Yulin First Hospital, the Second Affiliated Hospital of Yan'an University, Yulin, China
| | - Qing Xue
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Jianxin Xing
- Department of Orthopedics, Yuhuatai Hospital, Nanjing, China
| | - Qin Wang
- Department of Orthopedics, Zhangwenxin Hospital, Nanjing, China
| | - Haoran Lyu
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Min Cai
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China
| | - Zhongyang Sun
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China.
| |
Collapse
|
9
|
Bonora M, Patergnani S, Ramaccini D, Morciano G, Pedriali G, Kahsay AE, Bouhamida E, Giorgi C, Wieckowski MR, Pinton P. Physiopathology of the Permeability Transition Pore: Molecular Mechanisms in Human Pathology. Biomolecules 2020; 10:biom10070998. [PMID: 32635556 PMCID: PMC7408088 DOI: 10.3390/biom10070998] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial permeability transition (MPT) is the sudden loss in the permeability of the inner mitochondrial membrane (IMM) to low-molecular-weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse of the organelle. Thus, MPT can initiate outer-mitochondrial-membrane permeabilization (MOMP), promoting the activation of the apoptotic caspase cascade and caspase-independent cell-death mechanisms. The induction of MPT is mostly dependent on mitochondrial reactive oxygen species (ROS) and Ca2+, but is also dependent on the metabolic stage of the affected cell and signaling events. Therefore, since its discovery in the late 1970s, the role of MPT in human pathology has been heavily investigated. Here, we summarize the most significant findings corroborating a role for MPT in the etiology of a spectrum of human diseases, including diseases characterized by acute or chronic loss of adult cells and those characterized by neoplastic initiation.
Collapse
Affiliation(s)
- Massimo Bonora
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Correspondence: (M.B.); (P.P.)
| | - Simone Patergnani
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Daniela Ramaccini
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Giampaolo Morciano
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy
| | - Gaia Pedriali
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy
| | - Asrat Endrias Kahsay
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Esmaa Bouhamida
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland;
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy
- Correspondence: (M.B.); (P.P.)
| |
Collapse
|
10
|
Zou H, Sun X. Effects of cyclosporin A pre-treatment combined with etomidate post-treatment on lung injury induced by limb ischemia-reperfusion in rats. J Int Med Res 2020; 48:300060520934627. [PMID: 32674636 PMCID: PMC7370568 DOI: 10.1177/0300060520934627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To investigate the influence of cyclosporin A (CsA) pre-treatment and etomidate (ETO) post-treatment on lung injury induced by limb ischemia-reperfusion (I/R) in rats. METHODS Rats were randomly divided into five groups: sham, I/R, I/R+CsA, I/R+ETO, and I/R+CsA+ETO. Limb I/R lung injury was established by bilateral clamping of the femoral arteries for 2 hours. Following reperfusion for 3 hours, blood gas analysis was performed. Pathological changes were assessed using immunohistochemistry. The apoptosis index (AI) and wet/dry weight ratio (W/D) were calculated. Levels of Fas protein and FasL mRNA were assessed by western blotting and RT-PCR, respectively. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β were detected by ELISA. RESULTS I/R resulted in decreased PaO2 but increased AI, W/D, Fas, FasL mRNA, TNF-α and IL-1β. Scattered punctate apoptosis and necrosis were observed by immunohistochemistry. Compared with the I/R group, the I/R+ETO and I/R+CsA groups showed increased SpO2, decreased AI, W/D, Fas, FasL mRNA, TNF-α and IL-1β, and decreased numbers of apoptotic and necrotic cells. Combined treatment with CsA+ETO resulted in more dramatic changes in these parameters. CONCLUSIONS ETO post-treatment and CsA pretreatment reduced lung injury induced by limb I/R in rats. The mechanism may be related to synergistic inhibition of Fas/FasL signaling.
Collapse
Affiliation(s)
- Haibo Zou
- Central Hospital Affiliated to Shenyang Medical College, Shenyang City, Liaoning Province, China
| | - Xiaofeng Sun
- Central Hospital Affiliated to Shenyang Medical College, Shenyang City, Liaoning Province, China
| |
Collapse
|
11
|
Yang J, Peng S, Zhang B, Houten S, Schadt E, Zhu J, Suh Y, Tu Z. Human geroprotector discovery by targeting the converging subnetworks of aging and age-related diseases. GeroScience 2020; 42:353-372. [PMID: 31637571 PMCID: PMC7031474 DOI: 10.1007/s11357-019-00106-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
A key goal of geroscience research is to identify effective interventions to extend human healthspan, the years of healthy life. Currently, majority of the geroprotectors are found by screening compounds in model organisms; whether they will be effective in humans is largely unknown. Here we present a new strategy called ANDRU (aging network based drug discovery) to help the discovery of human geroprotectors. It first identifies human aging subnetworks that putatively function at the interface between aging and age-related diseases; it then screens for pharmacological interventions that may "reverse" the age-associated transcriptional changes occurred in these subnetworks. We applied ANDRU to human adipose gene expression data from the Genotype Tissue Expression (GTEx) project. For the top 31 identified compounds, 19 of them showed at least some evidence supporting their function in improving metabolic traits or lifespan, which include type 2 diabetes drugs such as pioglitazone. As the query aging genes were refined to the ones with more intimate links to diseases, ANDRU identified more meaningful drug hits than the general approach without considering the underlying network structures. In summary, ANDRU represents a promising human data-driven strategy that may speed up the discovery of interventions to extend human healthspan.
Collapse
Affiliation(s)
- Jialiang Yang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Shouneng Peng
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Bin Zhang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Sander Houten
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Eric Schadt
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Jun Zhu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, New York, New York City, USA
- Department of Medicine Endocrinology, Albert Einstein College of Medicine, New York, New York City, USA
| | - Zhidong Tu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA.
| |
Collapse
|
12
|
Pizzimenti M, Riou M, Charles AL, Talha S, Meyer A, Andres E, Chakfé N, Lejay A, Geny B. The Rise of Mitochondria in Peripheral Arterial Disease Physiopathology: Experimental and Clinical Data. J Clin Med 2019; 8:jcm8122125. [PMID: 31810355 PMCID: PMC6947197 DOI: 10.3390/jcm8122125] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral arterial disease (PAD) is a frequent and serious condition, potentially life-threatening and leading to lower-limb amputation. Its pathophysiology is generally related to ischemia-reperfusion cycles, secondary to reduction or interruption of the arterial blood flow followed by reperfusion episodes that are necessary but also—per se—deleterious. Skeletal muscles alterations significantly participate in PAD injuries, and interestingly, muscle mitochondrial dysfunctions have been demonstrated to be key events and to have a prognosis value. Decreased oxidative capacity due to mitochondrial respiratory chain impairment is associated with increased release of reactive oxygen species and reduction of calcium retention capacity leading thus to enhanced apoptosis. Therefore, targeting mitochondria might be a promising therapeutic approach in PAD.
Collapse
Affiliation(s)
- Mégane Pizzimenti
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Marianne Riou
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Anne-Laure Charles
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
| | - Samy Talha
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Alain Meyer
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Emmanuel Andres
- Internal Medicine, Diabete and Metabolic Diseases Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France;
| | - Nabil Chakfé
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Vascular Surgery and Kidney Transplantation Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Anne Lejay
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Vascular Surgery and Kidney Transplantation Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Bernard Geny
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
- Correspondence:
| |
Collapse
|
13
|
Paradis S, Charles AL, Georg I, Goupilleau F, Meyer A, Kindo M, Laverny G, Metzger D, Geny B. Aging Exacerbates Ischemia-Reperfusion-Induced Mitochondrial Respiration Impairment in Skeletal Muscle. Antioxidants (Basel) 2019; 8:antiox8060168. [PMID: 31181751 PMCID: PMC6616544 DOI: 10.3390/antiox8060168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cycles of ischemia-reperfusion (IR) that occur during peripheral arterial disease (PAD) are associated with significant morbi-mortality, and aging is an irreversible risk factor of PAD. However, the effects of advanced age on IR-induced skeletal muscle mitochondrial dysfunction are not well known. Young and aged mice were therefore submitted to hindlimb IR (2 h ischemia followed by 2 h reperfusion). Skeletal muscle mitochondrial respiration, calcium retention capacity (CRC) and reactive oxygen species (ROS) production were determined using high resolution respirometry, spectrofluorometry and electronic paramagnetic resonance. IR-induced impairment in mitochondrial respiration was enhanced in old animals (VADP; from 33.0 ± 2.4 to 18.4 ± 3.8 and 32.8 ± 1.3 to 5.9 ± 2.7 pmol/s/mg wet weight; −44.2 ± 11.4% vs. −82.0 ± 8.1%, in young and aged mice, respectively). Baseline CRC was lower in old animals and IR similarly decreased the CRC in both groups (from 11.8 ± 0.9 to 4.6 ± 0.9 and 5.5 ± 0.9 to 2.1 ± 0.3 µmol/mg dry weight; −60.9 ± 7.3 and −60.9 ± 4.6%, in young and aged mice, respectively). Further, IR-induced ROS production tended to be higher in aged mice. In conclusion, aging exacerbated the deleterious effects of IR on skeletal muscle mitochondrial respiration, potentially in relation to an increased oxidative stress.
Collapse
Affiliation(s)
- Stéphanie Paradis
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Anne-Laure Charles
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Isabelle Georg
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Fabienne Goupilleau
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Alain Meyer
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Michel Kindo
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Chirurgie Cardiaque, Pôle de Pathologie Cardiaque, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| | - Gilles Laverny
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France.
| | - Daniel Metzger
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France.
| | - Bernard Geny
- Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Institut de Physiologie, Equipe d'Accueil EA3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
14
|
Tetsi L, Charles AL, Georg I, Goupilleau F, Lejay A, Talha S, Maumy-Bertrand M, Lugnier C, Geny B. Effect of the Phosphodiesterase 5 Inhibitor Sildenafil on Ischemia-Reperfusion-Induced Muscle Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2019; 8:antiox8040093. [PMID: 30959961 PMCID: PMC6523910 DOI: 10.3390/antiox8040093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
Lower-limb ischemia-reperfusion (IR) is frequent and associated with significant morbidity and mortality. Phosphodiesterase 5 inhibitors demonstrated antioxidant and beneficial effects in several organs submitted to IR, but their effects on muscle mitochondrial functions after lower-limb IR are unknown. Unilateral hindlimb IR (2 h tourniquet followed by 2 h reperfusion) without or with sildenafil (1mg/kg ip 30 minutes before ischemia) was performed in 18 mice. Maximal oxidative capacity (VMax), relative contribution of the mitochondrial respiratory chain complexes, calcium retention capacity (CRC)—a marker of apoptosis—and reactive oxygen species (ROS) production were determined using high-resolution respirometry, spectrofluorometry, and electron paramagnetic resonance in gastrocnemius muscles from both hindlimbs. IR significantly reduced mitochondrial VMax (from 11.79 ± 1.74 to 4.65 ± 1.11 pmol/s*mg wet weight (ww), p < 0.05, −50.2 ± 16.3%) and CRC (from 2.33 ± 0.41 to 0.84 ± 0.18 µmol/mg dry weight (dw), p < 0.05; −61.1 ± 6.8%). ROS tended to increase in the ischemic limb (+64.3 ± 31.9%, p = 0.08). Although tending to reduce IR-related ROS production (−42.4%), sildenafil failed to reduce muscle mitochondrial dysfunctions (−63.3 ± 9.2%, p < 0.001 and −55.2 ± 7.6% p < 0.01 for VMax, and CRC, respectively). In conclusion, lower limb IR impaired skeletal muscle mitochondrial function, but, despite tending to reduce ROS production, pharmacological preconditioning with sildenafil did not show protective effects.
Collapse
Affiliation(s)
- Liliane Tetsi
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Anne-Laure Charles
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Isabelle Georg
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Fabienne Goupilleau
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Anne Lejay
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
- Hôpitaux Universitaires de Strasbourg, Service de Physiologie et d'Explorations Fonctionnelles, 67000 Strasbourg, France.
- Hôpitaux Universitaires de Strasbourg, Service de Chirurgie vasculaire et de transplantation rénale, 67000 Strasbourg, France.
| | - Samy Talha
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
- Hôpitaux Universitaires de Strasbourg, Service de Physiologie et d'Explorations Fonctionnelles, 67000 Strasbourg, France.
| | - Myriam Maumy-Bertrand
- IRMA, équipe MoCo et LabEx IRMIA, 7 rue René Descartes, 67084 Strasbourg CEDEX, France.
| | - Claire Lugnier
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
| | - Bernard Geny
- Unistra, Fédération de Médecine Translationnelle, Equipe d'Accueil 3072, « Mitochondrie, Stress oxydant et Protection Musculaire », Institut de Physiologie, 67000 CEDEX, France.
- Hôpitaux Universitaires de Strasbourg, Service de Physiologie et d'Explorations Fonctionnelles, 67000 Strasbourg, France.
| |
Collapse
|
15
|
Rottenberg H, Hoek JB. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 2017; 16:943-955. [PMID: 28758328 PMCID: PMC5595682 DOI: 10.1111/acel.12650] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 12/23/2022] Open
Abstract
Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D; 23 W. Bridge Street New Hope PA 18038 USA
| | - Jan B. Hoek
- Department of Anatomy, Pathology and Cell Biology; MitoCare Center; Thomas Jefferson University; Philadelphia PA 19107 USA
| |
Collapse
|
16
|
Kindo M, Gerelli S, Bouitbir J, Hoang Minh T, Charles AL, Mazzucotelli JP, Zoll J, Piquard F, Geny B. Left Ventricular Transmural Gradient in Mitochondrial Respiration Is Associated with Increased Sub-Endocardium Nitric Oxide and Reactive Oxygen Species Productions. Front Physiol 2016; 7:331. [PMID: 27582709 PMCID: PMC4987374 DOI: 10.3389/fphys.2016.00331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Left ventricle (LV) transmural gradient in mitochondrial respiration has been recently reported. However, to date, the physiological mechanisms involved in the lower endocardium mitochondrial respiration chain capacity still remain to be determined. Since, nitric oxide (NO) synthase expression in the heart has spatial heterogeneity and might impair mitochondrial function, we investigated a potential association between LV transmural NO and mitochondrial function gradient. METHODS Maximal oxidative capacity (VMax) and relative contributions of the respiratory chain complexes II, III, IV (VSucc) and IV (VTMPD), mitochondrial content (citrate synthase activity), coupling, NO (electron paramagnetic resonance), and reactive oxygen species (ROS) production (H2O2 and dihydroethidium (DHE) staining) were determined in rat sub-endocardium (Endo) and sub-epicardium (Epi). Further, the effect of a direct NO donor (MAHMA NONOate) on maximal mitochondrial respiratory rates (Vmax) was determined. RESULTS Mitochondrial respiratory chain activities were reduced in the Endo compared with the Epi (-16.92%; P = 0.04 for Vmax and -18.73%; P = 0.02, for Vsucc, respectively). NO production was two-fold higher in the Endo compared with the Epi (P = 0.002) and interestingly, increasing NO concentration reduced Vmax. Mitochondrial H2O2 and LV ROS productions were significantly increased in Endo compared to Epi, citrate synthase activity and mitochondrial coupling being similar in the two layers. CONCLUSIONS LV mitochondrial respiration transmural gradient is likely related to NO and possibly ROS increased production in the sub-endocardium.
Collapse
Affiliation(s)
- Michel Kindo
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Chirurgie Cardiovasculaire, Pôle d'activité Médico-Chirurgicale Cardiovasculaire, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - Sébastien Gerelli
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Chirurgie Cardiovasculaire, Pôle d'activité Médico-Chirurgicale Cardiovasculaire, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - Jamal Bouitbir
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - Tam Hoang Minh
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Chirurgie Cardiovasculaire, Pôle d'activité Médico-Chirurgicale Cardiovasculaire, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - Anne-Laure Charles
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - Jean-Philippe Mazzucotelli
- Service de Chirurgie Cardiovasculaire, Pôle d'activité Médico-Chirurgicale Cardiovasculaire, Nouvel Hôpital Civil, CHRU de Strasbourg Strasbourg, France
| | - Joffrey Zoll
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - François Piquard
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| | - Bernard Geny
- Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France
| |
Collapse
|
17
|
Paradis S, Charles AL, Meyer A, Lejay A, Scholey JW, Chakfé N, Zoll J, Geny B. Chronology of mitochondrial and cellular events during skeletal muscle ischemia-reperfusion. Am J Physiol Cell Physiol 2016; 310:C968-82. [PMID: 27076618 DOI: 10.1152/ajpcell.00356.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Peripheral artery disease (PAD) is a common circulatory disorder of the lower limb arteries that reduces functional capacity and quality of life of patients. Despite relatively effective available treatments, PAD is a serious public health issue associated with significant morbidity and mortality. Ischemia-reperfusion (I/R) cycles during PAD are responsible for insufficient oxygen supply, mitochondriopathy, free radical production, and inflammation and lead to events that contribute to myocyte death and remote organ failure. However, the chronology of mitochondrial and cellular events during the ischemic period and at the moment of reperfusion in skeletal muscle fibers has been poorly reviewed. Thus, after a review of the basal myocyte state and normal mitochondrial biology, we discuss the physiopathology of ischemia and reperfusion at the mitochondrial and cellular levels. First we describe the chronology of the deleterious biochemical and mitochondrial mechanisms activated by I/R. Then we discuss skeletal muscle I/R injury in the muscle environment, mitochondrial dynamics, and inflammation. A better understanding of the chronology of the events underlying I/R will allow us to identify key factors in the development of this pathology and point to suitable new therapies. Emerging data on mitochondrial dynamics should help identify new molecular and therapeutic targets and develop protective strategies against PAD.
Collapse
Affiliation(s)
- Stéphanie Paradis
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France;
| | - Anne-Laure Charles
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Alain Meyer
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Anne Lejay
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; and
| | - James W Scholey
- Department of Medicine and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nabil Chakfé
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; and
| | - Joffrey Zoll
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Bernard Geny
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| |
Collapse
|